@phdthesis{Muehlberger2018, author = {M{\"u}hlberger, Clemens}, title = {Design of a Self-Organizing MAC Protocol for Dynamic Multi-Hop Topologies}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158788}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Biologically inspired self-organization methods can help to manage the access control to the shared communication medium of Wireless Sensor Networks. One lightweight approach is the primitive of desynchronization, which relies on the periodic transmission of short control messages - similar to the periodical pulses of oscillators. This primitive of desynchronization has already been successfully implemented as MAC protocol for single-hop topologies. Moreover, there are also some concepts of such a protocol formulti-hop topologies available. However, the existing implementations may handle just a certain class of multi-hop topologies or are not robust against topology dynamics. In addition to the sophisticated access control of the sensor nodes of a Wireless Sensor Network in arbitrary multi-hop topologies, the communication protocol has to be lightweight, applicable, and scalable. These characteristics are of particular interest for distributed and randomly deployed networks (e.g., by dropping nodes off an airplane). In this work we present the development of a self-organizing MAC protocol for dynamic multi-hop topologies. This implies the evaluation of related work, the conception of our new communication protocol based on the primitive of desynchronization as well as its implementation for sensor nodes. As a matter of course, we also analyze our realization with regard to our specific requirements. This analysis is based on several (simulative as well as real-world) scenarios. Since we are mainly interested in the convergence behavior of our protocol, we do not focus on the "classical" network issues, like routing behavior or data rate, within this work. Nevertheless, for this purpose we make use of several real-world testbeds, but also of our self-developed simulation framework. According to the results of our evaluation phase, our self-organizing MAC protocol for WSNs, which is based on the primitive of desynchronization, meets all our demands. In fact, our communication protocol operates in arbitrary multi-hop topologies and copes well with topology dynamics. In this regard, our protocol is the first and only MAC protocol to the best of our knowledge. Moreover, due to its periodic transmission scheme, it may be an appropriate starting base for additional network services, like time synchronization or routing.}, language = {en} } @phdthesis{Runge2022, author = {Runge, Isabel Madeleine}, title = {Network Coding for Reliable Data Dissemination in Wireless Sensor Networks}, doi = {10.25972/OPUS-27224}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-272245}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The application of Wireless Sensor Networks (WSNs) with a large number of tiny, cost-efficient, battery-powered sensor nodes that are able to communicate directly with each other poses many challenges. Due to the large number of communicating objects and despite a used CSMA/CA MAC protocol, there may be many signal collisions. In addition, WSNs frequently operate under harsh conditions and nodes are often prone to failure, for example, due to a depleted battery or unreliable components. Thus, nodes or even large parts of the network can fail. These aspects lead to reliable data dissemination and data storage being a key issue. Therefore, these issues are addressed herein while keeping latency low, throughput high, and energy consumption reduced. Furthermore, simplicity as well as robustness to changes in conditions are essential here. In order to achieve these aims, a certain amount of redundancy has to be included. This can be realized, for example, by using network coding. Existing approaches, however, often only perform well under certain conditions or for a specific scenario, have to perform a time-consuming initialization, require complex calculations, or do not provide the possibility of early decoding. Therefore, we developed a network coding procedure called Broadcast Growth Codes (BCGC) for reliable data dissemination, which performs well under a broad range of diverse conditions. These can be a high probability of signal collisions, any degree of nodes' mobility, a large number of nodes, or occurring node failures, for example. BCGC do not require complex initialization and only use simple XOR operations for encoding and decoding. Furthermore, decoding can be started as soon as a first packet/codeword has been received. Evaluations by using an in-house implemented network simulator as well as a real-world testbed showed that BCGC enhance reliability and enable to retrieve data dependably despite an unreliable network. In terms of latency, throughput, and energy consumption, depending on the conditions and the procedure being compared, BCGC can achieve the same performance or even outperform existing procedures significantly while being robust to changes in conditions and allowing low complexity of the nodes as well as early decoding.}, subject = {Zuverl{\"a}ssigkeit}, language = {en} }