@phdthesis{Ertl2020, author = {Ertl, Julia Andrea}, title = {Bioorthogonale chemische Modifikation der Bm-Levansucrase zur rationalen Anpassung der Produktspezifit{\"a}t}, doi = {10.25972/OPUS-20731}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-207319}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Enzym-Modifikationen finden in der Natur in Form von posttranslationalen Protein-Modifikationen statt und sind ein faszinierender Mechanismus, um die biologische Vielfalt und Funktion von Proteinen um ein Vielfaches zu erh{\"o}hen. Daher ist es f{\"u}r ein ganzheitliches Verst{\"a}ndnis bestimmter biologischer Prozesse oder enzymatischer Struktur-Funktions-Beziehungen unerl{\"a}sslich, chemische Methoden zu entwickeln, die in der Lage sind, diese nat{\"u}rliche Diversit{\"a}t nachzuahmen.[61] Die wohl gr{\"o}ßte Herausforderung der chemischen Protein-Konjugation ist die chemo- und regioselektive Modifikation einer gezielten Aminos{\"a}ure bei gleichzeitig milden und physiologischen Reaktionsbedingungen. Trotz zahlreich beschriebener Ans{\"a}tze zur selektiven Protein-Modifikation, bedarf es weiterhin neuer Methoden, da viele bestehende Herangehens¬weisen auf ein spezielles System zugeschnitten sind.[9, 63] Aus diesem Grund sollte im Rahmen dieser Arbeit eine breit anwendbare Methode zur selektiven chemischen Tyrosin-Modifikation am Modell der Levansucrase aus Bacillus megaterium entwickelt werden. Durch eine zweistufige Protein-Modifikation, bestehend aus einer En-Reaktion im ersten Schritt und einer Click-Reaktion im zweiten Konjugationsschritt, gelang es die Produktspezifit{\"a}t der Bm Levansucrase rational zu beeinflussen. Zun{\"a}chst wurde die Tyrosin-spezifische En-Reaktion mit der Luminol-Verbindung 1 an nat{\"u}rlich vorkommenden Tyrosin-Seitenketten der Levansucrase erprobt und analysiert. Hierbei zeigte sich durch massenspektrometrische Untersuchungen, dass haupts{\"a}chlich zwei der 25 vorhandenen Tyrosin-Reste mit dem Luminol-Tag 1 modifiziert wurden, zu denen die Seitenketten Y247 und Y196 geh{\"o}rten. Um die Auswirkungen der Tyrosin-Modifikation leichter interpretieren zu k{\"o}nnen und eine gegenseitige Beeinflussung auszuschließen, wurde vorerst mit der Einzelmutante Y247F gearbeitet. Da nach der ersten Modifikation der Variante Y247F geringe Ver{\"a}nderungen im Produkt¬spektrum beobachtet wurden, insbesondere im hoch-molekularen Bereich, wurde die Click-Reaktion im zweiten Schritt mit der Intention durchgef{\"u}hrt, diesen Effekt zu verst{\"a}rken. Schließlich bewirkte die Click-Reaktion mit Azidoglucose (AzGlc) bei Variante Y247F-1-AzGlc eine erhebliche Verschiebung der Produktverteilung von kleinen Fructooligosacchariden (ca. 1100 Da) hin zu hoch-molekularem Levan (ca. 2,1∙106 Da). Drei weitere Positionen, die in der dritten Zone des Enzyms liegen, wurden f{\"u}r die gentechnische Substitution gegen nicht-native Tyrosin-Reste ausgew{\"a}hlt. Dadurch wurden die Varianten E314Y, D248Y sowie F445Y erhalten und anschließend wie zuvor in zwei Schritten chemisch modifiziert. Die Modifikation dieser Varianten f{\"u}hrte hinsichtlich der Ver{\"a}nderung des Produktprofils zu {\"a}hnlichen Ergebnissen, wie sie mit dem Enzym Y247F erhalten wurden ({\"U}bersicht 1, A). Um den Einfluss verschiedener Seitenketten zu analysieren, wurden neben der Azidoglucose vier weitere Azido-Verbindungen in der Click-Reaktion getestet. Die Resultate aus den genannten Untersuchungen und die Einbeziehung molekular¬-dynamischer Simulationen ließen erste R{\"u}ckschl{\"u}sse auf die mechanistischen Prozesse der Bm Levansucrase und deren gezielte Manipulation zu: Die Gr{\"o}ße der eingef{\"u}hrten Seitenkette sowie die F{\"a}higkeit des Tags polare Wechselwirkungen auszubilden, spielen eine entscheidende Rolle zur rationalen Modulation der Produkt¬spezifit{\"a}t. Insbesondere die r{\"a}umliche Orientierung und Bewegung der Seitenkette 1 AzGlc und die damit einhergehende sterische Hinderung trugen dazu bei, eine vorzeitige Dissoziation der wachsenden Fructane zu verhindern und erm{\"o}glichten dadurch die prozessive Polymersynthese. Weitere Erkenntnisse {\"u}ber den Levan-Elongationsmechanismus wurden durch die Modifikation der Varianten N126Y und S125Y erhalten. Diese lagen im Gegensatz zu den zuvor untersuchten Tyrosin-Resten nicht im Wachstumsverlauf des Substrats und besaßen zudem eine k{\"u}rzere Distanz zum aktiven Zentrum. In beiden F{\"a}llen f{\"u}hrte bereits die erste Modifikation mit Luminol-Derivat 1 zu v{\"o}llig unter¬schiedlichen Produktprofilen im Vergleich zu den zuvor untersuchten Enzym-Varianten. W{\"a}hrend mit der Variante N126Y-1 eine signifikante Akkumulation (bis zu 800 \% Zunahme) verschiedener Oligosaccharide erzielt wurde, synthetisierte die Variante S125Y-1 schon nach dem ersten Modifikationsschritt Levan-Polymer ({\"U}bersicht 1, B/C). Die zugrunde-liegenden Interaktionen und Trajektorien der eingef{\"u}hrten Seitenkette wurden ebenfalls mit Hilfe von MD Simulationen analysiert und best{\"a}tigten die zuvor getroffenen Annahmen. Durch die r{\"a}umliche N{\"a}he zur Substrat-Bindungstasche reichte bei Variante S125Y 1 bereits die Luminol-Verbindung aus, um die Substrat-Dissoziation zu verhindern und damit die Polymer¬synthese zu induzieren. Hingegen dazu ergaben die Simulationen eine sehr dynamische und fluktuierende Seitenkette f{\"u}r N126Y-1, was vermutlich zur Destabilisierung initialer Wechselwirkungen zwischen Substrat und der Protein¬oberfl{\"a}che f{\"u}hrte und dadurch die Freisetzung und Akkumulation kurzer Oligo-saccharide beg{\"u}nstigte. Durch die bioorthogonale chemische Einf{\"u}hrung einer artifiziellen Seitenkette war es schließlich m{\"o}glich, das Produktspektrum der Bm Levansucrase sowohl in Richtung Polymersynthese als auch in Richtung kurzer Oligosaccharide zu lenken. Unter Verwendung der Tyrosin-spezifischen En-Reaktion wurden daf{\"u}r gezielt native und nicht-native Tyrosin-Reste selektiv modifiziert und in einer Folge¬reaktion mittels Click-Chemie zus{\"a}tzlich derivatisiert. Die Auswirkungen der Modifikations-Reaktionen auf den Elongationsmechanismus des Substrats konnten durch MD-Simulationen aufgekl{\"a}rt werden. Das Ziel, die Produktspezifit{\"a}t der Levansucrase rational zu beeinflussen und in eine gezielte Richtung zu steuern, wurde damit erfolgreich umgesetzt. Ein weiterer Fokus dieser Arbeit lag darin, eine effiziente und einfache Methode zur Reinigung eines Fructan-Gemisches zu entwickeln, um damit den Zugang zu Oligo-sacchariden definierter Gr{\"o}ßen zu vereinfachen. Die Verf{\"u}gbarkeit bestimmter Oligosaccharide in ausreichender Menge und Reinheit w{\"u}rde die Untersuchung von Fructanen auf ihre pr{\"a}biotischen Eigenschaften erleichtern und zum Verst{\"a}ndnis der Korrelation zwischen dem Darmmikrobiom und verschiedenen Krankheits¬bildern beitragen.[125] Mit Hilfe der Levansucrase-Variante K373L wurde ein Fructan-Gemisch synthetisiert, das im Vergleich zum Produkt¬profil des Wildtyps einen h{\"o}heren Anteil kurzkettiger Oligosaccharide aufwies. In einem dreistufigen Reinigungsprozess wurde das Produktgemisch im ersten Schritt von den Monosacchariden Glucose und Fructose sowohl fermentativ durch den Hefe¬stamm H. polymorpha als auch chromatographisch per Silicagel separiert. Anschließend erfolgte eine grobe Trennung der Oligosaccharide nach dem Gr{\"o}ßen¬ausschlussprinzip mit einer Bio-Gel®P2-S{\"a}ule. Im letzten Schritt wurde die Oligosaccharidfraktion, die haupts{\"a}chlich Tri- und Tetrasaccharide enthielt, schließlich mittels Umkehrphasen-S{\"a}ulenchromatographie (RP18-HPLC) in die gew{\"u}nschten Produkte aufgetrennt. Auf diese Weise gelang es, die Oligosaccharide 1 Kestose (28 \%), 6 Kestose (56 \%) und 6 Nystose (20 \%) in hoher Reinheit (> 95 \%) und moderaten Ausbeuten zu isolieren ({\"U}bersicht 2). Der letzte Teil dieser Arbeit sollte die verschiedenen Disziplinen der Biokatalyse, chemischen Protein-Modifikation und Click-Reaktion mit einer neuen Kompontente, der Photokatalyse, verbinden und in einem innovativen Konzept die Grundlage f{\"u}r die Kombination dieser Forschungsbereiche schaffen. In diesem Kontext wurde einerseits eine lineare photo-biokatalysierte Kaskaden-Reaktion entworfen und vorbereitet, w{\"a}hrend andererseits die Synthese eines clickbaren Photokatalysators durchgef{\"u}hrt wurde ({\"U}bersicht 3). F{\"u}r den enzymatischen Teil der Kaskaden-Reaktion wurden die Halogenasen RebH und RadH mit den zugeh{\"o}rigen Regenerationssystemen Fre und GDH erfolgreich in E. coli exprimiert, gereinigt und deren Aktivit{\"a}t nachgewiesen. Dar{\"u}ber hinaus wurde ein aktiver Alkin-funktionalisierter Photokatalysator synthetisiert, dessen Aktivit{\"a}t auch nach der Click-Reaktion mit einer Aminos{\"a}ure und einem Peptid erhalten blieb. Damit wurden die Grundlagen geschaffen, um z. B. photoaktive Bausteine in ein Enzym einzubringen und somit neue lichtabh{\"a}ngige Reaktionszentren oder sogenannte Designer-Enzyme zu erzeugen.}, subject = {Levansucrase}, language = {de} }