@phdthesis{Kremling2013, author = {Kremling, Stefan}, title = {Charakterisierung von InP und InGaN Quantenpunkten als Einzelphotonenquellen sowie von AlGaInAs Quantenpunkten in Zwischenband-Solarzellen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-101712}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Die vorliegende Arbeit beschreibt die Charakterisierung von Halbleiter-Quantenpunkten (QP) in unterschiedlichen Materialsystemen. Die hier dargelegten Untersuchungen wurden mit verschiedenen Methoden der optischen Spektroskopie durchgef{\"u}hrt. Zu Beginn der Arbeit werden theoretische Grundlagen von QP hinsichtlich ihrer elektronischen Struktur und statistischen Eigenschaften erl{\"a}utert. Dar{\"u}ber hinaus wird n{\"a}her auf die Physik von Solarzellen eingegangen, in dem die relevanten Gleichungen f{\"u}r die Beschreibung des Ladungstr{\"a}gertransportes hergeleitet und diskutiert werden. Darauf folgend werden die experimentelle Methoden erkl{\"a}rt, welche zur Charakterisierung der jeweiligen Proben dienten. Besonderes Augenmerk wird auf die Methode zur Messung des Zwei-Photonen-Absorptionsprozesses gelegt. Der Abschnitt der experimentell gewonnenen Ergebnisse beginnt mit Untersuchungen an einzelnen, spektral isolierten InP QP, welche mit ultralangsamen Wachstumsraten hergestellt wurden. Aufgrund der sehr geringen Fl{\"a}chendichte konnten grundlegende physikalische Eigenschaften von QP ohne zus{\"a}tzliche laterale Strukturierungen studiert werden. Mittels Messungen in Abh{\"a}ngigkeit der Anregungsleistung und Detektion in Abh{\"a}ngigkeit der Polarisation konnten die verschiedenen Lumineszenzlinien eines QP-Spektrums den jeweiligen exzitonischen Zust{\"a}nden zugeordnet werden. Zus{\"a}tzlich wurden die QP in einem externen Magnetfeld in Faraday-Konfiguration untersucht. Abschließend durchgef{\"u}hrte Autokorrelationsmessungen erlaubten die Untersuchung der zeitlichen Statistik der QP-Photonen. Es konnte die Emission einzelner Photonen nachgewiesen werden. Anschließend folgen spektroskopische Untersuchungen von InP QP, welche mittels sequentiellen Wachstums hergestellt wurden. Anhand von Messungen in Abh{\"a}ngigkeit der Anregungsleistung und best{\"a}tigt durch zeitaufgel{\"o}ste Messungen am QP-Ensemble wurde eine bimodale QP-Verteilung mit Typ-I und Typ-II Bandverlauf bestimmt. Zus{\"a}tzlich konnten an einzelnen, spektral isolierten QP verschiedene Exziton-Zust{\"a}nde identifiziert werden, bevor abschließend Autokorrelationsmessungen die Emission einzelner Photonen demonstrierten. Zur Steigerung der Auskoppeleffizienz der Photonen wurden InP QP in Mikros{\"a}ulenresonatoren, bestehend aus zwei Bragg-Spiegeln mit einer dazwischenliegenden GaInP Kavit{\"a}t, eingebettet. Anfangs wurde die Emission der Kavit{\"a}tsmode von Strukturen mit unterschiedlichen lateralen Durchmessern charakterisiert. Mittels Temperaturverstimmung konnte die Energie eines einzelnen QP-Exzitons in Resonanz mit der Resonatormode gebracht werden. Im Regime der schwachen Wechselwirkung wurde eine signifikante {\"U}berh{\"o}hung der Lumineszenzintensit{\"a}t aufgrund des Purcell-Effektes gemessen. Zus{\"a}tzlich wurde im Regime der schwachen Kopplung die Emission einzelner Photonen anhand von Korrelationsmessungen nachgewiesen. Im zweiten Schritt wurden die QP-Mikros{\"a}ulenresonatorstrukturen elektrisch angeregt. Nach einer grundlegenden Charakterisierung konnte auch hier mittels Temperaturverstimmung die Energie der Resonatormode mit der eines Exziton in Resonanz gebracht werden. Im Regime der schwachen Wechselwirkung stieg die Intensit{\"a}t der Lumineszenz aufgrund des Purcell-Effekts signifikant an. Zum Abschluss best{\"a}tigen Korrelationsmessungen den Nachweis der Emission einzelner Photonen. In Kapitel 6 werden die Eigenschaften von InGaN QP genauer analysiert. Nitrid-Verbindungshalbleiter kristallieren vorzugsweise stabil in der Wurtzit-Kristallstruktur. Polare Kristallebenen mit fehlender Spiegelsymmetrie f{\"u}hren zu starken piezoelektrischen Feldern. Dies hat eine Lumineszenz mit ausgepr{\"a}gter linearer Polarisation zur Folge hat. Diese Eigenschaft wurde mittels statistischen Untersuchungen n{\"a}her betrachtet. Zus{\"a}tzlich erlaubten Messungen in Abh{\"a}ngigkeit der Anregungsleistung die verschiedenen Exziton-Zust{\"a}nde eines QP zu identifizieren. Zudem wurde die Emission einzelner Photonen durch InGaN QP demonstriert, erstmals sogar bis zu einer Temperatur von 50 K. Im abschliessenden Kapitel wird eine m{\"o}gliche Anwendung von QP pr{\"a}sentiert, bei der Eigenschaften in Bauteilen gezielt ausgenutzt werden, um die Bandbreite der Photonenabsorption zu erh{\"o}hen. Das Konzept der Zwischenband-Solarzellen verspricht auch Photonen mit einer Energie kleiner der Bandl{\"u}cke des umgebenden Materials aufnehmen zu k{\"o}nnen und somit den spektralen Absorptionsbereich zu erweitern. F{\"u}r eine systematische Untersuchung wurden verschiedene Proben mit integrierten AlGaInAs QP hergestellt. Anhand der Strom-Spannungs-Kennlinien der jeweiligen Proben im Dunkeln und unter Beleuchtung konnten wichtige Solarzellenparameter bestimmt werden. Spektrale Messungen liefern Informationen {\"u}ber die externe Quanteneffizienz der Proben. Entscheidend f{\"u}r den experimentellen Nachweis des Funktionsprinzips der Zwischenband-Solarzellen ist die Messung der Zwei-Photonen-Absorption f{\"u}r zwei Photonen mit jeweils kleineren Energien als der Bandl{\"u}cke des umgebenden Materials.}, subject = {Quantenpunkt}, language = {de} } @phdthesis{Roeding2018, author = {R{\"o}ding, Sebastian}, title = {Coherent Multidimensional Spectroscopy in Molecular Beams and Liquids Using Incoherent Observables}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-156726}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Das Ziel der vorliegenden Arbeit war die Umsetzung einer experimentellen Herangehensweise, welche die koh{\"a}rente zweidimensionale (2D) Spektroskopie an Proben in unterschiedlichen Aggregatzust{\"a}nden erm{\"o}glicht. Hierzu wurde zun{\"a}chst ein Aufbau f{\"u}r fl{\"u}ssige Proben realisiert, in welchem die emittierte Fluoreszenz als Messsignal zur Aufnahme der 2D Spektren genutzt wird. Im Gegensatz zu dieser bereits etablierten Methode in der fl{\"u}ssigen Phase stellt die in dieser Arbeit außerdem vorgestellte 2D Spektroskopie an gasf{\"o}rmigen Proben in einem Molekularstrahl einen neuen Ansatz dar. Hierbei werden zum ersten Mal Kationen mittels eines Flugzeitmassenspektrometers als Signal verwendet und somit ionen-spezifische 2D Spektren isolierter Molek{\"u}le erhalten. Zus{\"a}tzlich zu den experimentellen Entwicklungen wurde in dieser Arbeit ein neues Konzept zur Datenerfassung in der 2D Spektroskopie entworfen, welches mit Hilfe einer optimierten Signalabtastung und eines Compressed-Sensing Rekonstruktionsalgorithmus die Aufnahmezeit der Daten deutlich reduziert. Charakteristisch f{\"u}r die in dieser Arbeit eingesetzte Variante der 2D Spektroskopie ist die Verwendung einer phasenkoh{\"a}renten Sequenz bestehend aus vier Laserimpulsen in einer kollinearen Laserstrahlgeometrie zur Anregung der Probe. Diese Impulssequenz wurde durch einen Laserimpulsformer erzeugt, der durch {\"A}nderung der relevanten Laserimpulsparameter mit der Wiederholrate des Lasers eine schnelle Datenerfassung erm{\"o}glicht. Die Antwort der Probe auf diese Anregung wurde durch inkoh{\"a}rente Observablen gemessen, welche proportional zur Population des angeregten Zustandes sind, wie zum Beispiel Fluoreszenz oder Ionen. Um aus diesem Signal w{\"a}hrend der Datenanalyse die gew{\"u}nschten nichtlinearen Beitr{\"a}ge zu extrahieren, wurde die Messung mit verschiedenen Kombinationen der relativen Phase zwischen den Laserimpulsen wiederholt ("Phase Cycling"). Der Aufbau zur 2D Spektroskopie in fl{\"u}ssiger Phase mit Fluoreszenz-Detektion wurde an Hand von 2D Spektren des Laserfarbstoffes Cresyl Violett charakterisiert. Hierbei wurden Oszillationen in verschiedenen Bereichen des 2D Spektrums beobachtet, welche durch vibronische Koh{\"a}renzen hervorgerufen werden und mit fr{\"u}heren Beobachtungen in der Literatur {\"u}bereinstimmen. Mit dem gleichen Datensatz wurde im n{\"a}chsten Schritt das neue Konzept zur optimierten Datenerfassung demonstriert. Um ein optimiertes Schema f{\"u}r die Signalabtastung zu finden, wurde ein genetischer Algorithmus implementiert, wobei nur ein Viertel der eigentlichen Datenpunkte zur Messwerterfassung verwendet werden sollte. Dies reduziert die Zeitdauer der Datenerfassung auf ein Viertel der urspr{\"u}nglichen Messzeit. Die Rekonstruktion des vollst{\"a}ndigen Signales erfolgte mit Hilfe einer neuartigen, kompakten Darstellung von 2D Spektren basierend auf der von Neumann Basis. Diese Herangehensweise ben{\"o}tigte im Vergleich zur {\"u}blicherweise verwendeten Fourier Basis nur ein Sechstel der Koeffizienten um das Signal vollst{\"a}ndig darzustellen und erm{\"o}glichte so die erfolgreiche Rekonstruktion der Oszillationen in Cresyl Violett aus einem reduzierten Datensatz. Mit Hilfe der neuartigen koh{\"a}renten 2D Spektroskopie an Molekularstrahlen wurden {\"U}berg{\"a}nge von hoch angeregten Rydberg-Zust{\"a}nden ins ionische Kontinuum in Stickstoffdioxid untersucht. Als dominierender Beitrag stellte sich hierbei der {\"U}bergang in auto-ionisierende Zust{\"a}nde heraus. Ein wesentlicher Vorteil der Datenerfassung {\"u}ber ein Flugzeitmassenspektrometer ist die M{\"o}glichkeit der gleichzeitigen Aufnahme von 2D Spektren der Edukte und Produkte einer chemischen Reaktion. Dies wurde in Experimenten zur Mehrphotonenionisation gezeigt, in denen deutliche Unterschiede in den 2D Spektren des Stickstoffdioxid-Kations und des Stickstoffmonoxid-Fragmentes sichtbar wurden, welche auf unterschiedliche Antwortfunktionen zur{\"u}ckzuf{\"u}hren sind. Die in dieser Arbeit entwickelten experimentellen Techniken erm{\"o}glichen die schnelle Aufnahme von 2D Spektren f{\"u}r Proben in unterschiedlichen Aggregatzust{\"a}nden und erlauben einen zuverl{\"a}ssigen, direkten Vergleich der Ergebnisse. Sie sind deshalb ein Wegbereiter f{\"u}r zuk{\"u}nftige Untersuchungen der Eigenschaften quantenmechanischer Koh{\"a}renzen in photophysikalischen Prozessen oder w{\"a}hrend photochemischer Reaktionen in unterschiedlichen Aggregatzust{\"a}nden.}, subject = {Femtosekundenspektroskopie}, language = {en} } @phdthesis{Mueller2013, author = {M{\"u}ller, Thomas M.}, title = {Computergest{\"u}tztes Materialdesign: Mikrostruktur und elektrische Eigenschaften von Zirkoniumdioxid-Aluminiumoxid Keramiken}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-110942}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Die Mikrostruktur von Zirkonoxid-Aluminiumoxid Keramiken wurde im Rasterelektronenmikroskop (REM) untersucht und mittels quantitativer Bildanalyse weiter charakterisiert. Die so erhaltenen spezifischen morphologischen Kennwerte wurden mit denen, die an dreidimensionalen Modellstrukturen {\"a}quivalent gewonnen wurden, verglichen. Es wurden modifizierte Voronoistrukturen benutzt, um die beteiligten Phasen in repr{\"a}sentativen Volumenelementen (RVE) auf Voxelbasis zu erzeugen. Poren wurden an den Ecken und Kanten dieser Strukturen nachtr{\"a}glich hinzugef{\"u}g. Nachdem alle relevanten Kennwerte der Modellstrukturen an die realen keramischen Mikrostrukturen angepasst wurden, musste das RVE f{\"u}r die Finite Element Simulationen (FES) geeignet vernetzt werden. Eine einfache {\"U}bernahme der Voxelstrukturen in hexaedrische Elemente f{\"u}hrt zu sehr langen Rechenzeiten, und die erforderliche Genauigkeit der FES konnte nicht erreicht werden. Deshalb wurde zun{\"a}chst eine adaptive Oberfl{\"a}chenvernetzung ausgehend von einem generally classed marching tetrahedra Algorithmus erzeugt. Dabei wurde besonderer Wert auf die Beibehaltung der zuvor angepassten Kennwerte gelegt. Um die Rechenzeiten zu verk{\"u}rzen ohne die Genauigkeit der FES zu beeintr{\"a}chtigen, wurden die Oberfl{\"a}chenvernetzungen dergestalt vereinfacht, dass eine hohe Aufl{\"o}sung an den Ecken und Kanten der Strukturen erhalten blieb, w{\"a}hrend sie an flachen Korngrenzen stark verringert wurde. Auf Basis dieser Oberfl{\"a}chenvernetzung wurden Volumenvernetzungen, inklusive der Abbildung der Korngrenzen durch Volumenelemente, erzeugt und f{\"u}r die FES benutzt. Dazu wurde ein FE-Modell zur Simulation der Impedanzspektren aufgestellt und validiert. Um das makroskopische elektrische Verhalten der polykristallinen Keramiken zu simulieren, mussten zun{\"a}chst die elektrischen Eigenschaften der beteiligten Einzelphasen gemessen werden. Dazu wurde eine Anlage zur Impedanzspektroskopie bis 1000 °C aufgebaut und verwendet. Durch weitere Auswertung der experimentellen Daten unter besonderer Ber{\"u}cksichtigung der Korngrenzeffekte wurden die individuellen Phaseneigenschaften erhalten. Die Zusammensetzung der Mischkeramiken reichte von purem Zirkonoxid (3YSZ) bis zu purem Aluminiumoxid. Es wurde eine sehr gute {\"U}bereinstimmung zwischen den experimentellen und simulierten Werten bez{\"u}glich der betrachteten elektrischen, mechanischen und thermischen Eigenschaften erreicht. Die FES wurden verwendet, um die Einfl{\"u}sse verschiedener mikrostruktureller Parameter, wie Porosit{\"a}t, Korngr{\"o}ße und Komposition, auf das makroskopische Materialverhalten n{\"a}her zu untersuchen.}, subject = {Keramischer Werkstoff}, language = {de} } @phdthesis{Brendel2017, author = {Brendel, Michael}, title = {Correlation between Interface Energetics of Molecular Semiconductors and Opto-Electronic Properties of Planar Organic Solar Cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-155094}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {It was the scope of this work to gain a deeper understanding of the correlation between Interface energetics of molecular semiconductors in planar organic solar cells and the corresponding optoelectronic characteristics. For this aim, different approaches were followed. At first, a direct variation of donor/acceptor (D/A) interface energetics of bilayer cells was achieved by utilizing systematically modified donor compounds. This change could be correlated to the macroscopic device performance. At second, the impact of interface energetics was illustrated, employing a more extended device architecture. By introducing a thin interlayer between a planar D/A heterojunction, an energetic staircase was established. Exciton dissociation in such devices could be linked to the cascade energy level alignment of the photo-active materials. Finally, two different fullerene molecules C60 and C70 were employed in co-evaporated acceptor phases. The expected discrepancy in their electronic structure was related to the transport properties of the corresponding organic photovoltaic cells (OPVCs). The fullerenes are created simultaneously in common synthesis procedures. Next to the photo-physical relevance, the study was carried-out to judge on the necessity of separating the components from each other by purification which constitutes the cost-determining step in the total production costs.}, subject = {Organische Solarzelle}, language = {en} } @phdthesis{Schrauth2021, author = {Schrauth, Manuel}, title = {Critical Phenomena in Topologically Disordered Systems}, doi = {10.25972/OPUS-23499}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234998}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Clearly, in nature, but also in technological applications, complex systems built in an entirely ordered and regular fashion are the exception rather than the rule. In this thesis we explore how critical phenomena are influenced by quenched spatial randomness. Specifically, we consider physical systems undergoing a continuous phase transition in the presence of topological disorder, where the underlying structure, on which the system evolves, is given by a non-regular, discrete lattice. We therefore endeavour to achieve a thorough understanding of the interplay between collective dynamics and quenched randomness. According to the intriguing concept of universality, certain laws emerge from collectively behaving many-body systems at criticality, almost regardless of the precise microscopic realization of interactions in those systems. As a consequence, vastly different phenomena show striking similarities at their respective phase transitions. In this dissertation we pursue the question of whether the universal properties of critical phenomena are preserved when the system is subjected to topological perturbations. For this purpose, we perform numerical simulations of several prototypical systems of statistical physics which show a continuous phase transition. In particular, the equilibrium spin-1/2 Ising model and its generalizations represent -- among other applications -- fairly natural approaches to model magnetism in solids, whereas the non-equilibrium contact process serves as a toy model for percolation in porous media and epidemic spreading. Finally, the Manna sandpile model is strongly related to the concept of self-organized criticality, where a complex dynamic system reaches a critical state without fine-tuning of external variables. Our results reveal that the prevailing understanding of the influence of topological randomness on critical phenomena is insufficient. In particular, by considering very specific and newly developed lattice structures, we are able to show that -- contrary to the popular opinion -- spatial correlations in the number of interacting neighbours are not a key measure for predicting whether disorder ultimately alters the behaviour of a given critical system.}, subject = {Ising-Modell}, language = {en} } @phdthesis{Kolb2018, author = {Kolb, Verena}, title = {Einfluss metallischer Nanostrukturen auf die optoelektronischen Eigenschaften organischer Halbleiter}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170279}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Opto-elektronische Bauelemente auf Basis organischer Molek{\"u}le haben in den letzten Jahren nicht nur in Nischenbereichen, wie der Kombination organischer Photovoltaik mit geb{\"a}udeintegrierten Konzepten, sondern vor allem auch in der Entwicklung von kommerziell verf{\"u}gbaren OLED (organische lichtemittierende Dioden) Bauteilen, wie 4K TV-Ger{\"a}ten und Handy Displays, an Bedeutung gewonnen. Im Vergleich zu anorganischen Bauteilen weisen jedoch vor allem organische Solarzellen noch weitaus geringere Effizienzen auf, weswegen die Erforschung ihrer Funktionsweise und der Einfl{\"u}sse der einzelnen Bestandteile auf mikroskopischer Ebene f{\"u}r die Weiterentwicklung und Verbesserung des Leistungspotentials dieser Technologie unabdingbar ist. \\ Um dies zu erreichen, wurde in dieser Arbeit die Wechselwirkung zwischen der lokalisierten Oberfl{\"a}chenplasmonenresonanz (LSPR) metallischer Nanopartikel mit den optischen Anregungen organischer D{\"u}nnschichten in daf{\"u}r eigens pr{\"a}parierten opto-elektronischen Hybrid-Bauteilen aus kleinen Molek{\"u}len untersucht. Durch die Implementierung und Kopplung an solche plasmonischen Nanostrukturen kann die Absorption bzw. Emission durch das lokal um die Strukturen erh{\"o}hte elektrische Feld gezielt beeinflusst werden. Hierbei ist der spektrale {\"U}berlapp zwischen LSPR und den Absorptions- bzw. E\-missions\-spek\-tren der organischen Emitter entscheidend. In dieser Arbeit wurden durch Ausnutzen dieses Mechanismus sowohl die Absorption in organischen photovoltaischen Zellen erh{\"o}ht, als auch eine verst{\"a}rkte Emission in nanostrukturierten OLEDs erzeugt. \\ Besonderer Fokus wurde bei diesen Untersuchungen auf mikroskopische Effekte durch neu entstehende Grenzfl{\"a}chen und die sich ver{\"a}ndernden Morphologien der aktiven organischen Schichten gelegt, da deren Einfl{\"u}sse bei optischen Untersuchungen oftmals nur unzureichend ber{\"u}cksichtigt werden. In der Arbeit wurden daher die nicht zu vernachl{\"a}ssigenden Folgen der Einbringung von metallischen Nanostrukturen auf die Morphologie und Grenzfl{\"a}chen zusammen mit den spektralen Ver{\"a}nderungen der Absorptions- und Emissionscharakteristik organischer Molek{\"u}le analysiert und in Zusammenhang gebracht, wodurch eine Verbesserung der Effizienzen opto-elektronischer Bauteile erreicht werden soll.}, subject = {Nanostruktur}, language = {de} } @phdthesis{Stender2017, author = {Stender, Benedikt}, title = {Einzelphotonenemitter und ihre Wechselwirkung mit Ladungstr{\"a}gern in organischen Leuchtdioden}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-150913}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {In dieser Arbeit wird die Photophysik von Einzelphotonenemittern unterschiedlicher Materialklassen, wie Fehlstellen in Diamant und Siliziumcarbid sowie organischer Molek{\"u}le bei Raumtemperatur untersucht. Zu diesem Zweck wurde ein hochaufl{\"o}sendes konfokales Mikroskop konzipiert und konstruiert, welches die optische Detektion einzelner Quantensysteme erm{\"o}glicht. Zus{\"a}tzlich werden verschiedene Methoden wie die Rotationsbeschichtung, das Inkjet-Printing und das Inkjet-Etching in Bezug auf die Reproduzierbarkeit und Strukturierbarkeit von organischen Leuchtdioden (OLEDs) verglichen. Im weiteren Verlauf werden die optoelektronischen Prozesse in dotierten OLEDs untersucht, ausgehend von hohen Dotierkonzentrationen bis hin zur Dotierung mit einzelnen Molek{\"u}len. Dadurch kann die Exzitonen-Ladungstr{\"a}ger Wechselwirkung auf und in der Umgebung von r{\"a}umlich isolierten Molek{\"u}len analysiert werden.}, subject = {Einzelphotonenemission}, language = {de} } @phdthesis{Ochs2022, author = {Ochs, Maximilian Thomas}, title = {Electrically Connected Nano-Optical Systems: From Refined Nanoscale Geometries to Selective Molecular Assembly}, doi = {10.25972/OPUS-29114}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-291140}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Metallic nano-optical systems allow to confine and guide light at the nanoscale, a fascinating ability which has motivated a wide range of fundamental as well as applied research over the last two decades. While optical antennas provide a link between visible radiation and localized energy, plasmonic waveguides route light in predefined pathways. So far, however, most experimental demonstrations are limited to purely optical excitations, i.e. isolated structures are illuminated by external lasers. Driving such systems electrically and generating light at the nanoscale, would greatly reduce the device footprint and pave the road for integrated optical nanocircuitry. Yet, the light emission mechanism as well as connecting delicate nanostructures to external electrodes pose key challenges and require sophisticated fabrication techniques. This work presents various electrically connected nano-optical systems and outlines a comprehensive production line, thus significantly advancing the state of the art. Importantly, the electrical connection is not just used to generate light, but also offers new strategies for device assembly. In a first example, nanoelectrodes are selectively functionalized with self-assembled monolayers by charging a specific electrode. This allows to tailor the surface properties of nanoscale objects, introducing an additional degree of freedom to the development of metal-organic nanodevices. In addition, the electrical connection enables the bottom-up fabrication of tunnel junctions by feedback-controlled dielectrophoresis. The resulting tunnel barriers are then used to generate light in different nano-optical systems via inelastic electron tunneling. Two structures are discussed in particular: optical Yagi-Uda antennas and plasmonic waveguides. Their refined geometries, accurately fabricated via focused ion beam milling of single-crystalline gold platelets, determine the properties of the emitted light. It is shown experimentally, that Yagi-Uda antennas radiate light in a specific direction with unprecedented directionality, while plasmonic waveguides allow to switch between the excitation of two propagating modes with orthogonal near-field symmetry. The presented devices nicely demonstrate the potential of electrically connected nano-optical systems, and the fabrication scheme including dielectrophoresis as well as site-selective functionalization will inspire more research in the field of nano-optoelectronics. In this context, different future experiments are discussed, ranging from the control of molecular machinery to optical antenna communication.}, subject = {Nanooptik}, language = {en} } @phdthesis{Weber2015, author = {Weber, Christian}, title = {Electrochemical Energy Storage: Carbon Xerogel-Manganese Oxide Composites as Supercapacitor Electrode Materials}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130748}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Electrochemical double layer capacitors (EDLC), most commonly referred to as "supercapacitors", have gained increasing scientific and commercial interest in recent years. Purely electrostatic charge storage processes allow charge- and discharge cycles in the second-time scale, exhibiting a theoretical capacitance in the order of 100 F per gram of electrode material, thereby providing efficient recuperation devices for electromechanical processes, for example. Introducing electrochemically active materials such as manganese oxides into the supercapacitor electrode, allows to combine the double-layer storage with a battery-like storage process, leading to capacitance that can be up to two orders of magnitude larger than those in EDLC. In the present work, an electroless deposition approach of manganese oxide on a carbon scaffold is adapted and further investigated. The carbon material is derived from an organic xerogel, which in turn is prepared via a sol-gel process, allowing tailoring of the structural properties of the carbon, making it an ideal model system to study the relation between morphology and electrochemical performance in the carbon-manganese oxide hybrid electrode. In the first part of this thesis, a variation of manganese oxide deposition time at a low concentration of precursor solution is analyzed. Mass uptakes reach up to 58 wt.\%, leading to an increase of volumetric capacitance by a factor 5, however reducing the dynamic performance of the electrode. The structural characterization gives hints on the deposition location of the active material either in the intra-particular pores of the carbon backbone or on the enveloping surface area of the particles forming the backbone. In order to comprehensively answer the question of the location of the active material within the hybrid electrode, the particle size of the carbon backbone and therefore the enveloping surface area of the carbon particles was varied. For samples with high mass uptakes, scanning electron microscopy (SEM) images show a layer thickness of 27 nm of active material around the carbon particles. In order to quantitatively investigate this layer morphology, even for low mass uptakes where no layer is visible in SEM images, a model interpreting data from anomalous small angle X-ray scattering (ASAXS) measurements was developed. The results confirm the presence of a layer around the carbon particles, exhibiting a layer thickness ranging from 3 to 26 nm. From an electrochemical point of view, carbon backbones with a large enveloping surface area will lead to high mass uptakes in the electroless deposition process and therefore lead to high capacitance of the electrode. However, for future application, electrodeposition approaches should be investigated in detail, since no deposits will form on the interface between carbon backbone and current collector, leading to a better dynamic performance of the hybrid electrode. Furthermore, the ASAXS-method should be promoted and applied on other material systems, since this technique allows to draw important conclusions and allows to deduce integral and quantitative information towards a rational design of high performance electrodes.}, subject = {Superkondensator}, language = {en} } @phdthesis{Huewe2017, author = {H{\"u}we, Florian}, title = {Electrothermal Investigation on Charge and Heat Transport in the Low-Dimensional Organic Conductor (DCNQI)\(_2\)Cu}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153492}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {This thesis aimed at the coherent investigation of the electrical and thermal transport properties of the low-dimensional organic conductor (DCNQI)2M (DCNQI: dicyanoquinonediimine; M: metallic counterion). These radical anion salts present a promising, new material class for thermoelectric applications and hence, a consistent characterization of the key parameters is required to evaluate and to optimize their performance. For this purpose, a novel experimental measurement setup enabling the determination of the electrical conductivity, the Seebeck coefficient and the thermal conductivity on a single crystalline specimen has been designed and implemented in this work. The novel measurement setup brought to operation within this thesis enabled a thorough investigation of the thermal transport properties in the (DCNQI)2M system. The thermal conductivity of (DCNQI-h8)2Cu at RT was determined to κ=1.73 W m^(-1) K^(-1). By reducing of the copper content in isostructural, crystalline (DMe-DCNQI)2CuxLi1-x alloys, the electrical conductivity has been lowered by one order of magnitude and the correlated changes in the thermal conductivity allowed for a verification of the Wiedemann-Franz (WF) law at RT. A room temperature Lorenz number of L=(2.48±0.45)⋅〖10〗^(-8) WΩK^(-2) was obtained in agreement with the standard Lorenz number L_0=2,44⋅〖10〗^(-8) WΩK^(-2) for 3D bulk metals. This value appears to be significantly reduced upon cooling below RT, even far above the Debye temperature of θ_D≈82 K, below which a breakdown of the WF law is caused by different relaxation times in response to thermal and to electric field perturbations. The experimental data enabled the first consistent evaluation of the thermoelectric performance of (DCNQI)\$_2\$Cu. The RT power factor of 110 μWm^(-1) K^(-2) is comparable to values obtained on PEDOT-based thermoelectric polymers. The RT figure of merit amounts to zT=0.02 which falls short by a factor of ten compared to the best values of zT=0.42 claimed for conducting polymers. It originates from the larger thermal conductivity in the organic crystals of about 1.73 W m^(-1) K^(-1) in (DCNQI)2Cu. Yet, more elaborate studies on the anisotropy of the thermal conductivity in PEDOT polymers assume their figure of merit to be zT=0.15 at most, recently. Therefore, (DCNQI)2Cu can be regarded as thermoelectric material of similar performance to polymer-based ones. Moreover, it represents one of the best organic n-type thermoelectric materials to date and as such, may also become important in hybrid thermoelectrics in combination with conducting polymers. Upon cooling below room temperature, (DCNQI)2Cu reveals its full potential attaining power factors of 50 mW K^(-2) m^(-1) and exceeding values of zT>0.15 below 40 K. These values represent the best thermoelectric performance in this low-temperature regime for organic as well as inorganic compounds and thus, low-dimensional organic conductors might pave the way toward new applications in cryogenic thermoelectrics. Further improvements may be expected from optimizing the charge carrier concentration by taking control over the CT process via the counterion stack of the crystal lattice. The concept has also been demonstrated in this work. Moreover, the thermoelectric performance in the vicinity of the CDW transition in (MeBr-DCNQI)2Cu was found to be increased by a factor of 5. Accordingly, the diversity of electronic ground states accessible in organic conductors provides scope for further improvements. Finally, the prototype of an all-organic thermoelectric generator has been built in combination with the p-type organic metal TTT2I3. While it only converts about 0.02\% of the provided heat into electrical energy, the specific power output per active area attains values of up to 5 mW cm^(-2). This power output, defining the cost-limiting factor in the recovery of waste heat, is three orders of magnitude larger than in conducting polymer devices and as such, unrivaled in organic thermoelectrics. While the thermoelectric key parameters of (DCNQI)2Cu still lack behind conventional thermoelectrics made of e.g. Bi2Te3, the promising performance together with its potential for improvements make this novel material class an interesting candidate for further exploration. Particularly, the low-cost and energy-efficient synthesis routes of organic materials highlight their relevance for technological applications.}, subject = {Radikalanionensalz}, language = {en} } @phdthesis{Vogt2020, author = {Vogt, Matthias Guido}, title = {Elektronische Eigenschaften von Wabengittern mit starker Spin-Bahn-Kopplung}, doi = {10.25972/OPUS-20750}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-207506}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Im Rahmen dieser Arbeit wurden die elektronischen Eigenschaften von Graphen auf Metalloberfl{\"a}chen mittels Rastertunnelmikroskopie und Quasiteilcheninterferenz (englisch quasiparticle interference, QPI)-Messungen untersucht. Durch das Verwenden schwerer Substrate sollte die Spin-Bahn-Wechselwirkung des Graphen verst{\"a}rkt werden und damit eine Bandl{\"u}cke am K-Punkt der Bandstruktur mittels QPI beobachtet werden. Um das Messen von QPI auf Graphen zu testen, wurde auf der Oberfl{\"a}che eines SiC(0001)-Kristalls durch Erhitzen Graphen erzeugt und mit dem Rastertunnelmikroskop untersucht. Dieses System wurde schon ausf{\"u}hrlich in der Literatur beschrieben und bereits bekannte QPI-Messungen von Streuringen, die auf den Dirac-Kegeln des Graphen am K-Punkt basieren, konnte ich auf gr/SiC(0001) in guter Qualit{\"a}t erfolgreich reproduzieren. Anschließend wurde Graphen nach einem wohlbekannten Verfahren durch Aufbringen von Ethylen auf ein erhitztes Ir(111)-Substrat erzeugt. Dieses gr/Ir(111)-System diente auch als Grundlage f{\"u}r Interkalationsversuche von Bismut (gr/Bi/Ir(111)) und Gadolinium (gr/Gd/Ir(111)) zwischen das Graphen und das Substrat. Auf gr/Bi/Ir(111) wurde ein schon aus der Literatur bekanntes Netzwerk aus Versetzungslinien beobachtet, dem zus{\"a}tzlich eine Temperaturabh{\"a}ngigkeit nachgewiesen werden konnte. Beim Versuch, Gadolinium zu interkalieren, wurden zwei verschieden Oberfl{\"a}chenstrukturen beobachtet, die auf eine unterschiedlich Anordnung bzw. Menge des interkalierten Gadoliniums zur{\"u}ckzuf{\"u}hren sein k{\"o}nnten. Auf keinem dieser drei Systeme konnten allerdings Streuringe mittels QPI beobachtet werden. Als Vorbereitung der Interkalation von Gadolinium wurden dessen Wachstum und magnetische Eigenschaften auf einem W(110)-Kristall untersucht. Dabei konnte eine aus der Literatur bekannte temperaturabh{\"a}ngige Austauschaufspaltung reproduziert werden. Dar{\"u}ber hinaus konnten sechs verschieden magnetische Dom{\"a}nen beobachtet werden. Zus{\"a}tzlich sind auf der Oberfl{\"a}che magnetische Streifen auszumachen, die m{\"o}glicherweise auf einer Spinspirale basieren. Als Grundlage f{\"u}r die m{\"o}gliche zuk{\"u}nftige Erzeugung Graphen-artiger Molek{\"u}lgitter wurde das Wachstum von H-TBTQ und Me-TBTQ auf Ag(111) untersucht. Die Molek{\"u}le richten sich dabei nach der Oberfl{\"a}chenstruktur des Silber aus und bilden l{\"a}ngliche Inseln, deren Kanten in drei Vorzugsrichtungen verlaufen. Auf H-TBTQ wurde zudem eine zweite, Windm{\"u}hlen-artige Ausrichtung der Molek{\"u}le auf der Oberfl{\"a}che beobachtet. Auf den mit den Molek{\"u}len bedeckten Stellen der Oberfl{\"a}che wurde eine Verschiebung des Ag-Oberfl{\"a}chenzustands beobachtet, die mit einem Ladungstransfer vom Ag(111)-Substrat auf die TBTQ-Molek{\"u}le zu erkl{\"a}ren sein k{\"o}nnte.}, subject = {Spin-Bahn-Wechselwirkung}, language = {de} } @phdthesis{Suchomel2022, author = {Suchomel, Holger Maximilian}, title = {Entwicklung elektrooptischer Bauteile auf der Basis von Exziton-Polaritonen in Halbleiter-Mikroresonatoren}, doi = {10.25972/OPUS-27163}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-271630}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Exziton-Polaritonen (Polaritonen), hybride Quasiteilchen, die durch die starke Kopplung von Quantenfilm-Exzitonen mit Kavit{\"a}tsphotonen entstehen, stellen auf Grund ihrer vielseitigen und kontrollierbaren Eigenschaften einen vielversprechenden Kandidaten f{\"u}r die Entwicklung einer neuen Generation von nichtlinearen und integrierten elektrooptischen Bauteilen dar. Die vorliegende Arbeit besch{\"a}ftigt sich mit der Entwicklung und Untersuchung kompakter elektrooptischer Bauelemente auf der Basis von Exziton-Polaritonen in Halbleitermikrokavit{\"a}ten. Als erstes wird die Implementierung einer elektrisch angeregten, oberfl{\"a}chenemittierenden Polariton-Laserdiode vorgestellt, die ohne ein externes Magnetfeld arbeiten kann. Daf{\"u}r wird der Schichtaufbau, der Q-Faktor, das Dotierprofil und die RabiAufspaltung der Polariton-Laserdiode optimiert. Der Q-Faktor des finalen Aufbaus bel{\"a}uft sich auf Q ~ 16.000, w{\"a}hrend die Rabi-Aufspaltung im Bereich von ~ 11,0 meV liegt. Darauf aufbauend werden Signaturen der Polariton-Kondensation unter elektrischer Anregung, wie ein nichtlinearer Anstieg der Intensit{\"a}t, die Reduktion der Linienbreite und eine fortgesetzte Verschiebung der Emission zu h{\"o}heren Energien oberhalb der ersten Schwelle, demonstriert. Ferner werden die Koh{\"a}renzeigenschaften des Polariton-Kondensats mittels Interferenzspektroskopie untersucht. Basierend auf den optimierten Halbleiter-Mikroresonatoren wird eine Kontaktplattform f{\"u}r die elektrische Anregung ein- und zweidimensionaler Gitterstrukturen entwickelt. Dazu wird die Bandstrukturbildung eines Quadrat- und Graphen-Gitters unter elektrischer Anregung im linearen Regime untersucht und mit den Ergebnissen der optischen Charakterisierung verglichen. Die erhaltenen Dispersionen lassen sich durch das zugeh{\"o}rige Tight-Binding-Modell beschreiben. Ferner wird auch eine elektrisch induzierte Nichtlinearit{\"a}t in der Emission demonstriert. Die untersuchte Laser-Mode liegt auf der H{\"o}he des unteren Flachbandes und an der Position der Γ-Punkte in der zweiten Brillouin-Zone. Die zugeh{\"o}rige Modenstruktur weist die erwartete Kagome-Symmetrie auf. Abschließend wird die Bandstrukturbildung eines SSH-Gitters mit eingebautem Defekt unter elektrischer Anregung untersucht und einige Eigenschaften des topologisch gesch{\"u}tzten Defektzustandes gezeigt. Dazu geh{\"o}rt vor allem die Ausbildung der lokalisierten Defektmode in der Mitte der S-Bandl{\"u}cke. Die erhaltenen Ergebnisse stellen einen wichtigen Schritt in der Realisierung eines elektrisch betriebenen topologischen Polariton-Lasers dar. Abschließend wird ein elektrooptisches Bauteil auf der Basis von Polaritonen in einem Mikrodrahtresonator vorgestellt, in dem sich die Propagation eines PolaritonKondensats mittels eines elektrostatischen Feldes kontrollieren l{\"a}sst. Das Funktionsprinzip des Polariton-Schalters beruht auf der Kombination einer elektrostatischen Potentialsenke unterhalb des Kontaktes und der damit verbundenen erh{\"o}hten ExzitonIonisationsrate. Der Schaltvorgang wird sowohl qualitativ als auch quantitativ analysiert und die Erhaltenen Ergebnisse durch die Modellierung des Systems {\"u}ber die GrossPitaevskii-Gleichung beschrieben. Zus{\"a}tzlich wird ein negativer differentieller Widerstand und ein bistabiles Verhalten in der Strom-Spannungs-Charakteristik in Abh{\"a}ngigkeit von der Ladungstr{\"a}gerdichte im Kontaktbereich beobachtet. Dieses Verhalten wird auf gegenseitig konkurrierende Kondensats-Zust{\"a}nde innerhalb der Potentialsenke und deren Besetzung und damit direkt auf den r{\"a}umlichen Freiheitsgrad der PolaritonZust{\"a}nde zur{\"u}ckgef{\"u}hrt.}, subject = {Drei-F{\"u}nf-Halbleiter}, language = {de} } @phdthesis{Steindamm2015, author = {Steindamm, Andreas}, title = {Exzitonische Verlustmechanismen in organischen Bilagen-Solarzellen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124002}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Um die Wirkungsgrade organischer Solarzellen weiter zu steigern, ist ein Verst{\"a}ndnis der auftretenden Verlustmechanismen entscheidend. Im Vergleich zu anorganischen photovoltaischen Zellen sind in den organischen Halbleitern die durch Absorption erzeugten Elektron-Loch-Paare, die als Exzitonen bezeichnet werden, sehr viel st{\"a}rker gebunden. Daher m{\"u}ssen sie an einer Heterogrenzfl{\"a}che, gebildet durch ein Donator- und ein Akzeptormaterial, in freie Ladungstr{\"a}ger getrennt werden. Mit dem erforderlichen Transportweg an die Heterogrenzschicht sind Rekombinationsverluste der exzitonischen Anregungen verbunden, die aus einer Vielzahl unterschiedlicher Prozesse resultieren und einen der Hauptverlustkan{\"a}le in organischen Solarzellen darstellen. Aus diesem Grund wird der Fokus dieser Arbeit auf die Charakterisierung und m{\"o}gliche Reduzierung solcher exzitonischen Verlustmechanismen gelegt. Als Modellsystem wird dazu eine planare Bilagen-Struktur auf Basis des Donatormaterials Diindenoperylen (DIP) und des Akzeptors Fulleren C60 verwendet. Durch die Kombination von elektrischen und spektroskopischen Messmethoden werden unterschiedliche exzitonische Verlustmechanismen in den aktiven Schichten charakterisiert und die zugrunde liegenden mikroskopischen Ursachen diskutiert. Dazu wird zuerst auf die strukturellen, optischen und elektrischen Eigenschaften von DIP/C60-Solarzellen eingegangen. In einem zweiten Abschnitt werden die mikroskopischen Einfl{\"u}sse einer Exzitonen blockierenden Lage (EBL, exciton blocking layer) aus Bathophenanthrolin (BPhen) durch eine komplement{\"a}re Charakterisierung von Photolumineszenz und elektrischen Parametern der Solarzellen untersucht, wobei auch die Notwendigkeit der EBL zur Unterbindung von Metalleinlagerungen in den aktiven organischen Schichten analysiert wird. Die anschließende Studie der Intensit{\"a}ts- und Temperaturabh{\"a}ngigkeit der j(U)-Kennlinien gibt Aufschluss {\"u}ber die intrinsischen Zellparameter sowie die Rekombinationsmechanismen von Ladungstr{\"a}gern in den aktiven Schichten. Ferner werden durch temperaturabh{\"a}ngige spektroskopische Untersuchungen der Photo- und Elektrolumineszenz der Solarzellen Informationen {\"u}ber die elektronischen Zust{\"a}nde der DIP-Schicht erlangt, die f{\"u}r Rekombinationsverluste der generierten Exzitonen verantwortlich sind. Zus{\"a}tzlich werden Raman-Messungen an den Solarzellen und Einzelschichten diskutiert. In einer abschließenden Studie werden exzitonische Verluste unter Arbeitsbedingungen der Solarzelle durch Ladungstr{\"a}gerwechselwirkungen in der Donator-Schicht quantifiziert. In dieser Arbeit konnten verschiedene relevante Verlustprozesse in organischen Solarzellen reduziert werden. Durch die Identifizierung der mikroskopischen Ursachen dieser Verluste wurde eine wichtige Voraussetzung f{\"u}r eine weitere Steigerung der Leistungseffizienz geschaffen.}, subject = {Organische Solarzelle}, language = {de} } @phdthesis{Menekşe2023, author = {Menek{\c{s}}e, Kaan}, title = {Fabrication of Organic Solar Cells, Screening of Non-Fullerene Acceptors and the Investigation of their Intermolecular Interactions}, doi = {10.25972/OPUS-29112}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-291124}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {In this thesis, intermolecular acceptor-acceptor interactions in organic solar cells based on new non-fullerene acceptors are addressed. For this purpose, first the reproducibility of organic electronic devices was tested on a new facility for their fabrication. This was followed by the screening for new acceptor materials. Based on this, three molecular systems were investigated with regard to their acceptor-acceptor interactions and their influence on solar cell efficiency.}, subject = {Organische Solarzelle}, language = {en} } @phdthesis{Lykowsky2019, author = {Lykowsky, Gunthard}, title = {Hardware- und Methodenentwicklung f{\"u}r die 23Na- und 19F-Magnetresonanztomographie}, doi = {10.25972/OPUS-18871}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-188710}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Neben dem Wasserstoffkern 1H k{\"o}nnen auch andere Kerne f{\"u}r die Magnetresonanztomographie (MRT) genutzt werden. Diese sogenannten X-Kerne k{\"o}nnen komplement{\"a}re Informationen zur klassischen 1H-MRT liefern und so das Anwendungsspektrum der MRT erweitern. Die Herausforderung bei der X-Kern-Bildgebung liegt zum großen Teil in dem intrinsisch niedrigen Signal-zu-Rauschen-Verh{\"a}ltnis (SNR), aber auch in den spezifischen Kerneigenschaften. Um X-Kern-Bildgebung optimal betreiben zu k{\"o}nnen, m{\"u}ssen daher Sende-/Empfangsspulen, Messsequenzen und -methoden auf den jeweiligen Kern angepasst werden. Im Fokus dieser Dissertation standen die beiden Kerne Natrium (23Na) und Fluor (19F), f{\"u}r die optimierte Hardware und Methoden entwickelt wurden. 23Na spielte in dieser Arbeit vor allem wegen seiner Funktion als Biomarker f{\"u}r Arthrose, einer degenerativen Gelenkserkrankung, eine Rolle. Hierbei ist insbesondere die quantitative Natriumbildgebung von Bedeutung, da sich mit ihr der Knorpelzustand auch im Zeitverlauf charakterisieren l{\"a}sst. F{\"u}r die quantitative Messung mittels MRT ist die Kenntnis des B1-Feldes der eingesetzten MR-Spule entscheidend, denn dieses kann die relative Signalintensit{\"a}t stark beeinflussen und so zu Fehlern in der Quantifizierung f{\"u}hren. Daher wurde eine Methode zur Bestimmung des B1-Feldes untersucht und entwickelt. Dies stellte aufgrund des niedrigen SNR und der kurzen sowie biexponentiellen T2-Relaxationszeit von 23Na eine Herausforderung dar. Mit einer retrospektiven Korrekturmethode konnte eine genaue und zugleich schnelle Korrekturmethode gefunden werden. F{\"u}r die 1H- und 23Na-Bildgebung am menschlichen Knieknorpel wurden zwei praxistaugliche, doppelresonante Quadratur-Birdcage-Resonatoren entwickelt, gebaut und charakterisiert. Der Vergleich der beiden Spulen bez{\"u}glich Sensitivit{\"a}t und Feldhomogenit{\"a}t zeigte, dass der Vier-Ring-Birdcage dem Alternating-Rungs-Birdcage f{\"u}r den vorliegenden Anwendungsfall {\"u}berlegen ist. Die in vivo erzielte Aufl{\"o}sung und das SNR der 23Na-Bilder waren bei beiden Spulen f{\"u}r die Quantifizierung der Natriumkonzentration im Knieknorpel ausreichend. Hochaufl{\"o}sende anatomische 1H-Bilder konnten ohne Mittelungen aufgenommen werden. In einer umfangreichen Multiparameter-MR-Tierstudie an Ziegen wurde der Verlauf einer chirurgisch induzierten Arthrose mittels 23Na- und 1H-Bildgebungsmethoden untersucht. Hierbei kamen dGEMRIC, T1ρ-Messung und quantitative Natrium-MRT zum Einsatz. Trotz des im Vergleich zum Menschen d{\"u}nneren Ziegenknorpels, der niedrigen Feldst{\"a}rke von 1,5 T und den auftretenden {\"O}demen konnten erstmals diese MR-Parameter {\"u}ber den Studienverlauf hinweg an den gleichen Versuchstieren und zu den gleichen Zeitpunkten ermittelt werden. Die Ergebnisse wurden verglichen und die ermittelten Korrelationen entsprechen den zugrundeliegenden biochemischen Mechanismen. Die im Rahmen dieser Studie entwickelten Methoden, Bildgebungsprotokolle und Auswertungen lassen sich auf zuk{\"u}nftige Humanstudien {\"u}bertragen. Die mit klinischen Bildgebungssequenzen nicht zug{\"a}ngliche kurze Komponente der biexponentiellen T2*-Relaxationszeit von 23Na konnte mittels einer radialen Ultra-Short-Echo-Time-Sequenz bestimmt werden. Hierzu wurde eine Multi-Echo-Sequenz mit einem quasizuf{\"a}lligen Abtastschema kombiniert. Hierdurch gelang es, die kurze und lange T2*-Komponente des patellaren Knorpels in vivo zu bestimmen. 19F wird in der MRT wegen seiner hohen relativen Sensitivit{\"a}t und seines minimalen, k{\"o}rpereigenen Hintergrundsignals als Marker eingesetzt. Zur Detektion der niedrigen in-vivo-Konzentrationen der Markersubstanzen werden hochsensitive Messspulen ben{\"o}tigt. F{\"u}r die 19F-Bildgebung an M{\"a}usen wurde eine Birdcage-Volumenspule entwickelt, die sowohl f{\"u}r 19F als auch 1H in Quadratur betrieben werden kann, ohne Kompromisse in Sensitivit{\"a}t oder Feldhomogenit{\"a}t gegen{\"u}ber einer monoresonanten Spule eingehen zu m{\"u}ssen. Dies gelang durch eine verschiebbare Hochfrequenzabschirmung, mit der die Resonanzfrequenz des Birdcage ver{\"a}ndert werden kann. Es konnte weiterhin gezeigt werden, dass die Feldverteilungen bei 1H und 19F im Rahmen der Messgenauigkeit identisch sind und so der 1H-Kanal f{\"u}r die Pulskalibrierung und die Erstellung von B1-Karten f{\"u}r die 19F-Bildgebung genutzt werden kann. Hierdurch kann die Messzeit deutlich reduziert werden. Ein grunds{\"a}tzliches Problemfeld stellt die Korrelation unterschiedlicher Bildgebungsmodalit{\"a}ten dar. In der MRT betrifft das h{\"a}ufig die Korrelation von in-/ex-vivo-MR-Daten und den dazugeh{\"o}rigen Lichtbildaufnahmen an histologischen Schnitten. In dieser Arbeit wurde erstmals erfolgreich eine 1H- und 19F-MR-Messung an einem histologischen Schnitt vorgenommen. Durch die Verwendung einer optimierten 1H/19F-Oberfl{\"a}chenspule konnte die 19F-Signalverteilung in einer d{\"u}nnen Tumorscheibe in akzeptabler Messzeit aufgenommen werden. Da der gleiche Schnitt sowohl mit Fluoreszenzmikroskopie als auch mit MRT gemessen wurde, konnten Histologie und MR-Ergebnisse exakt korreliert werden. Zusammenfassend konnten in dieser Arbeit durch Hardware- und Methodenentwicklung zahlreiche neue Aspekte der 19F- und 23Na-MRT beleuchtet werden und so zuk{\"u}nftige Anwendungsfelder erschlossen werden.}, subject = {Kernspintomografie}, language = {de} } @phdthesis{Hammer2021, author = {Hammer, Sebastian Tobias}, title = {Influence of Crystal Structure on Excited States in Crystalline Organic Semiconductors}, doi = {10.25972/OPUS-24401}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-244019}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {This thesis focused on the influence of the underlying crystal structure and hence, of the mutual molecular orientation, on the excited states in ordered molecular aggregates. For this purpose, two model systems have been investigated. In the prototypical donor-acceptor complex pentacene-perfluoropentacene (PEN-PFP) the optical accessibility of the charge transfer state and the possibility to fabricate highly defined interfaces by means of single crystal templates enabled a deep understanding of the spatial anisotropy of the charge transfer state formation. Transferring the obtained insights to the design of prototypical donor-acceptor devices, the importance of interface control to minimize the occurrence of charge transfer traps and thereby, to improve the device performance, could be demonstrated. The use of zinc phthalocyanine (ZnPc) allowed for the examination of the influence of molecular packing on the excited electronic states without a change in molecular species by virtue of its inherent polymorphism. Combining structural investigations, optical absorption and emission spectroscopy, as well as Franck-Condon modeling of emission spectra revealed the nature of the optical excited state emission in relation to the structural \(\alpha \) and \(\beta \) phase over a wide temperature range from 4 K to 300 K. As a results, the phase transition kinetics of the first order \(\alpha \rightarrow \beta\) phase transition were characterized in depth and applied to the fabrication of prototypical dual luminescent OLEDs.}, subject = {Organischer Halbleiter}, language = {en} } @phdthesis{Hetterich2018, author = {Hetterich, Daniel Marcus}, title = {Localization within disordered systems of star-like topology}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169318}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {This Thesis investigates the interplay of a central degree of freedom with an environment. Thereby, the environment is prepared in a localized phase of matter. The long-term aim of this setup is to store quantum information on the central degree of freedom while exploiting the advantages of localized systems. These many-body localized systems fail to equilibrate under the description of thermodynamics, mostly due to disorder. Doing so, they form the most prominent phase of matter that violates the eigenstate thermalization hypothesis. Thus, many-body localized systems preserve information about an initial state until infinite times without the necessity to isolate the system. This unique feature clearly suggests to store quantum information within localized environments, whenever isolation is impracticable. After an introduction to the relevant concepts, this Thesis examines to which extent a localized phase of matter may exist at all if a central degree of freedom dismantles the notion of locality in the first place. To this end, a central spin is coupled to the disordered Heisenberg spin chain, which shows many-body localization. Furthermore, a noninteracting analog describing free fermions is discussed. Therein, an impurity is coupled to an Anderson localized environment. It is found that in both cases, the presence of the central degree of freedom manifests in many properties of the localized environment. However, for a sufficiently weak coupling, quantum chaos, and thus, thermalization is absent. In fact, it is shown that the critical disorder, at which the metal-insulator transition of its environment occurs in the absence of the central degree of freedom, is modified by the coupling strength of the central degree of freedom. To demonstrate this, a phase diagram is derived. Within the localized phase, logarithmic growth of entanglement entropy, a typical signature of many-body localized systems, is increased by the coupling to the central spin. This property is traced back to resonantly coupling spins within the localized Heisenberg chain and analytically derived in the absence of interactions. Thus, the studied model of free fermions is the first model without interactions that mimics the logarithmic spreading of entanglement entropy known from many-body localized systems. Eventually, it is demonstrated that observables regarding the central spin significantly break the eigenstate thermalization hypothesis within the localized phase. Therefore, it is demonstrated how a central spin can be employed as a detector of many-body localization.}, subject = {Quanteninformatik}, language = {en} } @phdthesis{Grimm2023, author = {Grimm, Philipp Martin}, title = {Locally driven complex plasmonic nanoantenna systems}, doi = {10.25972/OPUS-30315}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-303152}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Metallic nanostructures possess the ability to support resonances in the visible wavelength regime which are related to localized surface plasmons. These create highly enhanced electric fields in the immediate vicinity of metal surfaces. Nanoparticles with dipolar resonance also radiate efficiently into the far-field and hence serve as antennas for light. Such optical antennas have been explored during the last two decades, however, mainly as standalone units illuminated by external laser beams and more recently as electrically driven point sources, yet merely with basic antenna properties. This work advances the state of the art of locally driven optical antenna systems. As a first instance, the electric driving scheme including inelastic electron tunneling over a nanometer gap is merged with Yagi-Uda theory. The resulting antenna system consists of a suitably wired feed antenna, incorporating a tunnel junction, as well as several nearby parasitic elements whose geometry is optimized using analytical and numerical methods. Experimental evidence of unprecedented directionality of light emission from a nanoantenna is provided. Parallels in the performance between radiofrequency and optical Yagi-Uda arrays are drawn. Secondly, a pair of electrically connected antennas with dissimilar resonances is harnessed as electrodes in an organic light emitting nanodiode prototype. The organic material zinc phthalocyanine, exhibiting asymmetric injection barriers for electrons and holes, in conjunction with the electrode resonances, allows switching and controlling the emitted peak wavelength and directionality as the polarity of the applied voltage is inverted. In a final study, the near-field based transmission-line driving of rod antenna systems is thoroughly explored. Perfect impedance matching, corresponding to zero back-reflection, is achieved when the antenna acts as a generalized coherent perfect absorber at a specific frequency. It thus collects all guided, surface-plasmon mediated input power and transduces it to other nonradiative and radiative dissipation channels. The coherent interplay of losses and interference effects turns out to be of paramount importance for this delicate scenario, which is systematically obtained for various antenna resonances. By means of the here developed semi-analytical toolbox, even more complex nanorod chains, supporting topologically nontrivial localized edge states, are studied. The results presented in this work facilitate the design of complex locally driven antenna systems for optical wireless on-chip communication, subwavelength pixels, and loss-compensated integrated plasmonic nanocircuitry which extends to the realm of topological plasmonics.}, subject = {Plasmonik}, language = {en} } @phdthesis{Topczak2015, author = {Topczak, Anna Katharina}, title = {Mechanismen des exzitonischen Transports und deren Dynamik in molekularen D{\"u}nnschichten f{\"u}r die organische Photovoltaik}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-132280}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Der Fokus dieser Arbeit liegt in der Untersuchung des exzitonischen Transports, sowie der Dynamik exzitonischer Zust{\"a}nde in organischen Halbleitern. Als fundamentale Fragestellung werden die inh{\"a}renten, materialspezifischen Parameter untersucht, welche Einfluss auf die Exzitonen-Diffusionsl{\"a}nge besitzen. Sowohl der Einfluss der strukturellen Ordnung als auch die fundamentalen exzitonischen Transporteigenschaften in molekularen Schichten werden anhand der archetypischen, morphologisch unterschiedlichen organischen Halbleiter Diindenoperylen (DIP), sowie dessen Derivaten, α-6T und C60 studiert. Die resultierende Filmbeschaffenheit wird mittels R{\"o}ntgendiffraktometrie (XRD) und Rasterkraftmikroskopie (AFM) analysiert, welche Informationen {\"u}ber die Morphologie, die strukturelle Ordnung und die Mikrostruktur der jeweiligen molekularen Schichten auf verschiedenen L{\"a}ngenskalen liefern. Um Informationen {\"u}ber die Exzitonen-Diffusion und die damit einhergehende Exzitonen- Diffusionsl{\"a}nge LD zu erhalten, wurde die Methode des Photolumineszenz (PL)-Quenchings gew{\"a}hlt. Um umfassende Informationen zur Exzitonen-Bewegung in molekularen D{\"u}nnschichten zu erhalten, wurde mit Hilfe der Femtosekunden-Transienten-Absorptionsspektroskopie (TAS) und der zeitkorrelierten Einzelphotonenz{\"a}hlung (TCSPC) die Dynamik angeregter Energiezust{\"a}nde und deren jeweiliger Lebensdauer untersucht. Beide Messverfahren gew{\"a}hren Einblicke in den zeitabh{\"a}ngigen Exzitonen-Transport und erm{\"o}glichen eine Bestimmung des Ursprungs m{\"o}glicher Zerfallskan{\"a}le. Die zentralen Ergebnisse dieser Arbeit zeigen zum einen eine Korrelation zwischen LD und der strukturellen Ordnung der Schichtmorphologie, zum anderen weist die temperaturunabh{\"a}ngige Exzitonen-Bewegung in hochgeordneten polykristallinen DIP-Filmen auf die M{\"o}glichkeit der Existenz eines koh{\"a}renten Exzitonen-Transports bei tiefen Temperaturen unterhalb von 80 K hin. Zeitaufgel{\"o}ste spektroskopische Untersuchungen lassen zudem auf ein breites Absorptionsband h{\"o}herer angeregter Zust{\"a}nde schließen und weisen eine h{\"o}here Exzitonen- Zustandsdichte in polykristallinen DIP-Schichten im Vergleich zu ungeordneten Filmen auf.}, subject = {Organische Solarzelle}, language = {de} } @phdthesis{Hansen2017, author = {Hansen, Nis Hauke}, title = {Mikroskopische Ladungstransportmechanismen und Exzitonen Annihilation in organischen Einkristallen und D{\"u}nnschichten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143972}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Um die Natur der Transportdynamik von Ladungstr{\"a}gern auch auf mikroskopischen L{\"a}ngenskalen nicht-invasiv untersuchen zu k{\"o}nnen, wurde im ersten Schwerpunkt dieser Arbeit das PL- (Photolumineszenz-) Quenching (engl.: to quench: l{\"o}schen; hier: strahlungslose Rekombination von Exzitonen) in einer organischen D{\"u}nnschicht durch die injizierten und akkumulierten L{\"o}cher in einer Transistorgeometrie analysiert. Diese Zusammenf{\"u}hrung zweier Methoden - der elektrischen Charakterisierung von D{\"u}nnschichttransistoren und der Photolumineszenzspektroskopie - erfasst die {\"A}nderung des strahlenden Zerfalls von Exzitonen infolge der Wechselwirkung mit Ladungstr{\"a}gern. Dadurch werden r{\"a}umlich aufgel{\"o}ste Informationen {\"u}ber die Ladungsverteilung und deren Spannungsabh{\"a}ngigkeit im Transistorkanal zug{\"a}nglich. Durch den Vergleich mit den makroskopischen elektrischen Kenngr{\"o}ßen wie der Schwell- oder der Turn-On-Spannung kann die Funktionsweise der Transistoren damit detaillierter beschrieben werden, als es die Kenngr{\"o}ßen alleine erm{\"o}glichen. Außerdem wird die Quantifizierung dieser mikroskopischen Interaktionen m{\"o}glich, welche beispielsweise als Verlustkanal in organischen Photovoltaikzellen und organicshen Leuchtdioden auftreten k{\"o}nnen. Die Abgrenzung zu anderen dissipativen Prozessen, wie beispielsweise der Exziton-Exziton Annihilation, Ladungstr{\"a}gerrekombination, Triplett-{\"U}berg{\"a}nge oder Rekombination an St{\"o}rstellen oder metallischen Grenzfl{\"a}chen, erlaubt die detaillierte Analyse der Wechselwirkung von optisch angeregten Zust{\"a}nden mit Elektronen und L{\"o}chern. Im zweiten Schwerpunkt dieser Arbeit werden die Transporteigenschaften des Naphthalindiimids Cl2-NDI betrachtet, bei dem der molekulare {\"U}berlapp sowie die Reorganisationsenergie in derselben Gr{\"o}ßenordnung von etwa 0,1 eV liegen. Um experimentell auf den mikroskopischen Transport zu schließen, werden nach der Optimierung des Kristallwachstums Einkristalltransistoren hergestellt, mit Hilfe derer die Beweglichkeit entlang verschiedener kristallographischer Richtungen als Funktion der Temperatur gemessen werden kann. Die einkristalline Natur der Proben und die spezielle Transistorgeometrie erm{\"o}glichen die Analyse der r{\"a}umlichen Anisotropie des Stromflusses. Der gemessene Beweglichkeitstensor wird daraufhin mit simulierten Tensoren auf der Basis von Levich-Jortner Raten verglichen, um auf den zentralen Ladungstransfermechanismus zu schließen.}, subject = {Organischer Halbleiter}, language = {de} } @phdthesis{Benkert2015, author = {Benkert, Thomas}, title = {Neue Steady-State-Techniken in der Magnetresonanztomographie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115381}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Die bSSFP-Sequenz kombiniert kurze Akquisitionszeiten mit einem hohen Signal-zu-Rausch-Verh{\"a}ltnis, was sie zu einer vielversprechenden Bildgebungsmethode macht. Im klinischen Alltag ist diese Technik jedoch bisher - abgesehen von vereinzelten Anwendungen - kaum etabliert. Die Hauptgr{\"u}nde hierf{\"u}r sind Signalausl{\"o}schungen in Form von Bandingartefakten sowie der erzielte T2/T1-gewichtete Mischkontrast. Das Ziel dieser Dissertation war die Entwicklung von Methoden zur L{\"o}sung der beiden genannten Limitationen, um so eine umfassendere Verwendung von bSSFP f{\"u}r die MR-Diagnostik zu erm{\"o}glichen. Magnetfeldinhomogenit{\"a}ten, die im Wesentlichen durch Suszeptibilit{\"a}tsunterschiede oder Imperfektionen seitens der Scannerhardware hervorgerufen werden, {\"a}ußern sich bei der bSSFP-Bildgebung in Form von Bandingartefakten. Mit DYPR-SSFP (DYnamically Phase-cycled Radial bSSFP) wurde ein Verfahren vorgestellt, um diese Signalausl{\"o}schungen effizient zu entfernen. W{\"a}hrend f{\"u}r bereits existierende Methoden mehrere separate bSSFP-Bilder akquiriert und anschließend kombiniert werden m{\"u}ssen, ist f{\"u}r die Bandingentfernung mittels DYPR-SSFP lediglich die Aufnahme eines einzelnen Bildes notwendig. Dies wird durch die neuartige Kombination eines dynamischen Phasenzyklus mit einer radialen Trajektorie mit quasizuf{\"a}lligem Abtastschema erm{\"o}glicht. Die notwendigen Bestandteile k{\"o}nnen mit geringem Aufwand implementiert werden. Des Weiteren ist kein spezielles Rekonstruktionsschema notwendig, was die breite Anwendbarkeit des entwickelten Ansatzes erm{\"o}glicht. Konventionelle Methoden zur Entfernung von Bandingartefakten werden sowohl bez{\"u}glich ihrer Robustheit als auch bez{\"u}glich der notwendigen Messzeit {\"u}bertroffen. Um die Anwendbarkeit von DYPR-SSFP auch jenseits der gew{\"o}hnlichen Bildgebung zu demonstrieren, wurde die Methode mit der Fett-Wasser-Separation kombiniert. Basierend auf der Dixon-Technik konnten so hochaufgel{\"o}ste Fett- sowie Wasserbilder erzeugt werden. Aufgrund der Bewegungsinsensitiv{\"a}t der zugrunde liegenden radialen Trajektorie konnten die Messungen unter freier Atmung durchgef{\"u}hrt werden, ohne dass nennenswerte Beeintr{\"a}chtigungen der Bildqualit{\"a}t auftraten. Die erzielten Ergebnisse am Abdomen zeigten weder Fehlzuordnungen von Fett- und Wasserpixeln noch verbleibende Bandingartefakte. Ein Nachteil der gew{\"o}hnlichen Dixon-basierten Fett-Wasser-Separation ist es, dass mehrere separate Bilder zu verschiedenen Echozeiten ben{\"o}tigt werden. Dies f{\"u}hrt zu einer entsprechenden Verl{\"a}ngerung der zugeh{\"o}rigen Messzeit. Abhilfe schafft hier die Verwendung einer Multiecho-Sequenz. Wie gezeigt werden konnte, erm{\"o}glicht eine derartige Kombination die robuste, bandingfreie Fett-Wasser-Separation in klinisch akzeptablen Messzeiten. DYPR-SSFP erlaubt die Entfernung von Bandingartefakten selbst bei starken Magnetfeldinhomogenit{\"a}ten. Dennoch ist es m{\"o}glich, dass Signalausl{\"o}schungen aufgrund des Effekts der Intravoxeldephasierung verbleiben. Dieses Problem tritt prim{\"a}r bei der Bildgebung von Implantaten oder am Ultrahochfeld auf. Als Abhilfe hierf{\"u}r wurde die Kombination von DYPR-SSFP mit der sogenannten z-Shim-Technik untersucht, was die Entfernung dieser Artefakte auf Kosten einer erh{\"o}hten Messzeit erm{\"o}glichte. Die mit DYPR-SSFP akquirierten radialen Projektionen weisen aufgrund des angewendeten dynamischen Phasenzyklus leicht verschiedene Signallevel und Phasen auf. Diese Tatsache zeigt sich durch inkoh{\"a}rente Bildartefakte, die sich jedoch durch eine Erh{\"o}hung der Projektionsanzahl effektiv reduzieren lassen. Folglich bietet es sich in diesem Kontext an, Anwendungen zu w{\"a}hlen, bei denen bereits intrinsisch eine verh{\"a}ltnism{\"a}ßig hohe Anzahl von Projektionen ben{\"o}tigt wird. Hierbei hat sich gezeigt, dass neben der hochaufgel{\"o}sten Bildgebung die Wahl einer 3D radialen Trajektorie eine aussichtsreiche Kombination darstellt. Die in der vorliegenden Arbeit vorgestellte 3D DYPR-SSFP-Technik erlaubte so die isotrope bandingfreie bSSFP-Bildgebung, wobei die Messzeit im Vergleich zu einer gew{\"o}hnlichen bSSFP-Akquisition konstant gehalten werden konnte. Verbleibende, durch den dynamischen Phasenzyklus hervorgerufene Artefakte konnten effektiv mit einem Rauschunterdr{\"u}ckungsalgorithmus reduziert werden. Anhand Probandenmessungen wurde gezeigt, dass 3D DYPR-SSFP einen aussichtsreichen Kandidaten f{\"u}r die Bildgebung von Hirnnerven sowie des Bewegungsapparats darstellt. W{\"a}hrend die DYPR-SSFP-Methode sowie die darauf beruhenden Weiterentwicklungen effiziente L{\"o}sungen f{\"u}r das Problem der Bandingartefakte bei der bSSFP-Bildgebung darstellen, adressiert die vorgestellte RA-TOSSI-Technik (RAdial T-One sensitive and insensitive Steady-State Imaging) das Problem des bSSFP-Mischkontrasts. Die M{\"o}glichkeit der Generierung von T2-Kontrasten basierend auf der bSSFP-Sequenz konnte bereits in vorausgehenden Arbeiten gezeigt werden. Hierbei wurde die Tatsache ausgenutzt, dass der T1-Anteil des Signalverlaufs nach Beginn einer bSSFP-Akquisition durch das Einf{\"u}gen von Inversionspulsen in ungleichm{\"a}ßigen Abst{\"a}nden aufgehoben werden kann. Ein so akquiriertes Bild weist folglich einen reinen, klinisch relevanten T2-Kontrast auf. Die im Rahmen dieser Arbeit vorgestellte Methode basiert auf dem gleichen Prinzip, jedoch wurde anstelle einer gew{\"o}hnlichen kartesischen Trajektorie eine radiale Trajektorie in Kombination mit einer KWIC-Filter-Rekonstruktion verwendet. Somit k{\"o}nnen bei gleichbleibender oder sogar verbesserter Bildqualit{\"a}t aus einem einzelnen, mit RA-TOSSI akquirierten Datensatz verschiedene T2-Wichtungen als auch gew{\"o}hnliche T2/T1-Wichtungen generiert werden. Mittels Variation der Anzahl der eingef{\"u}gten Inversionspulse konnte ferner gezeigt werden, dass es neben den besagten Wichtungen m{\"o}glich ist, zus{\"a}tzliche Kontraste zu generieren, bei denen verschiedene Substanzen im Bild ausgel{\"o}scht sind. Diese Substanzen k{\"o}nnen am Beispiel der Gehirnbildgebung Fett, graue Masse, weiße Masse oder CSF umfassen und zeichnen sich neben den reinen T2-Kontrasten durch eine {\"a}hnlich hohe klinische Relevanz aus. Die m{\"o}gliche Bedeutung der vorgestellten Methode f{\"u}r die klinische Verwendung wurde durch Messungen an einer Gehirntumorpatientin demonstriert. Zusammenfassend l{\"a}sst sich sagen, dass die im Rahmen dieser Dissertation entwickelten Techniken einen wertvollen Beitrag zur L{\"o}sung der eingangs beschriebenen Probleme der bSSFP-Bildgebung darstellen. Mit DYPR-SSFP akquirierte Bilder sind bereits mit bestehender, kommerzieller Rekonstruktionssoftware direkt am Scanner rekonstruierbar. Die Software f{\"u}r die Rekonstruktion von RA-TOSSI-Datens{\"a}tzen wurde f{\"u}r Siemens Scanner implementiert. Folglich sind beide Methoden f{\"u}r klinische Studien einsetzbar, was gleichzeitig den Ausblick dieser Arbeit darstellt.}, subject = {Kernspintomografie}, language = {de} } @phdthesis{Bendias2018, author = {Bendias, Michel Kalle}, title = {Quantum Spin Hall Effect - A new generation of microstructures}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168214}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The presented thesis summarizes the results from four and a half years of intense lithography development on (Cd,Hg)Te/HgTe/(Cd,Hg)Te quantum well structures. The effort was motivated by the unique properties of this topological insulator. Previous work from Molenkamp at al.\ has proven that the transport through such a 2D TI is carried by electrons with opposite spin, counter-propagating in 1D channels along the sample edge. However, up to this thesis, the length of quantized spin Hall channels has never been reported to exceed 4 µm. Therefore, the main focus was put on a reproducible and easy-to-handle fabrication process that reveals the intrinsic material parameters. Every single lithography step in macro as well as microscopic sample fabrication has been re-evaluated. In the Development, the process changes have been presented along SEM pictures, microgaphs and, whenever possible, measurement responses. We have proven the conventional ion milling etch method to damage the remaining mesa and result in drastically lower electron mobilities in samples of microscopic size. The novel KI:I2:HBr wet etch method for macro and microstructure mesa fabrication has been shown to leave the crystalline structure intact and result in unprecedented mobilities, as high as in macroscopic characterization Hall bars. Difficulties, such as an irregular etch start and slower etching of the conductive QW have been overcome by concentration, design and etch flow adaptations. In consideration of the diffusive regime, a frame around the EBL write field electrically decouples the structure mesa from the outside wafer. As the smallest structure, the frame is etched first and guarantees a non-different etching of the conductive layer during the redox reaction. A tube-pump method assures reproducible etch results with mesa heights below 300 nm. The PMMA etch mask is easy to strip and leaves a clean mesa with no redeposition. From the very first attempts, to the final etch process, the reader has been provided with the characteristics and design requirements necessary to enable the fabrication of nearly any mesa shape within an EBL write field of 200 µm. Magneto resistance measurement of feed-back samples have been presented along the development chronology of wet etch method and subsequent lithography steps. With increasing feature quality, more and more physics has been revealed enabling detailed evaluation of smallest disturbances. The following lithography improvements have been implemented. They represent a tool-box for high quality macro and microstructure fabrication on (CdHg)Te/HgTe of almost any kind. The optical positive resist ECI 3027 can be used as wet and as dry etch mask for structure sizes larger than 1 µm. It serves to etch mesa structures larger than the EBL write field. The double layer PMMA is used for ohmic contact fabrication within the EBL write field. Its thickness allows to first dry etch the (Cd,Hg)Te cap layer and then evaporate the AuGe contact, in situ and self-aligned. Because of an undercut, up to 300 nm can be metalized without any sidewalls after the lift-off. An edge channel mismatch within the contact leads can be avoided, if the ohmic contacts are designed to reach close to the sample and beneath the later gate electrode. The MIBK cleaning step prior to the gate application removes PMMA residuals and thereby improves gate and potential homogeneity. The novel low HfO2-ALD process enables insulator growth into optical and EBL lift-off masks of any resolvable shape. Directly metalized after the insulator growth, the self-aligned method results in thin and homogeneous gate electrode reproducibly withholding gate voltages to +-10 V. The optical negative resist ARN 4340 exhibits an undercut when developed. Usable as dry etch mask and lift-off resist, it enables an in-situ application of ohmic contacts first etching close to the QW, then metalizing AuGe. Up to 500 nm thickness, the undercut guarantees an a clean lift-off with no sidewalls. The undertaken efforts have led to micro Hall bar measurements with Hall plateaus and SdH-oszillations in up to now unseen levels of detail. The gap resistance of several micro Hall bars with a clear QSH signal have been presented in Quantum Spin Hall. The first to exhibit longitudinal resistances close to the expected h/2e2 since years, they reveal unprecedented details in features and characteristics. It has been shown that their protection against backscattering through time reversal symmetry is not as rigid as previously claimed. Values below and above 12.9 kΩ been explained, introducing backscattering within the Landauer-B{\"u}ttiker formalism of edge channel transport. Possible reasons have been discussed. Kondo, interaction and Rashba-backscattering arising from density inhomogeneities close to the edge are most plausible to explain features on and deviations from a quantized value. Interaction, tunneling and dephasing mechanisms as well as puddle size, density of states and Rashba Fields are gate voltage dependent. Therefore, features in the QSH signal are fingerprints of the characteristic potential landscape. Stable up to 11 K, two distinct but clear power laws have been found in the higher temperature dependence of the QSH in two samples. However, with ΔR = Tα, α = ¼ in one (QC0285) and α = 2 in the other (Q2745), none of the predicted dependencies could be confirmed. Whereas, the gap resistances of QC0285 remains QSH channel dominated up to 3.9 T and thereby confirmed the calculated lifting of the band inversion in magnetic field. The gate-dependent oscillating features in the QSH signal of Q2745 immediately increase in magnetic field. The distinct field dependencies allowed the assumption of two different dominant backscattering mechanisms. Resulting in undisturbed magneto transport and unprecedented QSH measurements The Novel Micro Hall Bar Process has proven to enable the fabrication of a new generation of microstructures.}, subject = {Quecksilbertellurid}, language = {en} } @phdthesis{Baumgaertner2023, author = {Baumg{\"a}rtner, Kiana Jasmin}, title = {Spectroscopic Investigation of the Transient Interplay at Hybrid Molecule-Substrate Interfaces after Photoexcitation: Ultrafast Electronic and Atomic Rearrangements}, doi = {10.25972/OPUS-33053}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-330531}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {This thesis is aimed at establishing modalities of time-resolved photoelectron spectroscopy (tr-PES) conducted at a free-electron laser (FEL) source and at a high harmonic generation (HHG) source for imaging the motion of atoms, charge and energy at photoexcited hybrid organic/inorganic interfaces. Transfer of charge and energy across interfaces lies at the heart of surface science and device physics and involves a complex interplay between the motion of electrons and atoms. At hybrid organic/inorganic interfaces involving planar molecules, such as pentacene and copper(II)-phthalocyanine (CuPc), atomic motions in out-of-plane direction are particularly apparent. Such hybrid interfaces are of importance to, e.g., next-generation functional devices, smart catalytic surfaces and molecular machines. In this work, two hybrid interfaces - pentacene atop Ag(110) and copper(II)-phthalocyanine (CuPc) atop titanium disulfide (1T-TiSe2) - are characterized by means of modalities of tr-PES. The experiments were conducted at a HHG source and at the FEL source FLASH at Deutsches Elektronen-Synchrotron DESY (Hamburg, Germany). Both sources provide photon pulses with temporal widths of ∼ 100 fs and thus allow for resolving the non-equilibrium dynamics at hybrid interfaces involving both electronic and atomic motion on their intrinsic time scales. While the photon energy at this HHG source is limited to the UV-range, photon energies can be tuned from the UV-range to the soft x-ray-range at FLASH. With this increased energy range, not only macroscopic electronic information can be accessed from the sample's valence and conduction states, but also site-specific structural and chemical information encoded in the core-level signatures becomes accessible. Here, the combined information from the valence band and core-level dynamics is obtained by performing time- and angle-resolved photoelectron spectroscopy (tr-ARPES) in the UV-range and subsequently performing time-resolved x-ray photoelectron spectroscopy (tr-XPS) and time-resolved photoelectron diffraction (tr-XPD) in the soft x-ray regime in the same experimental setup. The sample's bandstructure in energy-momentum space and time is captured by a time-of-flight momentum microscope with femtosecond temporal and sub-{\AA}ngstr{\"o}m spatial resolutions. In the investigated systems, out-of-equilibrium dynamics are traced that are connected to the transfer of charge and energy across the hybrid interfaces. While energetic shifts and complementary population dynamics are observed for molecular and substrate states, the shapes of involved molecular orbitals change in energy-momentum space on a subpicosecond time scale. In combination with theory support, these changes are attributed to iiiatomic reorganizations at the interface and transient molecular structures are reconstructed with sub-{\AA}ngstr{\"o}m precision. Unique to the material combination of CuPc/TiSe2, a structural rearrangement on the macroscopic scale is traced simultaneously: ∼ 60 \% of the molecules undergo a concerted, unidirectional in-plane rotation. This surprising observation and its origin are detailed in this thesis and connected to a particularly efficient charge transfer across the CuPc/TiSe2 interface, resulting in a charging of ∼ 45 \% of CuPc molecules.}, subject = {ARPES}, language = {en} } @phdthesis{Schummer2021, author = {Schummer, Bernhard}, title = {Stabilisierung von CdS Nanopartikeln mittels Pluronic P123}, doi = {10.25972/OPUS-23844}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238443}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Ziel dieser Arbeit war die Stabilisierung von Cadmiumsulfid CdS mit Pluronic P123, einem Polymer. CdS ist ein Halbleiter, der zum Beispiel in der Photonik und bei optischen Anwendungen eingesetzt wird und ist deshalb {\"a}ußerst interessant, da seine Bandl{\"u}cke als Nanopartikel verschiebbar ist. F{\"u}r die Photovoltaik ist es ein attraktives Material, da es im sichtbaren Licht absorbiert und durch die Bandl{\"u}ckenverschiebung effektiver absorbieren kann. Dies ist unter dem Namen Quantum Size Effekt bekannt. Als Feststoff ist CdS f{\"u}r einen solchen Anwendungsbereich weniger geeignet, zumal der Effekt der Bandl{\"u}ckenverschiebung dort nicht auftritt. Wissenschaftler bem{\"u}hen sich deshalb CdS als Nanopartikeln zu stabilisieren, weil CdS in w{\"a}ssrigen L{\"o}sungen ein stark aggregierendes System, also stark hydrophob ist. Es wurden zwei Kriterien f{\"u}r die erfolgreiche Stabilisierung von CdS festgelegt. Zum einen muss das Cds homogen im Medium verteilt sein und darf nicht agglomerieren. Zum anderen, m{\"u}ssen die CdS Nanopartikel kleiner als 100 A sein. In meiner Arbeit habe ich solche Partikel hergestellt und stabilisiert, d.h. verhindert, dass die Partikel weiterwachsen und gleichzeitig ihre Bandl{\"u}cke verschoben wird. Die Herausforderung liegt nicht in der Herstellung, aber in der L{\"o}sung von CdS im Tr{\"a}gerstoff, da CdS in den meisten Fl{\"u}ssigkeiten nicht l{\"o}slich ist und ausf{\"a}llt. Die Stabilisierung in w{\"a}ssrigen L{\"o}sungen wurde das erste Mal durch Herrn Prof. Dr. Rempel mit Ethylendiamintetraessigs{\"a}ure EDTA erfolgreich durchgef{\"u}hrt. Mit EDTA k{\"o}nnen jedoch nur sehr kleine Konzentrationen stabilisiert werden. Zudem k{\"o}nnen Parameter wie Gr{\"o}ße und Geschwindigkeit der Reaktion beim Stabilisieren der CdS-Nanopartikel nicht angepasst oder beeinflusst werden. Dieses Problem ist dem, vieler medizinischer Wirkstoffe sehr {\"a}hnlich, die in hohen Konzentrationen verabreicht werden sollen, aber nicht oder nur schwer in Wasser l{\"o}slich sind (Bsp. Kurkumin). Ein vielversprechender L{\"o}sungsweg ist dort, die Wirkstoffe in große Tr{\"a}gerpartikel (sog. Mizellen) einzuschleusen, die ihrerseits gut l{\"o}slich sind. In meiner Arbeit habe ich genau diesen Ansatz f{\"u}r CdS verfolgt. Als Tr{\"a}gerpartikel/Mizelle wurde das bekannte Copolymer Pluronic P123 verwendet. Aus dieser Pluronic Produktreihe wird P123 gew{\"a}hlt, da es die gr{\"o}ßte Masse bei gleichzeitig h{\"o}chstem Anteil von Polypropylenoxid PPO im Vergleich zur Gesamtkettenl{\"a}nge hat. P123 ist ein tern{\"a}res Polyether oder Dreiblockkopolymer und wird von BASAF industriell produziert. Es besteht aus drei B{\"o}cken, dem mittlere Block Polypropylenoxid PPO und den beiden {\"a}ußeren Bl{\"o}cken Polyethylenoxid PEO. Der Buchstabe P steht f{\"u}r past{\"o}s, die ersten beiden Ziffern in P123 mit 300 multipliziert ergeben das molare Gewicht und die letzte Ziffer mit 10 multipliziert entspricht dem prozentualen Gewichtsanteil PEO. Die Bildung von Mizellen aus den P123 Molek{\"u}len kann bewusst {\"u}ber geringe Temperatur{\"a}nderungen gesteuert werden. Bei ungef{\"a}hr Raumtemperatur liegen Mizellen vor, die sich bei h{\"o}heren Temperaturen von sph{\"a}rischen in wurmartige Mizellen umwandeln. Oberhalb einer Konzentration von 30 Gewichtsprozent wtp bilden die Mizellen außerdem einen Fl{\"u}ssigkristall. Ich habe in meiner Arbeit zun{\"a}chst P123 mit Hilfe von R{\"o}ntgenstreuung untersucht. Anders als andere Methoden gibt R{\"o}ntgenstreuung direkten Aufschluss {\"u}ber die Morphologie der Stoffe. R{\"o}ntgenstreuung kann die Mischung von P123 mit CdS abbilden und l{\"a}sst darauf schließen, ob das Ziel erreicht werden konnte, stabile CdS Nanopartikel in P123 zu binden. F{\"u}r die Stabilisierung der Nanopartikel ist es zun{\"a}chst notwendig die richtigen Temperaturen f{\"u}r die Ausgangsl{\"o}sungen und gemischten L{\"o}sungen zu finden. Dazu muss P123 viel genauer untersucht werden, als der momentane Kenntnisstand in der Literatur. Zu diesem Zweck als auch f{\"u}r die Analyse des stabilisierten CdS habe ich ein neues Instrument am LRM entwickelt, sowie eine temperierbare Probenumgebung f{\"u}r Fl{\"u}ssigkeiten f{\"u}rs Vakuum, um morphologische Eigenschaften aus Streuamplituden und -winkeln zu entschl{\"u}sseln. Diese R{\"o}ntgenstreuanlage wurde konzipiert und gebaut, um auch im Labor P123 in kleinen Konzentrationen messen zu k{\"o}nnen. R{\"o}ntgenkleinwinkelstreuung eignet sich besonders als Messmethode, da die Probe mit einer hohen statistischen Relevanz in Fl{\"u}ssigkeit und in verschiedenen Konzentrationen analysiert werden kann. F{\"u}r die Konzentrationen 5, 10 und 30 wtp konnte das temperaturabh{\"a}ngige Verhalten von P123 pr{\"a}zise mit R{\"o}ntgenkleinwinkelstreuung SAXS gemessen und dargestellt werden. F{\"u}r 5 wtp konnten die Gr{\"o}ßen der Unimere und Mizellen bestimmt werden. Trotz der nicht vorhandenen Absolutkalibration f{\"u}r diese Konzentration konnten dank des neu eingef{\"u}hrten Parameters kappa eine Dehydrierung der Mizellen mit steigender Temperatur abgesch{\"a}tzt, sowie eine Hysterese zwischen dem Heizen und Abk{\"u}hlen festgestellt werden. F{\"u}r die Konzentration von 10 wtp wurden kleinere Temperaturschritte gew{\"a}hlt und die Messungen zus{\"a}tzlich absolut kalibriert. Es wurden die Gr{\"o}ßen und Streul{\"a}ngendichten SLD der Unimere und Mizellen pr{\"a}zise bestimmt und ein vollst{\"a}ndiges Form-Phasendiagramm erstellt. Auch f{\"u}r diese Konzentration konnte eine Hysterese eindeutig an der Gr{\"o}ße, SLD und am Parameter kappa gezeigt werden, sowie eine Dehydrierung des Mizellenkerns. Dies beweist, dass der Parameter kappa geeignet ist, um bei nicht absolut kalibrierten Messungen, Aussagen {\"u}ber die Hydrierung und Hysterese komplexer Kern-H{\"u}lle Modelle zu machen. F{\"u}r die Konzentration von 30 wtp konnte zwischen 23°C und 35°C eine FCC Struktur nachgewiesen werden. Dabei vergr{\"o}ßert sich die Gitterkonstante der FCC Struktur von 260 A auf 289 A in Abh{\"a}ngigkeit der Temperatur. Durch das Mischen zweier L{\"o}sungen, zum einen CdCl2 und 30 wtp P123 und zum anderen Na2S und 30 wtp P123, konnte CdS erfolgreich stabilisiert werden. Mit einer Kamera wurde die Gelbf{\"a}rbung der L{\"o}sung, und somit die Bildung des CdS, in Abh{\"a}ngigkeit der Zeit untersucht. Es konnte festgestellt werden, dass das Bilden der CdS Nanopartikel je nach Konzentration und Temperierprogramm zwischen 30 und 300 Sekunden dauert und einer logistischen Wachstumsfunktion folgt. H{\"o}here Konzentrationen CdS bewirken einen schnelleren Anstieg der Wachstumsfunktion. Mittels UV-Vis Spektroskopie konnte gezeigt werden, dass die Bandl{\"u}cke von CdS mit steigender Konzentration konstant bei 2,52 eV bleibt. Eine solche Verschiebung der Bandl{\"u}cke von ungef{\"a}hr 0,05 eV im Vergleich zum Festk{\"o}rper, deutet auf einen CdS Partikeldurchmesser von 80A hin. Mit SAXS konnte gezeigt werden, dass sich die fl{\"u}ssigkristalline Struktur des P123 bei zwei verschiedenen Konzentrationen CdS, von 0,005 und 0,1 M, nicht {\"a}ndert. Das CdS wird zwischen den Mizellen, also durch die Bildung des Fl{\"u}ssigkristalls, und im Kern der Mizelle aufgrund seiner Hydrophobizit{\"a}t stabilisiert. Die Anfangs definierten Kriterien f{\"u}r eine erfolgreiche Stabilisierung wurden erf{\"u}llt. P123 ist ein hervorragend geeignetes Polymer, um hydrophobes CdS, sowohl durch die Bildung eines Fl{\"u}ssigkristalls, als auch im Kern der Mizelle zu stabilisieren.}, subject = {R{\"o}ntgen-Kleinwinkelstreuung}, language = {de} } @phdthesis{Betzold2022, author = {Betzold, Simon}, title = {Starke Licht-Materie-Wechselwirkung und Polaritonkondensation in hemisph{\"a}rischen Mikrokavit{\"a}ten mit eingebetteten organischen Halbleitern}, doi = {10.25972/OPUS-26665}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-266654}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Kavit{\"a}ts-Exziton-Polaritonen (Polaritonen) sind hybride Quasiteilchen, die sich aufgrund starker Kopplung von Halbleiter-Exzitonen mit Kavit{\"a}tsphotonen ausbilden. Diese Quasiteilchen weisen eine Reihe interessanter Eigenschaften auf, was sie einerseits f{\"u}r die Grundlagenforschung, andererseits auch f{\"u}r die Entwicklung neuartiger Bauteile sehr vielversprechend macht. Bei Erreichen einer ausreichend großen Teilchendichte geht das System in den Exziton-Polariton-Kondensationszustand {\"u}ber, was zur Emission von laserartigem Licht f{\"u}hrt. Organische Halbleiter als aktives Emittermaterial zeigen in diesem Kontext großes Potential, da deren Exzitonen neben großen Oszillatorst{\"a}rken auch hohe Bindungsenergien aufweisen. Deshalb ist es m{\"o}glich, unter Verwendung organischer Halbleiter selbst bei Umgebungsbedingungen {\"a}ußerst stabile Polaritonen zu erzeugen. Eine wichtige Voraussetzung zur Umsetzung von integrierten opto-elektronischen Bauteilen basierend auf Polaritonen ist der kontrollierte r{\"a}umliche Einschluss sowie die Realisierung von frei konfigurierbaren Potentiallandschaften. Diese Arbeit besch{\"a}ftigt sich mit der Entwicklung und der Untersuchung geeigneter Plattformen zur Erzeugung von Exziton-Polaritonen und Polaritonkondensaten in hemisph{\"a}rischen Mikrokavit{\"a}ten, in die organische Halbleiter eingebettet sind.}, subject = {Exziton-Polariton}, language = {de} } @phdthesis{Bollmann2013, author = {Bollmann, Stefan}, title = {Structural Dynamics of Oligopeptides determined by Fluorescence Quenching of Organic Dyes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-92191}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {For determination of structures and structural dynamics of proteins organic fluorophores are a standard instrument. Intra- and intermolecular contact of biomolecular structures are determined in time-resolved and stationary fluorescence microscopy experiments by quenching of organic fluorophores due to Photoinduced Electron Transfer (PET) and dimerization interactions. Using PET we show in this work that end-to-end contact dynamics of serine-glycine peptides are slowed down by glycosylation. This slow down is due to a change in reaction enthalpy for end-to-end contact and is partly compensated by entropic effects. In a second step we test how dimerization of MR121 fluorophore pairs reports on end-to-end contact dynamics. We show that in aqueous solutions containing strong denaturants MR121 dimerization reports advantageously on contact dynamics for glycine-serine oligopeptides compared to the previously used MR121/tryptophane PET reporters. Then we analyze dimer interactions and quenching properties of different commercially available fluorophores being standards in F{\"o}rster Resonance Energy Transfer (FRET) measurements. Distances in biomolecules are determinable using FRET, but for very flexible biomolecules the analysis of masurement data can be distorted if contact of the two FRET fluorophores is likely. We quantify how strong the quenching of fluorophore pairs with two different or two identical fluorophores is. Dimer spectra and association constants are quantified to estimate if fluophores are applicable in various applications, e.g. in FRET measurements with unstructured peptides and proteins.}, subject = {Fluorophore}, language = {en} } @phdthesis{Liess2017, author = {Liess, Andreas}, title = {Structure-Property Relationships of Merocyanine Dyes in the Solid State: Charge Transport and Exciton Coupling}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-152900}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {The present thesis demonstrates the importance of the solid state packing of dipolar merocyanine dyes with regard to charge transport and exciton coupling. Due to the charge transport theory for disordered materials, it is expected that high ground state dipole moments in amorphous thin films lead to low mobility values due to a broadening of the density of states. However, due to their inherent dipolarity, merocyanine dyes usually align in antiparallel dimers in an ordered fashion. The examination of twenty different molecules with ground state dipole moments up to 15.0 D shows that by a high dipolarity and well-defined sterics, the molecules pack in a highly regular two-dimensional brickwork-type structure, which is beneficial for hole transport. Utilization of these molecules for organic thin-film transistors (OTFTs) leads to hole mobility values up to 0.21 cm²/Vs. By fabrication of single crystal field-effect transistors (SCFETs) for the derivative showing the highest mobility values in OTFTs, even hole mobilities up to 2.34 cm²/Vs are achieved. Hence, merocyanine based transistors show hole mobility values comparable to those of conventional p-type organic semiconductors and therefore high ground state dipole moments are not necessarily disadvantageous regarding high mobility applications. By examination of a different series of ten merocyanine dyes with the same chromophore backbone but different donor substituents, it is demonstrated that the size of the donor has a significant influence on the optical properties of thin films. For small and rigid donor substituents, a hypsochromic shift of the absorption compared to the monomer absorption in solution is observed due to the card stack like packing of the molecules in the solid state. By utilization of sterical demanding or flexible donor substituents, a zig-zag type packing is observed, leading to a bathochromical shift of the absorption. These packing motifs and spectral shifts with an offset of 0.93 eV of the H- and J-bands comply with the archetype examples of H- and J-aggregates from Kasha's exciton theory.}, subject = {Exziton}, language = {en} } @phdthesis{Genheimer2023, author = {Genheimer, Ulrich}, title = {The Photophysics of Small Organic Molecules for Novel Light Emitting Devices}, doi = {10.25972/OPUS-32031}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-320313}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {This PhD thesis addresses the photophysics of selected small organic molecules with the purpose of using them for efficient and even novel light sources. In particular, the studies presented focused on revealing the underlying exciton dynamics and determining the transition rates between different molecular states. It was shown how the specific properties and mechanisms of light emission in fluorescent molecules, molecules with phosphorescence or thermally activated delayed fluorescence (TADF), biradicals, and multichromophores can be utilized to build novel light-emitting devices. The main tool employed here was the analysis of the emitters' photon statistics, i.e. the analysis of the temporal distribution of emitted photons, during electrical or optical excitation. In the introduction of this work, the working principle of an organic light-emitting diode (OLED) was introduced, while Chapter 2 provided the physical background of the relevant properties of organic molecules and their interaction with light. In particular, the occurrence of discrete energy levels in organic semiconductors and the process of spontaneous light emission were discussed. Furthermore, in this chapter a mathematical formalism was elaborated with the goal to find out what kind of information about the studied molecule can be obtained by analyzing its photon statistics. It was deduced that the intensity correlation function g (2)(t) contains information about the first two factorial moments of the photon statistics and that higher order factorial moments do not contain any additional information about the system under study if the system is always in the same state after the emission of a photon. To conclude the introductory part, Chapter 3 introduced the utilized characterization methods including confocal microscopy of single molecules, time correlated single photon counting and temperature dependent photoluminescence measurements. To provide the background necessary for an understanding of for the following result chapters, in Section 4.1 a closer look was taken at the phenomenon of blinking and photobleaching of individual molecules. For a squaraine-based fluorescent emitter rapid switching between a bright and dark state was observed during photoexcitation. Using literature transition rates between the molecular states, a consistent model was developed that is able to explain the distribution of the residence times of the molecule in the bright and dark states. In particular, an exponential and a power-law probability distribution was measured for the time the molecule resides in tis bright and dark state, respectively. This behavior as well as the change in photoluminescence intensity between the two states was conclusively explained by diffusion of residual oxygen within the sample, which had been prepared in a nitrogen-filled glovebox. For subsequent samples of this work, thin strips of atomic aluminum were deposited on the matrices to serve as oxygen getter material. This not only suppressed the efficiency of photobleaching, but also noticeably prolonged the time prior to photobleaching, which made many of the following investigations possible in the first place. For emitters used in displays, emission properties such as narrow-band luminescence and short fluorescence lifetimes are desired. These properties can be influenced not only by the emitter molecule itself, but also by the interaction with the chosen environment. Therefore, before focusing on the photophysics of individual small organic molecules, Section 4.2 highlighted the interaction of a perylene bisimide-based molecular species with its local environment in a disordered polymethyl methacrylate matrix. In a statistical approach, individual photophysical properties were measured for 32 single molecules and correlations in the variation of the properties were analyzed. This revealed how the local polarity of the molecules' environment influences their photophysics. In particular, it was shown how an increase in local polarity leads to a red-shifted emission, narrower emission lines, broader vibronic splitting between different emission lines in combination with a smaller Huang-Rhys parameter, and a longer fluorescence lifetime. In the future, these results may help to embed individual chromophores into larger macromolecules to provide the chromophore with the optimal local environment to exhibit the desired emission properties. The next two sections focused on a novel and promising class of chromophores, namely linear coordinated copper complexes, synthesized in the group of Dr. Andreas Steffen at the Institute of Inorganic Chemistry at the University of W{\"u}rzburg. In copper atoms, the d-orbitals are fully occupied, which prevents undesirable metal-centered d-d⋆ states, which tend to lie low in energy and recombine non-radiatively. Simultaneously, the copper atom provides a flexible coordination geometry, while complexes in their linear form are expected to exhibit the least amount of excited state distortions. Depending on the chosen ligands, these copper complexes can exhibit phosphorescence as well as temperature activated delayed fluorescence. In Section 4.3, a phosphorescent copper complex with a chlorine atom and a 1-(2,6-diisopropylphenyl)-3,3,5,5-tetramethyl-2-pyrrolidine-ylidene- ligand was tested for its suitability as an optically active material in an OLED. For this purpose, an OLED with a polyspirobifluorene-based copolymer matrix and the dopant at a concentration of 20 wt\% was electrically excited. Deconvolution of the emission spectrum in contributions from the matrix and the dopant revealed that 60 \% of the OLEDs emission was due to the copper complex. It was also shown that the shape of the emission spectrum of the copper complex remains unchanged upon incorporation into the OLED, but is red-shifted by about 233 meV. In Section 4.4, a second copper complex exhibiting thermally activated delayed fluorescence was analyzed. This complex comprised a carbazolate as well as a 2-(2,6- diisopropyl)-phenyl-1,1-diphenyl-isoindol-2-ium-3-ide ligand and was examined in the solid state and at the single-molecule level, where single photon emission was recorded up to an intensity of 78'000 counts per second. The evaluation of the second-order autocorrelation function of the emitted light proved an efficient transition between singlet and triplet excited states on the picosecond time scale. In the solid state, the temperature- dependent fluorescence decay of the complex was analyzed after pulsed photoexcitation in the temperature range between 300 K and 5 K. From these measurements, a small singlet-triplet energy gap of only 65 meV and a triplet sublevel splitting of 3.0 meV were derived. The transition rates between molecular states could also be determined. Here, the fast singlet decay time of τS1 = 9.8ns proved the efficient thermally activated delayed fluorescence process, which was demonstrated for the first time for this new class of copper(I) complexes thus. While the use of thermally activated delayed fluorescence is a potential way to harness otherwise long-living dark triplet states, radicals completely avoid dark triplet states. However, this usually comes with the huge drawback of the molecules being chemically unstable. Therefore, two chemically stable biradical species were synthesized in the framework of the DFG research training school GRK 2112 on Molecular biradicals: structure, properties and reactivity, by Yohei Hattori in the group of Prof. Dr. Christoph Lambert and Rodger Rausch in the group of Prof. Dr. Frank W{\"u}rthner at the Institute of Organic Chemistry at the University of W{\"u}rzburg, respectively. In Section 4.5, it was investigated how these molecules can be used in OLEDs. In the first isoindigo based biradical (6,6'-bis(3,5-di-tert-butyl-4-phenoxyl)-1,1'-bis(2- ethylhexyl)-[3,3'-biindolinyl-idene]-2,2'-dione) two tert-butyl moieties kinetically block chemical reactions at the place of the lone electrons and an electron-withdrawing core shifts the electron density into the center of the chromophore. With these properties, it was possible to realize a poly(p-phenylene vinylene) copolymer based OLED doped with the biradical and to observe luminescence during optical as well as electrical excitation. Analyzing shapes of the photo- and electroluminescence spectra at different doping concentrations, F{\"o}rster resonance energy transfer was determined to be the dominant transition mechanism for excitons from the matrix to the biradical dopants. Likewise, OLEDs could be realized with the second diphenylmethylpyridine based birad- ical (4-(5-(bis(2,4,6-trichlorophenyl)methyl)-4,6-dichloropyridin-2-yl)-N-(4-(5-(bis(2,4,6- -trichlorophenyl)methyl)-4,6-dichloropyridin-2-yl)phenyl)-N-(4-methoxyphenyl)aniline) as dopant. In this biradical, chlorinated diphenylmethyl groups protect the two unpaired electrons. Photo- and electroluminescence spectra showed an emission in the near in- frared spectral range between 750 nm and 1000 nm. Also, F{\"o}rster resonance energy trans- fer was the dominant energy transfer mechanism with an transfer efficiency close to 100 \% even at doping concentrations of only 5 wt\%. In addition to demonstrating the working OLEDs based in biradicals, the detection of luminescence of the two biradical species in devices also constitutes an important step toward making use of experimental techniques such as optically detected electron spin resonance, which could provide information about the electronic states of the emitter and their spin manifold during OLED operation. Another class of emitters studied are molecules in which several chromophores are co- valently linked to form a macrocyclic system. The properties of these multichromophores were highlighted in Section 4.6. Here, it was analyzed how the photophysical behavior of the molecules is affected by the covalent linking, which determines the interaction be- tween the chromophores. The first multichromophore, 2,2'-ditetracene, was synthesized by Lena Ross in the group of Prof. Dr. Anke Kr{\"u}ger at the Institute of Organic Chemistry at the University of W{\"u}rzburg and was analyzed in this work both at the single-molecule level and in its aggregated crystalline form. While the single crystals were purified and grown in a vertical sublimation oven, the samples for the single molecule studies were prepared in matrices of amorphous polymethyl methacrylate and crystalline anthracene. Tetracene was analyzed concurrently to evaluate the effects of covalent linking. In samples where the distance between two molecules is sufficiently large, tetracene and 2,2'-ditracene show matching emission profiles with the only difference in the Franck-Condon factors and a de- creased photoluminescence decay time constant from 14 ns for tetracene to 5 ns for 2,2'- ditracene, which can be attributed to the increased density of the vibrational modes in 2,2'-ditracene. Evaluation of the photon statistics of individual 2,2'-ditracene molecules however showed that the system does not behave as two individual chromophores but as a collective state, preserving the spectral properties of the two tetracene chromophores. Complementary calculations performed by Marian Deutsch in the group of Prof. Dr. Bernd Engels at the Institute of Physical and Theoretical Chemistry at the University of W{\"u}rzburg helped to understand the processes in the materials and could show that the electronic and vibronic modes of 2,2'-ditracene are superpositions of the modes occurring in tetracene. In contrast, single-crystalline 2,2'-ditetracene behaves significantly different than tetracene, namely exhibiting a red shift in photoluminescence of 150 meV, caused by an altered crys- talline packing that lowers the S1-state energy level. Temperature-dependent photolu- minescence measurements revealed a rich emission pattern from 2,2'-ditetracene single crystals. The mechanisms behind this were unraveled using photoluminescence lifetime density analysis in different spectral regions of the emission spectrum and at different tem- peratures. An excimer state was identified that is located about 5 meV below the S1-state, separated by a 1 meV barrier, and which can decay to the ground state with a time constant of 9 ns. Also, as the S1-state energy level is lowered below the E(S1) ≥ 2 ×E(T1) threshold, singlet fission is suppressed in 2,2'-ditetracene in contrast to tetracene. Therefore, at low temperatures, photoluminescence is enhanced by a factor of 46, which could make 2,2'- ditetracene a useful material for future applications in devices such as OLEDs or lasers. The second multichromophore species, para-xylylene bridged perylene bisimide macrocycles, were synthesized by Peter Spenst in the group of Prof. Dr. Frank W{\"u}rthner at the Institute of Organic Chemistry at the University of W{\"u}rzburg, by linking three and four perylene bisimides, respectively. To reveal the exciton dynamics in these macrocycles, highly diluted monomers as well as trimers and tetramers were doped into matrices of polymethyl methacrylate to create thin films in which individual macrocycles could be analyzed. The emission spectra of the macrocycles remained identical to those of the monomers, indicating weak coupling between the chromophores. Single photon emission could be verified for monomers as well as macrocycles, as exciton-exciton annihilation processes suppress the simultaneous emission of two photons from one macrocycle. Nevertheless, the proof of the occurrence of a doubly excited state was obtained by excitation power dependent photon statistics measurements. The formalism developed in the theory part of this thesis for calculating the photon statistics of multichromophore systems was used here to find a theoretical model that matches the experimental results. The main features of this model are a doubly excited state, fast singlet-singlet annihilation, and an efficient transition from the doubly excited state to a dark triplet state. The occurrence of triplet-triplet annihilation was demonstrated in a subsequent experiment in which the macrocycles were excited at a laser intensity well above the saturation intensity of the monomer species. In contrast to the monomers, the trimers and tetramers exhibited neither a complete dark state nor saturation of photoluminescence. Both processes, efficient singlet-singlet and triplet-triplet annihilation make perylene bisimide macrocycles exceptionally bright single photon emitters. These advantages were utilized to realize a room temperature electrically driven fluorescent single photon source. For this purpose, OLEDs were fabricated using polyvinylcarbazole and 2-tert-butylphenyl-5-biphenyl-1,3,4-oxadiazol blends as a host material for perylene bisimide trimers. Photon antibunching could be observed in both optically and electrically driven devices, representing the first demonstration of electrically driven single photon sources using fluorescent emitters at room temperature. As expected from the previous optical experiments, the electroluminescence of the molecules was exceptionally bright, emitting about 105 photons per second, which could be seen even by eye under the microscope. Finally, in the last section 4.7 of this thesis, two additional measurement schemes were proposed as an alternative to the measurement of the second-order correlation function g (2)(t) of single molecules, which only provides information about the first two factorial moments of the molecules' photon statistics. In the first scheme, the g (3)(t) function was measured with three photodiodes, which is a consequential extension of the Hanbury Brown and Twiss measurement with two photodiodes. It was demonstrated how measuring the g (3)(t) function is able to identify interfering emitters with non-Poisson statistics in the experiment. The second setup was designed with an electro-optic modulator that repeatedly gen- erates photoexcitation in the form of a step function. The recording of luminescence transients for different excitation intensities yields the same results as the correspond- ing g (2)-functions measured on single emitters, both in their shape and in their depen- dence on excitation power. To demonstrate this concept, the TADF emitter TXO-TPA (2- [4-(diphenylamino)phenyl]-10,10-dioxide-9H-thioxanthen-9-one) was doped at a concen- tration of 10-4 wt\% in a mCP (1,3-Bis(N-carbazolyl)benzene) matrix. This concentration was low enough that TXO-TPA molecules did not interact with each other, but an ensem- ble of molecules was still present in the detection volume. The intramolecular transition rates between singlet and triplet states of TXO-TPA could be derived with an error of at most 5 \%. Other experimental techniques designed to obtain this information require ei- ther lengthy measurements on single molecules, where sample preparation is also often a challenge, or temperature-dependent fluorescence lifetime measurements, which require a cryostat, which in turn places constraints on the sample design used. In future, this ap- proach could establish a powerful method to study external factors influencing molecular transition rates. Overall, this thesis has introduced new molecular materials, revealed their photophys- ical properties, and demonstrated how they can be used to fabricate efficient and even novel light sources.}, subject = {Fotophysik}, language = {en} } @phdthesis{Seifert2022, author = {Seifert, Annika Kristina}, title = {Unidirectional freezing of soft and hard matter for biomedical applications}, doi = {10.25972/OPUS-27728}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-277281}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {A multitude of human tissues, such as bones, tendons, or muscles, are characterized by a hierarchical and highly ordered structure. In many cases, the loss of these tissues requires reconstruction using biocompatible replacement materials. In the field of bone replacement, the pore structure of the material has a crucial influence. Anisotropic porosity would have the advantage of facilitating the ingrowth of cells and newly formed blood vessels as well as the transport of nutrients. In this thesis, scaffolds with a highly ordered and anisotropic pore structure were fabricated using unidirectional freezing. Systematic investigations were carried out on biopolymer solutions (alginate and chitosan) to gain a deeper understanding of the freeze-structuring process. The knowledge gained was then applied to the development of anisotropically structured bone substitute materials. Here, the previously existing material platform for anisotropically structured calcium phosphates was extended to low-temperature phases such as calcium deficient hydroxyapatite (CDHA) or the secondary phosphates monetite and brushite. After the implantation of a biomaterial, the inevitably triggered initial immune response plays a key role in the success of a graft, with immune cells such as neutrophils or macrophages being of particular importance. In this thesis, the influence of anisotropically structured alpha-TCP and CDHA scaffolds as well as their unstructured references on human monocytes/macrophages was investigated. Macrophages produced extracellular traps (ETs) due to mineral nanoparticles formed by the binding of phosphate and calcium ions to human platelet lysate. In particular, incubation of alpha-TCP samples in lysate containing cell culture medium resulted in pronounced particle formation and enhanced release of ETs.}, subject = {Freezing}, language = {en} }