@phdthesis{Reggane2019, author = {Reggane, Maude}, title = {Lowering lattice forces of crystalline bases}, doi = {10.25972/OPUS-16380}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163803}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The number of active pharmaceutical ingredients (APIs) exhibiting a low solubility in aqueous media or a slow dissolution rate kept rising over the past years urging formulation scientists to explore new ways to tackle poor solubility and to enable oral absorption from such compounds. Bioavailability of poorly water-soluble compounds can be improved by increasing the dissolution rate and/or by increasing the gastro intestinal concentration through transient supersaturation. The dissolution rate of the API can be typically modified by the choice of the physical form, the polymorphic form, the powder surface area, and the local pH, while a transient supersaturation can be extended mainly by nucleation or crystallization inhibiting effects. In the present thesis, three strategies were explored to tailor the dissolution rate, the supersaturation and the hydrotropic solubilization of APIs, weak bases, respectively. The first part of this thesis followed a bioinspired approach to extend the kinetic solubility of salts and co-crystals. API salts and co-crystals are high energy forms that can generate supersaturated solutions with respect to any more stable form, typically the most stable API form in physiological environment. The transient kinetic stabilization of supersaturated states, also termed "parachute effect", is considered to improve bioavailability and is one aspect of the formulation that can be tailored. Inspiration from plants, which store high concentrations of aromatic bases in their vacuoles via complexation with polyphenols, sparked the evaluation to use hydroxybenzoic acid derivatives for salt or co-crystal engineering. Imatinib was chosen as the model compound for this investigation as its aromaticity and flat molecular architecture could favor interactions with hydroxybenzoic acid derivatives. One 1:1 Imatinib syringate co-crystal (I-SYA (1:1)) and one 1:2 Imatinib syringate co-crystal salt (I-SYA (1:2)) were obtained. Their dissolution assays in simulated intestinal fluid (SIF; a 50 mM phosphate buffer of pH 6.8) revealed that they formed stable solutions for several hours and days, respectively, in contrast to the marketed Imatinib mesylate salt (approx. 1h). This kinetic stability in solution was linked to the nucleation inhibition of the less soluble Imatinib hydrate by syringic acid (SYA). In solution 1H-NMR studies evidenced the aggregation of Imatinib and SYA. The amphiphilic nature of both Imatinib and SYA is considered to drive their association in solution, additionally, multiple intermolecular interactions such as hydrogen bonds and π-π stacking are likely to contribute. The association in solution enabled a phase of extended supersaturation, i.e., a parachute against desupersaturation, while no negative impact of aggregation on the permeability of both Imatinib and SYA was observed. A prerequisite to reach supersaturation is a rapid dissolution and release of the API from the formulation. Accordingly, the second and third part of this thesis is focused on the so-called "spring effect" of amorphous solid dispersions (ASDs). The addition of a hydrotropic agent, meaning a molecule that can solubilize poorly water-soluble APIs in aqueous solutions (well-known examples of hydrotropes are benzoic acid and nicotinamide) into an amorphous Ciprofloxacin-polymer matrix led to ternary systems with a significantly faster release and higher concentration of the API in SIF as compared to binary ASDs consisting of Ciprofloxacin (CPX) and polymer only. The stronger spring could be rationalized by an improved wetting of the ASD, or/and by a hydrotropic solubilization effect, although these hypotheses need further investigation. Marked differences in the dissolution profiles of binary ASDs were observed in biorelevant fasted simulated intestinal fluid (FaSSIF; a medium containing Na taurocholate (3 mM) and lecithin (0.75 mM) at pH 6.5) as compared to SIF. In FaSSIF, API release from binary polymeric ASDs was largely improved, and the duration of supersaturation was extended. This suggests that the bile salt Na taurocholate and lecithin present in FaSSIF do improve both dissolution rate and supersaturation of ASDs, the two pillars of ASDs as oral enabling formulations. Indeed, bile salts are endogenous surfactants which, together with phospholipids, play an important role in the wetting, solubilization, and absorption of lipophilic compounds. The aim of the third part of the present thesis was to study ASDs as formulation principles reducing the strong positive food effect of Compound A. By inclusion of Na taurocholate (NaTC) within the matrix of polymeric ASDs a significant improvement of the dissolution rate and the kinetic solubility in SIF were achieved. Transient supersaturated states of up to four orders of magnitude over the equilibrium solubility were obtained. Two ASDs were selected for further in vivo evaluation in dog. The first was a NaTC/Eudragit E based ASD meant to dissolve and release Compound A in the acidic environment of the stomach, where its solubility is the highest. The second relied on the release of Compound A in the neutral environment of the duodenum and jejunum by using an enterically dissolving polymer, HPMC-P. Releasing the API at the site of its putative absorption was an attempt to control supersaturation levels in the duodenum and to prevent portioning and thus dilution effects during transfer from the stomach. In fasted dogs, exposure from the NaTC/HPMC-P ASD was close to that of the reference Compound A formulation under fed conditions, which suggests an improved dissolution rate and kinetic solubility under fasted conditions (historical data). The exposure from the NaTC/Eudragit E ASD was twice as low as from the NaTC/HPMC-P ASD, and also lower compared to Compound A reference formulation, whereas in vitro the parachute effect of the NaTC/Eudragit E ASD was largely superior to that of the NaTC/HPMC-P ASD. A difference in the extend of the parachute could be related to differences in the thermodynamic activity of dissolved molecules from the two ASDs. Indeed, the high instability of the NaTC/HPMC-P ASD could stem from a high thermodynamic activity driving diffusion through membranes, whereas less instable solutions of NaTC/Eudragit E could indicate solubilization effects which often translate into a lower flux through the biological membrane. Additionally, the pH of the environment where dissolution takes place might be an important factor for absorption, and could also account for the difference in exposure from the two ASDs. The aim of this thesis was to explore how the intimate environment of weak, poorly soluble bases could be functionalized to improve dissolution rate and kinetic solubility. The investigations highlighted that the performance of enabling oral delivery formulations of weak bases in aqueous media can be enhanced at different levels. At one end initial dissolution rate of ASDs can be tailored by introducing hydrotropes or/and bile salts within the polymeric matrix of ASDs. Bile salts, when combined with appropriate polymers, had also a precipitation inhibition effect enabling the maintenance of supersaturation for a bio-relevant period of time. These results set the ground for further investigations to comprehend specific interactions between bile salts and APIs, and potentially polymers at the molecular level. It will be interesting to explore how such complex systems can be exploited in the formulation design of poorly water-soluble APIs. In addition, it was observed that the duration of supersaturation generated by salts/co-crystals can be extended by the pertinent selection of counterions or coformers. The in vivo relevance of these tunings remains to be evaluated, as translation from closed, in vitro systems to the highly dynamic gastrointestinal environment is not straightforward. A better understanding of the contribution of each kinetic stage (dissolution, supersaturation, and precipitation) and their interplay with physiological factors impacting absorption is essential to facilitate the design of formulations with improved pharmacokinetics.}, subject = {Kokristallisation}, language = {en} } @phdthesis{KraehenbuehlAmstalden2018, author = {Kr{\"a}henb{\"u}hl Amstalden, Maria Cecilia}, title = {Development of a bacterial responsive antibiotic release system}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163386}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {A major problem regarding public health is the emergence of antibiotic resistant bacterial strains, especially methicillin resistant Staphylococcus aureus (MRSA). This is mainly attributed to the unnecessary overuse of antimicrobial drugs by patients; however, one aspect that is often neglected is their untargeted mechanism of action, affecting not only the infection itself but also commensal bacteria which are often opportunistic pathogens causing many diseases as well. Therefore, our goal was to develop a bioresponsive antibiotic delivery system triggered by virulence factors. The designed system is comprised of a polymer to enhance its pharmacokinetic profile, a peptide cleavable linker, and the antibiotic agent itself. The bacterial protease aureolysin which is expressed by S. aureus during infections would cleave the linker and partially release the antibiotic which would be still attached to a remaining tetrapeptide. These would be cleaved by a group of proteases naturally present in plasma called aminopeptidases, finally releasing the compound. In the first part of this project, we searched for a suitable sequence to serve as a cleavable linker. It should be sensitive towards the target bacterial protease but not be cleaved by any human enzymes to guarantee the specificity of the system. Therefore, we synthesized three peptide sequences via Solid Phase Peptide Synthesis and incubated them with aureolysin as well as with many human matrix Metalloproteases. The analysis and quantification of enzymatic activity was monitored chromatographically (RP-HPLC). The plasminogen originated sequence was chosen since it was not sensitive towards MMPs, but cleaved by aureolysin. In the second part, we tried to incorporate the chosen peptide sequences as crosslinkers in hydrogel formulations. The purpose was to physically incorporate the antibiotic within the hydrogel, which would be released by the cleavage of those sequences and the consequent loosening the hydrogel net. For that purpose we used a commercially available hydrogel kit with a PVA matrix modified with maleimide, which allows a conjugation reaction with thiol functionalized crosslinkers. Three fluorophores were chosen to serve as antibiotic models and a diffusion assay was performed. Only the glomerular structured Green Fluorescent Protein (GFP) presented a low diffusion rate, thus the aureolysin release assays were performed only using this prototype. Assays showed that with a low hydrogel polymer concentration, the fluorophore either quickly diffused into the medium or was not released at all. The physical incorporation of the antibiotic within the hydrogel pores was therefore abolished as a suitable release approach. For a second attempt, we covalently bound a fluorophore to the linker, which was conjugated to the hydrogel matrix. The incubation with aureolysin and subsequent RP-HPLC analysis showed a peak with the same retention time correspondent to the fragment product after cleavage of the free linker. This is a proof that the concept of linking the peptide sequence to the antibiotic is a promising strategy for its bioresponsive release. Within the third part of this study, we analyzed the degradation of the resulted fragment after aureolysin activity and subsequent full release of the antibiotic by human aminopeptidases. We determined the concentration of those enzymes in human plasma and synthesized the fragment by conjugating the tetrapeptide sequence to aminofluorescein via EDC/NHS reaction. By incubating the construct with the lowest aminopeptidase concentration measured in plasma, the fluorophore was completely released within two hours, showing the efficacy of these enzymes as bioresponsive agents. The last part was the construction of the PEGylated linker-antibiotic. For this purpose we chose the tetracycline like antibiotic chelocardin (CHD) as our prototype. The conjugation of the linker- CHD to the polymer was performed by copper free click chemistry. The cleavage rate of the linker by aureolysin was very similar to the one obtained for the free peptide, indicating that the PEGylation does not interfere on the enzymatic activity. However, by trying to increase the loading ratio of chelocardin onto the polymer, we observed a very low cleavage rate for the system, indicating the formation of aggregates by those constructs. The designed system has proved to be a smart strategy for the delivery on demand of antibiotics in which the drug is only released by the presence of S. aureus during their virulent state.}, subject = {Arzneimittelforschung}, language = {en} } @phdthesis{SchuesslergebHecht2018, author = {Sch{\"u}ßler [geb. Hecht], Nina Kristin Petra}, title = {Novel formulation principles for bioavailability enhancement of poorly water-soluble and poorly permeable drugs}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162766}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Since four decades, high-throughput screenings have been conducted in drug discovery, fuelling the identification of potential new drug candidates. This approach, however, often promotes the detection of compounds with undesired physico-chemical properties like poor aqueous solubility or low membrane permeability. Indeed, dissolution and absorption of a drug are prerequisites for systemic exposure and therapeutic effects. Therefore, innovative strategies to optimize unfavourable performance of new drug candidates are in great demand in order to increase drug concentrations at the site of action whilst simultaneously reducing drug variability. In chapter I of this research work, hydrophobic ion pairing (HIP) is discussed as a promising strategy to improve the bioavailability of BCS class III compounds, which have high aqueous solubility and low permeability. The review points out the limitations of poorly absorbable drugs and details the approach of pairing these APIs with hydrophobic counterions. Apart from the motivation to tailor physico-chemical, biopharmaceutical and toxicological properties of BCS class III compounds, the hydrophobic ion pairing facilitates their formulation into drug delivery systems. Besides advantageous effects, disadvantages of the ion pair formation, such as the decreased aqueous solubility of the ions pair, are critically outlined. Finally, the review covers an overview of non-invasive administration routes permitted after ion pair formation, including oral/enteral, buccal, nasal, ocular and transdermal drug administration. Overall, the HIP approach offers substantial benefits regarding the bioavailability enhancement of BCS class III compounds. Chapter II concerns GHQ168 developed by Holzgrabe et al., a BCS class II compound characterized by low aqueous solubility and high permeability. GHQ168 was developed for the treatment of human African trypanosomiasis (HAT), a tropical disease for which novel active compounds are urgently needed. This lead compound was found to be very active against trypanosoma brucei brucei and trypanosoma brucei rhodesiense in cell culture assays, however, the low aqueous solubility prevented further preclinical development. To target this drawback, two different approaches were selected, including (I) the chemical modification and (II) the spray drying of GHQ168. The newly synthesized set of derivatives as well as the spray dried GHQ168 were subjected to a physico-chemical and microbiological characterization. It turned out that both approaches successfully improved aqueous solubility, however, for the derivatives of GHQ168 at the expense of activity. Furthermore, the pharmacokinetic parameters of GHQ168 and of the most active derivatives, GHQ242 and GHQ243, were evaluated. Elimination half-lives between 1.5 to 3.5 h after intraperitoneal administration and modest to strong serum albumin binding for GHQ243 (45\%) and GHQ168 (80\%) and very high binding (> 99\%) for GHQ242 were detected. The spray dried formulation of GHQ168, as well as GHQ242 and GHQ243 were investigated in two in vivo studies in mice infected with t. b. rhodesiense (STIB900), referred to as (I) stringent model and (II) early-treatment model. In the stringent model (2 applications/day on day 3-6 after infection) the mean survival duration (MSD) of mice treated with spray dried GHQ168 exceeded the MSD of the untreated control group (17 days versus 9 days), a difference that was statistically significant. In contrast, no statistical difference was observed for GHQ242 (14 days) and GHQ243 (12 days). GHQ168 was further assessed in the early-treatment model (2 applications/day on day 1-4 after infection) and again a statistically significant improvement of MSD (32 days (end of observation period) versus 7 days) was observed. Finally, exciting antitrypanosomal efficacy for the spray dried formulation of GHQ168 was demonstrated. NADPH oxidases (NOX) were found to be the main source of endothelial reactive oxygen species (ROS) formation. Chapter III reports on the formulation studies on triazolopyrimidine derivatives from the VAS library, a set of NADPH oxidase inhibitors. These were developed for the treatment of elevated ROS levels, which contribute to the development of cardiovascular diseases. Although in vitro results from numerous studies indicated promising efficacy and selectivity for the VAS-compounds, the low water solubility impeded the in vivo translation and further preclinical development. For this reason, three derivatives, VAS2870, VAS3947, and VAS4024 were physico-chemically characterized and VAS3947, the most soluble compound, was selected for further formulation studies. These approaches included (I) spray drying, (II) microemulsification and (III) complexation with cyclodextrins in order to develop formulations for oral and parenteral application. Solubility improvement of VAS3947 was successfully demonstrated for all preparations as expressed by supersaturation ratios in comparison to the solubility of the unformulated compound. For seven spray dried formulations, the ratio ranged from 3-9, and the ratio for four microemulsions was 8-19 after 120 min, respectively. The six cyclodextrin formulations achieved the highest supersaturation ratio between 3 and 174 after 20 hours. NMR measurements elucidated the inclusion of VAS3947 within the CD's cavity as well as the interaction with its outer surface. Ultimately, NOX inhibitors were opened for oral and parenteral administration for the first time. After successful solubility improvement of VAS3947, further investigations towards in vivo studies were conducted including stability studies with a focus on stability in solution and in plasma as presented in chapter IV. Furthermore, permeability and cytotoxicity assays were performed for the first time. It turned out that VAS3947 was instable in buffer and when exposed to light. Moreover, the compound showed decomposition in the presence of mouse microsomes and in human plasma. The VAS compounds contain an oxazol moiety linked to the triazolopyrimidine skeleton via a thioether. This structural element is responsible for the efficacy of the compound class, however it is susceptible to hydrolysis and to further degradation reactions. Moreover, VAS3947 harmed membrane integrity in the cell permeability assays and cytotoxicity investigations in HEK-293 and HEP-G2 cells revealed IC50 values in the same concentration range as reported for efficacy assays. Summarized, it was demonstrated that substances from the VAS library were no appropriate model compounds for ROS investigations nor suitable candidates for further preclinical development.}, subject = {L{\"o}slichkeit}, language = {en} } @phdthesis{Steiger2017, author = {Steiger, Christoph}, title = {Drug delivery of therapeutic gases - strategies for controlled and local delivery of carbon monoxide}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-141054}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {The isoenzyme heme oxygenase 1 (HO-1) is a key element for maintaining cellular homeostasis. Upregulated in response to cellular stress, the HO-1 degrades heme into carbon monoxide (CO), biliverdin, and Fe2+. By means of a local cell-protective feedback loop the enzyme triggers numerous effects including anti-oxidative, anti-apoptotic, and anti-inflammatory events associated with complex signalling patterns which are largely orchestrated by CO. Various approaches to mimic this physiological HO-1 / CO system aiming for a treatment of medical conditions have been described [1]. These preclinical studies commonly applied CO systemically via (i) inhalation or (ii) using CO-Releasing Molecules (CORMs) [2]. The clinical use of these approaches, however, is challenged by a lack of practicability and substantial safety issues associated with the toxicity of high systemic doses of CO that are required for triggering therapeutic effects. Therefore, one rational of this thesis is to describe and evaluate strategies for the local delivery of CO aiming for safe and effective CO therapeutics of tomorrow.}, subject = {Targeted drug delivery}, language = {en} } @phdthesis{HebronMwalwisi2018, author = {Hebron Mwalwisi, Yonah}, title = {Assessment of Counterfeit and Substandard Antimalarial Medicines using High Performance Thin Layer Chromatography and High Performance Liquid Chromatography}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145821}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Although the prevalence of substandard and counterfeit pharmaceutical products is a global problem, it is more critical in resource-constrained countries. The national medicines regulatory authorities (MNRA) in these countries have limited resources to cater for regular quality surveillance programmes aimed at ensuring that medicines in circulation are of acceptable quality. Among the reasons explained to hinder the implementation of these strategies is that compendial monographs are too complicated and require expensive infrastructures in terms of environment, equipment and consumables. In this study it was therefore aimed at developing simple, precise, and robust HPLC and HPTLC methods utilizing inexpensive, readily available chemicals (methanol and simple buffers) that can determine the APIs, other API than declared one, and which are capable of impurity profiling. As an outcome of this study, three isocratic and robust HPLC and two HPTLC methods for sulfadoxine, sulfalene, pyrimethamine, primaquine, artesunate, as well as amodiaquine have been developed and validated. All HPLC methods are operated using an isocratic elution mode which means they can be implemented even with a single pump HPLC system and standard C18 columns. The densitometric sulfadoxine/sulfalene and pyrimethamine method utilizes standard TLC plates as well as inexpensive, readily available and safe chemicals (toluene, methanol, and ethyl acetate), while that for artesunate and amodiaquine requires HPTLC plates as well as triethylamine and acetonitrile due to challenges associated with the analysis of amodiaquine and poorly the detectable artesunate. These HPTLC methods can be implemented as alternative to those requiring HPLC equipment e.g. in countries that already have acquired densitometer equipment. It is understood that HPTLC methods are less sensitive, precise and accurate when compared to HPLC methods, but this hindrance can easily be addressed by sending representative samples to third party quality control laboratories where the analytical results are verified using compendial HPLC methods on a regular basis. It is therefore anticipated that the implementation of these methods will not only address the problem of limited resources required for medicines quality control but also increase the number of monitored targeted antimalarial products as well as the number of resource- constrained countries participating in quality monitoring campaigns. Moreover, the experiences and skills acquired within this work will be applied to other API groups, e. g. antibiotics, afterwards.}, subject = {Instrumentelle Analytik}, language = {en} } @phdthesis{Kraehnke2019, author = {Kr{\"a}hnke, Martin}, title = {Chondrogenic differentiation of bone marrow-derived stromal cells in pellet culture and silk scaffolds for cartilage engineering - Effects of different growth factors and hypoxic conditions}, doi = {10.25972/OPUS-19299}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192999}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Articular cartilage lesions that occur upon intensive sport, trauma or degenerative disease represent a severe therapeutic problem. At present, osteoarthritis is the most common joint disease worldwide, affecting around 10\% of men and 18\% of women over 60 years of age (302). The poor self-regeneration capacity of cartilage and the lack of efficient therapeutic treatment options to regenerate durable articular cartilage tissue, provide the rationale for the development of new treatment options based on cartilage tissue engineering approaches (281). The integrated use of cells, biomaterials and growth factors to guide tissue development has the potential to provide functional substitutes of lost or damaged tissues (2,3). For the regeneration of cartilage, the availability of mesenchymal stromal cells (MSCs) or their recruitment into the defect site is fundamental (281). Due to their high proliferation capacity, the possibility to differentiate into chondrocytes and their potential to attract other progenitor cells into the defect site, bone marrow-derived mesenchymal stromal cells (BMSCs) are still regarded as an attractive cell source for cartilage tissue engineering (80). However, in order to successfully engineer cartilage tissue, a better understanding of basic principles of developmental processes and microenvironmental cues that guide chondrogenesis is required.}, subject = {Hypoxie}, language = {en} } @phdthesis{Gutmann2019, author = {Gutmann, Marcus}, title = {Functionalization of cells, extracellular matrix components and proteins for therapeutic application}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170602}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Glycosylation is a biochemical process leading to the formation of glycoconjugates by linking glycans (carbohydrates) to proteins, lipids and various small molecules. The glycans are formed by one or more monosaccharides that are covalently attached, thus offering a broad variety depending on their composition, site of glycan linkage, length and ramification. This special nature provides an exceptional and fine tunable possibility in fields of information transfer, recognition, stability and pharmacokinetic. Due to their intra- and extracellular omnipresence, glycans fulfill an essential role in the regulation of different endogenous processes (e.g. hormone action, immune surveillance, inflammatory response) and act as a key element for maintenance of homeostasis. The strategy of metabolic glycoengineering enables the integration of structural similar but chemically modified monosaccharide building blocks into the natural given glycosylation pathways, thereby anchoring them in the carbohydrate architecture of de novo synthesized glycoconjugates. The available unnatural sugar molecules which are similar to endogenous sugar molecules show minimal perturbation in cell function and - based on their multitude functional groups - offer the potential of side directed coupling with a target substance/structure as well as the development of new biological properties. The chemical-enzymatic strategy of glycoengineering provides a valuable complement to genetic approaches. This thesis primarily focuses on potential fields of application for glycoengineering and its further use in clinic and research. The last section of this work outlines a genetic approach, using special Escherichia coli systems, to integrate chemically tunable amino acids into the biosynthetic pathway of proteins, enabling specific and site-directed coupling with target substances. With the genetic information of the methanogen archaea, Methanosarcina barkeri, the E. coli. system is able to insert a further amino acid, the pyrrolysine, at the ribosomal site during translation of the protein. The natural stop-codon UAG (amber codon) is used for this newly obtained proteinogenic amino acid. Chapter I describes two systems for the integration of chemically tunable monosaccharides and presents methods for characterizing these systems. Moreover, it gives a general overview of the structure as well as intended use of glycans and illustrates different glycosylation pathways. Furthermore, the strategy of metabolic glycoengineering is demonstrated. In this context, the structure of basic building blocks and the epimerization of monosaccharides during their metabolic fate are discussed. Chapter II translates the concept of metabolic glycoengineering to the extracellular network produced by fibroblasts. The incorporation of chemically modified sugar components in the matrix provides an innovative, elegant and biocompatible method for site-directed coupling of target substances. Resident cells, which are involved in the de novo synthesis of matrices, as well as isolated matrices were characterized and compared to unmodified resident cells and matrices. The natural capacity of the matrix can be extended by metabolic glycoengineering and enables the selective immobilization of a variety of therapeutic substances by combining enzymatic and bioorthogonal reaction strategies. This approach expands the natural ability of extracellular matrix (ECM), like the storage of specific growth factors and the recruitment of surface receptors along with synergistic effects of bound substances. By the selection of the cell type, the production of a wide range of different matrices is possible. Chapter III focuses on the target-oriented modification of cell surface membranes of living fibroblast and human embryonic kidney cells. Chemically modified monosaccharides are inserted by means of metabolic glycoengineering and are then presented on the cell surface. These monosaccharides can later be covalently coupled, by "strain promoted azide-alkyne cycloaddition" (SPAAC) and/or "copper(I)-catalyzed azide-alkyne cycloaddition" (CuAAC), to the target substance. Due to the toxicity of the copper catalysator in the CuAAC, cytotoxicity analyses were conducted to determine the in vivo tolerable range for the use of CuAAC on living cell systems. Finally, the efficacy of both bioorthogonal reactions was compared. Chapter IV outlines two versatile carrier - spacer - payload delivery systems based on an enzymatic cleavable linker, triggered by disease associated protease. In the selection of carrier systems (i) polyethylene glycol (PEG), a well-studied, Food and Drug Administration approved substance and very common tool to increase the pharmacokinetic properties of therapeutic agents, was chosen as a carrier for non-targeting systems and (ii) Revacept, a human glycoprotein VI antibody, was chosen as a carrier for targeting systems. The protease sensitive cleavable linker was genetically inserted into the N-terminal region of fibroblast growth factor 2 (FGF-2) without jeopardizing protein activity. By exchanging the protease sensitive sequence or the therapeutic payload, both systems represent a promising and adaptable approach for establishing therapeutic systems with bioresponsive release, tailored to pre-existing conditions. In summary, by site-specific functionalization of various delivery platforms, this thesis establishes an essential cornerstone for promising strategies advancing clinical application. The outlined platforms ensure high flexibility due to exchanging single or multiple elements of the system, individually tailoring them to the respective disease or target site.}, subject = {Glykosylierung}, language = {en} } @phdthesis{Spieler2021, author = {Spieler, Valerie}, title = {Bioinspired drug delivery of interleukin-4}, doi = {10.25972/OPUS-19359}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193590}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Chronic inflammatory diseases such as rheumatoid arthritis, type 2 diabetes and cardiovascular diseases, are associated with the homeostatic imbalance of one of several physiological systems combined with the lack of spontaneous remission, which causes the disease to persevere throughout patients' lives. The inflammatory response relies mainly on tissue-resident, pro-inflammatory M1 type macrophages and, consequently, a chance for therapeutic intervention lies in driving macrophage polarization towards the anti-inflammatory M2 phenotype. Therefore, anti-inflammatory cytokines that promote M2 polarization, including interleukin-4 (IL4), have promising therapeutic potential. Unfortunately, their systemic use is hampered by a short serum half-life and dose-limiting toxicity. On the way towards cytokine therapies with superior safety and efficacy, this thesis is focused on designing bioresponsive delivery systems for the anti-inflammatory cytokine IL4. Chapter 1 describes how anti-inflammatory cytokines are tightly regulated in chronic, systemic inflammation as in rheumatoid arthritis but also in acute, local inflammation as in myocardial infarction. Both diseases show a characteristic progression during which anti-inflammatory cytokine delivery is of variable benefit. A conventional, passive drug delivery system is unlikely to release the cytokines such that the delivery matches the dynamic course of the (patho-)physiological progress. This chapter presents a blueprint for active drug delivery systems equipped with a 24/7 inflammation detector that continuously senses for matrix metalloproteinases (MMP) as surrogate markers of the disease progress and responds by releasing cytokines into the affected tissues at the right time and place. Because they are silent during phases of low disease activity, bioresponsive depots could be used to treat patients in asymptomatic states, as a preventive measure. The drug delivery system only gets activated during flares of inflammation, which are then immediately suppressed by the released cytokine drug and could prevent the steady damage of subclinical chronic inflammation, and therefore reduce hospitalization rates. In a first proof of concept study on controlled cytokine delivery (chapter 2), we developed IL4-decorated particles aiming at sustained and localized cytokine activity. Genetic code expansion was deployed to generate muteins with the IL4's lysine 42 replaced by two different unnatural amino acids bearing a side chain suitable for click chemistry modification. The new IL4 muteins were thoroughly characterized to ensure proper folding and full bioactivity. Both muteins showed cell-stimulating ability and binding affinity to IL4 receptor alpha similar to those of wild type IL4. Copper-catalyzed (CuAAC) and strain-promoted (SPAAC) azide-alkyne cycloadditions were used to site-selectively anchor IL4 to agarose particles. These particles had sustained IL4 activity, as demonstrated by the induction of TF-1 cell proliferation and anti-inflammatory M2 polarization of M-CSF-generated human macrophages. This approach of site-directed IL4 anchoring on particles demonstrates that cytokine-functionalized particles can provide sustained and spatially controlled immune-modulating stimuli. The idea of a 24/7 sensing, MMP driven cytokine delivery system, as described in the introductory chapter, was applied in chapter 3. There, we simulated the natural process of cytokine storage in the extracellular matrix (ECM) by using an injectable solution of IL4 for depot formation by enzyme-catalyzed covalent attachment to ECM components such as fibronectin. The immobilized construct is meant to be cleaved from the ECM by matrix-metalloproteinases (MMPs) which are upregulated during flares of inflammation. These two functionalities are facilitated by a peptide containing two sequences: a protease-sensitive peptide linker (PSL) for MMP cleavage and a sequence for covalent attachment by activated human transglutaminase FXIIIa (TGase) included in the injection mix for co-administration. This peptide was site-selectively conjugated to the unnatural amino acid at IL4 position 42 allowing to preserve wild type bioactivity of IL4. In vitro experiments confirmed the anticipated MMP response towards the PSL and TGase-mediated construct attachment to fibronectin of the ECM. Furthermore, the IL4-peptide conjugates were able to reduce inflammation and protect non-load bearing cartilage along with the anterior cruciate ligament from degradation in an osteoarthritis model in rabbits. This represents the first step towards a minimally invasive treatment option using bioresponsive cytokine depots with potential clinical value for inflammatory conditions. One of the challenges with this approach was the production of the cytokine conjugate, with incorporation of the unnatural amino acid into IL4 being the main bottleneck. Therefore, in chapter 4, we designed a simplified version of this depot system by genetically fusing the bifunctional peptide via a flexible peptide spacer to murine IL4. While human IL4 loses its activity upon C-terminal elongation, murine IL4 is not affected by this modification. The produced murine IL4 fusion protein could be effectively bound to in vitro grown extracellular matrix in presence of TGase. Moreover, the protease-sensitive linker was selectively recognized and cleaved by MMPs, liberating intact and active IL4, although at a slower rate than expected. Murine IL4 offers the advantage to evaluate the bioresponsive cytokine depot in many available mouse models, which was so far not possible with human IL4 due to species selectivity. For murine IL4, the approach was further extended to systemic delivery in chapter 5. To increase the half-life and specifically target disease sites, we engineered a murine IL4 variant conjugated with a folate-bearing PEG chain for targeting of activated macrophages. The bioactive IL4 conjugate had a high serum stability and the PEGylation increased the half-life to 4 h in vivo. Surprisingly, the folate moiety did not improve targeting in an antigen-induced arthritis (AIA) mouse model. IL4-PEG performed better in targeting the inflamed joint, while IL4-PEG-folate showed stronger accumulation in the liver. Fortunately, the modular nature of the IL4 conjugate facilitates convenient adaption of PEG chain length and the targeting moiety to further improve the half-life and localization of the cytokine. In summary, this thesis describes a platform technology for the controlled release of cytokines in response to inflammation. By restricting the release of the therapeutic to the site of inflammation, the benefit-risk ratio of this potent class of biologics can be positively influenced. Future research will help to deepen our understanding of how to perfectly combine cytokine, protease-sensitive linker and immobilization tag or targeting moiety to tackle different diseases.}, subject = {Targeted drug delivery}, language = {en} } @phdthesis{Miesler2021, author = {Miesler, Tobias Hans-Herbert}, title = {Development of diagnostic systems targeting the human tongue as a 24/7 available detector}, doi = {10.25972/OPUS-21449}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214490}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {To diagnose diseases correctly requires not only trained and skilled personnel, but also cost-intensive and complex equipment. Rapid tests can help with the initial evaluation, but result generation can also take up to several hours, depending on the test system. At this point, novel bioresponsive diagnostic systems are used, responding to the disease related shift of biological processes. They monitor changes in the biological environment and can react to them e.g. with the release of substances. This can be used in drug delivery formulations but can also help to diagnose diseases occurring in the oral cavity and inform patients of their state of health. The tongue is herein used as a 24/7 available detector. In section I of this work, the foundation for the development of these diagnostic systems was laid. A suitable flavoring agent was found, which is stable, can be coupled to the N-terminus of peptides and has a strongly conceivable taste. For the optimization of the protease-sensitive linker (PSL), an analytical system was established (PICS assay), which determines protease-specific cleavable amino acid sequences. In order to replace the PMMA particles previously required, an acetyl protecting group was introduced N-terminally as it protects peptides and proteins in the human body from degradation by human aminopeptidase. The new synthesized flavor was examined with a NIH cell line for cytotoxicity and with an electronic tongue setup for its bitterness. Section II deals with the structure of a system which detects severe inflammations in the oral cavity, e.g. PA. The established PICS assay was used to confirm the previously used PSL sequence in its application. Using solid phase peptide synthesis, 3 linkers were synthesized which respond to the elevated MMP concentrations present in inflammation. The resulting peptides were acetylated and coupled with HATU/DIPEA to the modified denatonium. Cutting experiments with MMPs over different concentration and time ranges confirmed the response of the diagnostic sensor to these enzymes. The obtained construct was examined for cell toxicity by WST assay. The masked bitterness of the sensors was confirmed by an electronic tongue setup. To address non-human proteases (and thereby infections), section III focuses on the establishment of detection system of a cysteine protease SpeB expressed by Streptococcus pyogenes. The in-house expression of SpeB using E. coli cells was established for this purpose. An analysis of the SpeB cleavage sites was performed using a PICS assay setup. Four constructs with different PSL were synthesized analogous to section II. Cleavage experiments with the expressed and purified SpeB showed a response of two constructs to the protease. In addition, a system was established to quantify the concentration of SpeB in human saliva using western blot technique with subsequent quantification. In section IV a compound was synthesized which can now be coupled to a flavor. The final coupled construct is able to detect present NA activity specifically from influenza A and B. The market for existing influenza diagnostics was explored to determine the need for such a system. A neuraminic acid was modified in positions 4 and 7 and protected in such a way that subsequent coupling via the hydroxy-group in position 2 was selectively possible. In summary, this results in a diagnostic platform that can be used anywhere, by anyone and at any time. This represents a new dimension in the rapid diagnosis of inflammations and bacterial or viral infections.}, subject = {Diagnostik}, language = {en} } @phdthesis{Wittmann2014, author = {Wittmann, Katharina}, title = {Adipose Tissue Engineering - Development of Volume-Stable 3-Dimensional Constructs and Approaches Towards Effective Vascularization}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-107196}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Adipose tissue defects and related pathologies still represent major challenges in reconstructive surgery. Based on to the paradigm 'replace with alike', adipose tissue is considered the ideal substitute material for damaged soft tissue [1-3]. Yet the transfer of autologous fat, particularly larger volumes, is confined by deficient and unpredictable long term results, as well as considerable operative morbidity at the donor and recipient site [4-6], calling for innovative treatment options to improve patient care. With the aim to achieve complete regeneration of soft tissue defects, adipose tissue engineering holds great promise to provide functional, biologically active adipose tissue equivalents. Here, especially long-term maintenance of volume and shape, as well as sufficient vascularization of engineered adipose tissue represent critical and unresolved challenges [7-9]. For adipose tissue engineering approaches to be successful, it is thus essential to generate constructs that retain their initial volume in vivo, as well as to ensure their rapid vascularization to support cell survival and differentiation for full tissue regeneration [9,10]. Therefore, it was the ultimate goal of this thesis to develop volume-stable 3D adipose tissue constructs and to identify applicable strategies for sufficient vascularization of engineered constructs. The feasibility of the investigated approaches was verified by translation from in vitro to in vivo as a critical step for the advancement of potential regenerative therapies. For the development of volume-stable constructs, the combination of two biomaterials with complementary properties was successfully implemented. In contrast to previous approaches in the field using mainly non-degradable solid structures for mechanical protection of developing adipose tissue [11-13], the combination of a cell-instructive hydrogel component with a biodegradable porous support structure of adequate texture was shown advantageous for the generation of volume-stable adipose tissue. Specifically, stable fibrin hydrogels previously developed in our group [14] served as cell carrier and supported the adipogenic development of adipose-derived stem cells (ASCs) as reflected by lipid accumulation and leptin secretion. Stable fibrin gels were thereby shown to be equally supportive of adipogenesis compared to commercial TissuCol hydrogels in vitro. Using ASCs as a safe source of autologous cells [15,16] added substantial practicability to the approach. To enhance the mechanical strength of the engineered constructs, porous biodegradable poly(ε caprolactone)-based polyurethane (PU) scaffolds were introduced as support structures and shown to exhibit adequately sized pores to host adipocytes as well as interconnectivity to allow coherent tissue formation and vascularization. Low wettability and impaired cell attachment indicated that PU scaffolds alone were insufficient in retaining cells within the pores, yet cytocompatibility and differentiation of ASCs were adequately demonstrated, rendering the PU scaffolds suitable as support structures for the generation of stable fibrin/PU composite constructs (Chapter 3). Volume-stable adipose tissue constructs were generated by seeding the pre-established stable fibrin/PU composites with ASCs. Investigation of size and weight in vitro revealed that composite constructs featured enhanced stability relative to stable fibrin gels alone. Comparing stable fibrin gels and TissuCol as hydrogel components, it was found that TissuCol gels were less resilient to degradation and contraction. Composite constructs were fully characterized, showing good cell viability of ASCs and strong adipogenic development as indicated by functional analysis via histological Oil Red O staining of lipid vacuoles, qRT-PCR analysis of prominent adipogenic markers (PPARγ, C/EBPα, GLUT4, aP2) and quantification of leptin secretion. In a pilot study in vivo, investigating the suitability of the constructs for transplantation, stable fibrin/PU composites provided with a vascular pedicle gave rise to areas of well-vascularized adipose tissue, contrasted by insufficient capillary formation and adipogenesis in constructs implanted without pedicle. The biomaterial combination of stable fibrin gels and porous biodegradable PU scaffolds was thereby shown highly suitable for the generation of volume-stable adipose tissue constructs in vivo, and in addition, the effectiveness of immediate vascularization upon implantation to support adipose tissue formation was demonstrated (Chapter 4). Further pursuing the objective to investigate adequate vascularization strategies for engineered adipose tissue, hypoxic preconditioning was conducted as a possible approach for in vitro prevascularization. In 2D culture experiments, analysis on the cellular level illustrated that the adipogenic potential of ASCs was reduced under hypoxic conditions when applied in the differentiation phase, irrespective of the oxygen tension encountered by the cells during expansion. Hypoxic treatment of ASCs in 3D constructs prepared from stable fibrin gels similarly resulted in reduced adipogenesis, whereas endothelial CD31 expression as well as enhanced leptin and vascular endothelial growth factor (VEGF) secretion indicated that hypoxic treatment indeed resulted in a pro-angiogenic response of ASCs. Especially the observed profound regulation of leptin production by hypoxia and the dual role of leptin as adipokine and angiogenic modulator were considered an interesting connection advocating further study. Having confirmed the hypothesis that hypoxia may generate a pro-angiogenic milieu inside ASC-seeded constructs, faster vessel ingrowth and improved vascularization as well as an enhanced tolerance of hypoxia-treated ASCs towards ischemic conditions upon implanatation may be expected, but remain to be verified in rodent models in vivo (Chapter 5). Having previously been utilized for bone and cartilage engineering [17-19], as well as for revascularization and wound healing applications [20-22], stromal-vascular fraction (SVF) cells were investigated as a novel cell source for adipose tissue engineering. Providing cells with adipogenic differentiation as well as vascularization potential, the SVF was applied with the specific aim to promote adipogenesis and vascularization in engineered constructs in vivo. With only basic in vitro investigations by Lin et al. addressing the SVF for adipose repair to date [23], the present work thoroughly investigated SVF cells for adipose tissue construct generation in vitro, and in particular, pioneered the application of these cells for adipose tissue engineering in vivo. Initial in vitro experiments compared SVF- and ASC-seeded stable fibrin constructs in different medium compositions employing preadipocyte (PGM-2) and endothelial cell culture medium (EGM-2). It was found that a 1:1 mixture of PGM-2 and EGM-2, as previously established for co-culture models of adipogenesis [24], efficiently maintained cells with adipogenic and endothelial potential in SVF-seeded constructs in short and long-term culture setups. Observations on the cellular level were supported by analysis of mRNA expression of characteristic adipogenic and endothelial markers. In preparation of the evaluation of SVF-seeded constructs under in vivo conditions, a whole mount staining (WMS) method, facilitating the 3D visualization of adipocytes and blood vessels, was successfully established and optimized using native adipose tissue as template (Chapter 6). In a subcutaneous nude mouse model, SVF cells were, for the first time in vivo, elucidated for their potential to support the functional assembly of vascularized adipose tissue. Investigating the effect of adipogenic precultivation of SVF-seeded stable fibrin constructs in vitro prior to implantation on the in vivo outcome, hormonal induction was shown beneficial in terms of adipocyte development, whereas a strong vascularization potential was observed when no adipogenic inducers were added. Via histological analysis, it was proven that the developed structures were of human origin and derived from the implanted cells. Applying SVF cells without precultivation in vitro but comparing two different fibrin carriers, namely stable fibrin and TissuCol gels, revealed that TissuCol profoundly supported adipose formation by SVF cells in vivo. This was contrasted by only minor SVF cell development and a strong reduction of cell numbers in stable fibrin gels implanted without precultivation. Histomorphometric analysis of adipocytes and capillary structures was conducted to verify the qualitative results, concluding that particularly SVF cells in TissuCol were highly suited for adipose regeneration in vivo. Employing the established WMS technique, the close interaction of mature adipocytes and blood vessels in TissuCol constructs was impressively shown and via species-specific human vimentin staining, the expected strong involvement of implanted SVF cells in the formation of coherent adipose tissue was confirmed (Chapter 7). With the development of biodegradable volume-stable adipose tissue constructs, the application of ASCs and SVF cells as two promising cell sources for functional adipose regeneration, as well as the thorough evaluation of strategies for construct vascularization in vitro and in vivo, this thesis provides valuable solutions to current challenges in adipose tissue engineering. The presented findings further open up new perspectives for innovative treatments to cure soft tissue defects and serve as a basis for directed approaches towards the generation of clinically applicable soft tissue substitutes.}, subject = {Tissue Engineering}, language = {en} } @phdthesis{Wiest2015, author = {Wiest, Johannes}, title = {Synthese und Charakterisierung neuer Ionischer Fl{\"u}ssigkeiten zur Verbesserung der Aufl{\"o}sungsrate und L{\"o}slichkeit eines schwer wasserl{\"o}slichen Wirkstoffes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121733}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Ionische Fl{\"u}ssigkeiten (engl. Ionic Liquids = IL) sind organische Salze mit einem Schmelzpunkt von unter 100 °C und bieten einen interessanten Ansatz um die orale Bioverf{\"u}gbarkeit von schlecht wasserl{\"o}slichen Arzneistoffen zu verbessern. Aufgrund seiner schlechten Wasserl{\"o}slichkeit wurde aus dem Wirkstoff BGG492 der Novartis AG eine Ionische Fl{\"u}ssigkeit (IL) mit dem sterisch anspruchsvollen Gegenion Tetrabutylphosphonium hergestellt. Die IL ist ein amorpher, glasartiger Feststoff mit einem Schmelzpunkt von 57 °C. Die freie S{\"a}ure (FS), das Kaliumsalz (BGG-K+) und die IL (siehe Abb. 69) wurden in festem Zustand mittels polarisationsmikroskopischen Aufnahmen, R{\"o}ntgen-Pulverdiffraktometrie, R{\"o}ntgenkristallstrukturanalysen, Infrarot-Spektroskopie und Festk{\"o}rper-NMR-Spektroskopie untersucht. Der ionische Charakter der IL in festem Zustand konnte mittels Bandenverschiebung der deprotonierten Sulfonamidgruppe im IR-Spektrum best{\"a}tigt werden. In der R{\"o}ntgenkristallstrukturanalyse konnte gezeigt werden, dass sich die Molek{\"u}le der FS in Schichten anordneten, in denen jedes Molek{\"u}l mit vier Nachbarmolek{\"u}len {\"u}ber Wasserstoffbr{\"u}cken verbunden war. Das BGG-K+ kristallisierte als Monohydrat. In dieser Kristallstruktur bildeten die Kaliumkationen in der bc-Ebene mit den BGG-Anionen ober- und unterhalb Schichten. Im Gegensatz zu der FS waren keine intermolekularen Wasserstoffbr{\"u}cken zu beobachten. Die 15N-Festk{\"o}rper-NMR-Spektren des BGG-K+ und der IL zeigten die gleiche chemische Verschiebung f{\"u}r den unsubstituierten Stickstoffes N-1' der Pyrazolgruppe und belegten somit ebenfalls die ionische Struktur der IL im festen Zustand. Die amorphe Struktur der IL wurde mittels R{\"o}ntgen-Pulverdiffraktometrie und Polarisationsmikroskop best{\"a}tigt und eine fl{\"u}ssigkristalline Phase konnte ausgeschlossen werden. Die IL zeigte im Vergleich zu der FS eine 700-fach schnellere Aufl{\"o}sungsrate J und eine signifikante Verl{\"a}ngerung der Dauer der {\"U}bers{\"a}ttigung in w{\"a}ssriger L{\"o}sung. Der sprunghafte Anstieg der Kon-zentration in L{\"o}sung („spring") und die Dauer der {\"U}bers{\"a}ttigung („parachute") wurden mittels photometrischen und potentiometrischen Titrationen untersucht. Mit Hilfe der NMR-Spektroskopie konnte der Mechanismus der {\"U}bers{\"a}ttigung aufgekl{\"a}rt werden. Das sterisch anspruchsvolle Gegenion Tetrabutylphosphonium verhinderte die Protonierung der deprotonierten Sulfonamidgruppe von BGG. In L{\"o}sung kam es zur Bildung von Aggregaten („Cluster"), in die sich das Gegenion teilweise einlagerte. Nach der Protonierung und der Bildung von Kristallisationskeimen pr{\"a}zipitierte die ungeladenen FS und der metastabile Zustand der {\"U}bers{\"a}ttigung („parachute") brach zusammen. Um den Einfluss der Struktur des Gegenions auf die Aufl{\"o}sungsrate und die Dauer der {\"U}bers{\"a}ttigung zu untersuchen, wurden ca. 40 Phosphonium- und Ammonium-Kationen synthetisiert. Die Schmelzpunkte der Phosphonium- und Ammonium-Salze wurden mittels dynamischer Differenzkalorimetrie (DSC) ermittelt. F{\"u}r das Phosphonium-Salz P3332OH-Bromid konnte eine enantiotrope Umwandlung der Modifikationen mittels temperaturabh{\"a}ngiger XRPD-Messungen best{\"a}tigt werden. Die Zelltoxizit{\"a}ts-Untersuchungen der Phosphonium- und Ammonium-Salze an humanen Leberzellen (HepG2), Nierenzellen (HEK 293T) und murinen Makro-phagenzellen (J774.1) zeigten, dass mit h{\"o}herer Lipophilie die Zelltoxizit{\"a}t zunahm. Polare Kationen zeigten keine Zytotoxizit{\"a}t (IC50 > 1000 µM). Die Zelltoxizit{\"a}t der Ammonium-Salze war im direkten Vergleich mit den Phosphonium-Salzen etwas geringer. Die synthetisierten Phosphonium- und Ammonium-Salze, die als Chloride-, Bromide- und Iodide vorlagen, wurden durch Anionenaustausch in Hydroxide umgewandelt. Die Ionischen Fl{\"u}ssigkeiten wurden in einer S{\"a}ure-Base-Reaktion mit der freien S{\"a}ure des BGG-Molek{\"u}ls und den Hydroxiden hergestellt. Der ionische Charakter konnte mittels Bandenverschiebung der deprotonierten Sulfonamidgruppe im IR-Spektrum best{\"a}tigt werden. Die Substanzen waren amorph (XRPD) und die Glas{\"u}bergangstemperaturen (DSC) bewegten sich f{\"u}r die Mono-Kationen im Bereich zwischen 40 °C - 97 °C, f{\"u}r Dikationen 81 °C - 124 °C und f{\"u}r Trikationen 124 °C - 148 °C. Damit erf{\"u}llten einige Substanzen die Definition einer Ionischen Fl{\"u}ssigkeit nicht (Smp. < 100 °C) und wurden daher als Niedrig-Gitter-Enthalpie-Salze (low lattice enthalpy salt = LLES) bezeichnet. Die ILs und LLES zeigten signifikante Unterschiede in der Aufl{\"o}sungsrate J, der {\"U}bers{\"a}ttigungszeit und der Wasserdampfsorption. In dieser Arbeit konnte gezeigt werden, dass allein durch die Auswahl des Gegenions wichtige Parameter f{\"u}r die orale Bioverf{\"u}gbarkeit gesteuert werden k{\"o}nnen. Durch diesen Ansatz war es m{\"o}glich, aus dem sehr schlecht wasserl{\"o}slichen Arzneistoff BGG492 Ionische Fl{\"u}ssigkeiten bzw. LLES herzustellen, die sich drastisch schneller aufl{\"o}sten und teilweise {\"u}ber mehrere Stunden {\"u}bers{\"a}ttigte L{\"o}sungen bildeten. Insgesamt zeigte sich, dass durch eine Zunahme der Polarit{\"a}t des Gegenions eine gr{\"o}ßere Aufl{\"o}sungsrate J und eine geringere Zelltoxizit{\"a}t erzielt werden konnten. Jedoch verringerte sich dadurch die Dauer der {\"U}bers{\"a}ttigung in L{\"o}sung und erh{\"o}hte die Hygroskopizit{\"a}t der ILs und LLES.}, subject = {Bioverf{\"u}gbarkeit}, language = {de} } @phdthesis{Schultz2015, author = {Schultz, Isabel}, title = {Therapeutic systems for Insulin-like growth factor-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119114}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {SUMMARY Insulin-like growth factor I (IGF-I) is a polypeptide with a molecular weight of 7.649 kDa and an anabolic potential. Thereby, IGF-I has a promising therapeutic value e.g. in muscle wasting diseases such as sarcopenia. IGF-I is mainly secreted by the liver in response to growth hormone (GH) stimulation and is rather ubiquitously found within all tissues. The effects of IGF-I are mediated by its respective IGF-I transmembrane tyrosine kinase receptor triggering the stimulation of protein synthesis, glucose uptake and the regulation of cell growth. The actions of IGF-I are modulated by six IGF binding proteins binding and transporting IGF-I in a binary or ternary complex to tissues and receptors and modulating the binding of IGF-I to its receptor. The nature of the formed complexes impacts IGF-I`s half-life, modulating the half-life between 10 minutes (free IGF-I) to 12 - 15 hours when presented in a ternary complex with IGF binding protein 3 and an acid labile subunit (ALS). Therefore, sustained drug delivery systems of free IGF-I are superficially seen as interesting for the development of controlled release profiles, as the rate of absorption is apparently and easily set slower by simple formulation as compared to the rapid rate of elimination. Thereby, one would conclude, the formulation scientist can rapidly develop systems for which the pharmacokinetics of IGF-I are dominated by the formulation release kinetics. However, the in vivo situation is more complex and as mentioned (vide supra), the half-life may easily be prolonged up to hours providing proper IGF-I complexation takes place upon systemic uptake. These and other aspects are reviewed in Chapter I, within which we introduce IGF-I as a promising therapeutic agent detailing its structure and involved receptors along with the resulting signaling pathways. We summarize the control of IGF-I pharmacokinetics in nature within the context of its complex system of 6 binding proteins to control half-life and tissue distribution. Furthermore, we describe IGF-I variants with modulated properties in vivo and originated from alternative splicing. These insights were translated into sophisticated IGF-I delivery systems for therapeutic use. Aside from safety aspects, the challenges and requirements of an effective IGF-I therapy are discussed. Localized and systemic IGF-I delivery strategies, different routes of administration as well as liquid and solid IGF-I formulations are reviewed. Effective targeting of IGF-I by protein decoration is outlined and consequently this chapter provides an interesting guidance for successful IGF-I-delivery. In Chapter II, we firstly outline the stability of IGF-I in liquid formulations with the intention to deliver the biologic through the lung and the impact of buffer type, sodium chloride concentration and pH value on IGF-I stability is presented. IGF-I integrity was preserved in histidine buffer over 4 months at room temperature, but methionine 59 oxidation (Met(o)) along with reducible dimer and trimer formation was observed in an acidic environment (pH 4.5) and using acetate buffer. Strong aggregation resulted in a complete loss of IGF-I bioactivity, whereas the potency was partly maintained in samples showing a slight aggregation and complete IGF-I oxidation. Atomization by air-jet or vibrating-mesh nebulizers yielded in limited Met(o) formation and no aggregation. The results of IGF-I nebulization experiments regarding aerosol output rate, mass median aerodynamic diameter and fine particle fraction were comparable with 0.9\% sodium chloride reference, approving the applicability of liquid IGF-I formulations for pulmonary delivery. In Chapter III we escalated the development to solid delivery systems designed for alveolar landing upon inhalation and by deploying trehalose and the newly introduced for pulmonary application silk-fibroin as carriers. Microparticles were produced using nano spray drying following analyses including IGF-I integrity, IGF-I release profiles and aerodynamic properties. In vitro transport kinetics of IGF-I across pulmonary Calu-3 epithelia were suggesting similar permeability as compared to IGF-I's cognate protein, insulin that has already been successfully administered pulmonary in clinical settings. These in vivo results were translated to an ex vivo human lung lobe model. This work showed the feasibility of pulmonary IGF-I delivery and the advantageous diversification of excipients for pulmonary formulations using silk-fibroin. Chapter IV focuses on an innovative strategy for safe and controllable IGF-I delivery. In that chapter we escalated the development to novel IGF-I analogues. The intention was to provide a versatile biologic into which galenical properties can be engineered through chemical synthesis, e.g. by site directed coupling of polymers to IGF-I. For this purpose we genetically engineered two IGF-I variants containing an unnatural amino acid at two positions, respectively, thereby integrating alkyne functions into the primary sequence of the protein. These allowed linking IGF-I with other molecules in a site specific manner, i.e. via a copper catalyzed azide-alkyne Huisgen cycloaddition (click reaction). In this chapter we mainly introduce the two IGF-I variants, detail the delivery concept and describe the optimization of the expression conditions of the IGF-I variants. In conclusion, we span from simple liquid formulations for aerolization through solid systems for tailored for maximal alveolar landing to novel engineered IGF-I analogues. Thereby, three strategies for advanced IGF-I delivery were addressed and opportunities and limitations of each were outlined. Evidence was provided that sufficiently stable and easy to manufacture formulations can be developed as typically required for first in man studies. Interestingly, solid systems - typically introduced in later stages of pharmaceutical development - were quite promising. By use of silk-fibroin as a new IGF-I carrier for pulmonary administration, a new application was established for this excipient. The demonstrated success using the ex vivo human lung lobe model provided substantial confidence that pulmonary IGF-I delivery is possible in man. Finally, this work describes the expression of two IGF-I variants containing two unnatural amino acids to implement an innovative strategy for IGF-I delivery. This genetic engineering approach was providing the fundament for novel IGF-I analogues. Ideally, the biologic is structurally modified by covalently linked moieties for the control of pharmacokinetics or for targeted delivery, e.g. into sarcopenic muscles. One future scenario is dicussed in the 'conclusion and outlook' section for which IGF-I is tagged to a protease sensitive linker peptide and this linker peptide in return is coupled to a polyethylenglykole (PEG) polymer (required to prolong the half-life). Some proteases may serve as proxy for sarcopenia such that protease upregulation in compromised muscle tissues drives cleavage of IGF-I from the PEG. Thereby, IGF-I is released at the seat of the disease while systemic side effects are minimized.}, subject = {Insulin-like Growth Factor I}, language = {en} } @phdthesis{Widmer2015, author = {Widmer, Toni}, title = {Lowering lattice forces in drug substance crystals to improve dissolution and solubility}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126232}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Lattice forces are based on the attraction between the single moieties of molecules. The strength of lattice forces has an impact on the solid state and related physical properties such as melting point, boiling point, vapor pressure solvation and solubility. For solvation to occur, energy is required to break the lattice forces attracting ions and molecules among themselves. The energy for breaking up the attraction between the molecules is gained from the energy released when ions or molecules of the lattice associate with molecules of the solvent. Solubility is therefore, directly linked to the energy which is required to break the lattice forces and the energy which is liberated by solvation of the molecules or ions. Based on this relation, the lattice forces in two acidic compounds and a neutral compound were subsequently lowered by different approaches with the intention to increase the solubility, supersaturation, and dissolution rate. The conversion to an ionic liquid and the embedding of the compound in a pH-sensitive matrix in an amorphous state were investigated with an acidic compound and its pro-drug. The tetrabutylphosphonium (TBPH) salt showed the most promising properties among the tested counter ions. It alters the properties of the compound from a highly crystalline physicochemical state to an amorphous readily soluble material showing supersaturation in a wider pH range and higher solubility than the sodium and potassium salts. A solid dispersion approach was developed in parallel. Solid dispersions with two different pH-sensitive polymers and different drug load were prepared by lyophilization to determine the miscibility of the compound and the polymer by differential scanning calorimetry (DSC). A miscibility of 50\% of the amorphous acid with the pH-sensitive Eudragit L100-55 matrix and a miscibility of 40\% with hydroxypropyl methylcellulose acetate succinate (HPMC-AS) was found. Both approaches, the TBPH salt and the solid dispersion based on the pH-sensitive Eudragit L100-55 were tested in vivo. The TBPH salt was dosed in a buffered solution to prevent precipitation in the acidic stomach pH. This resulted in BAV higher than the crystalline suspension but lower than the solid dispersion. There were no acute toxicology effects seen. Thus, TBPH was considered safe for further studies. The TBPH salts were very hygroscopic, sticky and prone to precipitation as free compound when exposed to low pH when simulating the passage through the stomach. Thus, the principle of the ionic liquid was combined with the principle of an amorphous solid dispersion. This mitigated the risk of precipitation of the TBPH salt during the passage of the stomach. Also delinquency upon open storage was improved by embedding the TBPH salt in a pH-sensitive polymer. Dissolution tests mimicking the pH gradient in the gastro intestinal tract confirmed the protective properties of the pH-sensitive polymer matrices against recrystallization at low stomach pH in vitro. Furthermore, supersaturation at pH ranges relevant in the intestines of preclinical species or humans was observed. The TBPH solid dispersion showed superior supersaturation behavior in vitro compared to the free acid in pH-sensitive matrix. However, equally increased bioavailability (BAV) was observed when the amorphous solid dispersion contained the free acid form or the TBPH salt. Absorption seemed to be so fast that the short in vitro supersaturation observed for the free from in pH-sensitive matrix was already sufficient for complete absorption within 15 - 30 minutes. This is in accordance with the short tmax of around 15 - 30 minutes after oral application of the low lattice force principles. The pharmacokinetic (PK) profile became the main focus of further optimization as the BAV was maximized already. Early maximal plasma concentration (tmax) went along with high maximal plasma concentration (Cmax) for the low lattice force principles. Central nervous system related side effects as consequence of the PK profile with such a high Cmax were likely to happen and therefore, the formulation principles were modified to maintain the doubled BAV and reduce the observed Cmax. Additionally, the compound showed a short half-life requiring a two times daily dose, which is suboptimal for a chronic treatment. The amorphous acid in pH-matrix showed a modified PK profile when dosed in a hydrogel but not in an oleo gel. Surprisingly, administration of the TBPH salt in pH-matrix suspended in oil showed a massive delay of the tmax to 8 hours and a reduction of Cmax by factor 2 - 3 with unchanged good BAV when administered as a suspension in oil without increased viscosity. TBPH salt solution with a high viscosity resulted in the same PK profile as when administered without increased viscosity. The animal model was changed from rat to dog. The dose was limited to 15 mg/dog since they reacted much more sensitively to the drug. BAV at this dose level was 100\% for the crystalline suspension already, thus the focus of this study was not increasing BAV but to achieve prolonged and/or delayed exposure using different formulation principles elaborated in rats before. An immediate release formulation of 3 mg was combined with a delayed/modified release principle containing 12 mg of the compound. An additional study arm was conducted with a remote controlled device programmed to deliver a first dose of 3 mg instantaneously after passing the stomach and a second dose of 12 mg when entering the caecum. The tmax remained short for all formulation principles and it seemed that delayed and modified release lead to BAV reduction. The modified PK profiles could not be translated to an oral dog model which endorsed the hypothesis of an absorption window; however, the in vitro results could be translated to a dog model for colonic absorption. A nanosuspension of the crystalline compound, the TBPH salt in pH-matrix and the TBPH salt of the pro-drug of the compound were administered rectally to determine colonic absorption. The nanosuspension showed exposure around the limit of quantification whereas the TBPH in pH-matrix showed 4\% BAV and the pro-drug as TBPH salt in pH-matrix resulted in 12\% BAV although the pro-drug is factor 3 less soluble. This was in line with the increased permeation of the pro-drug which was observed in the Caco2 experiments. The bioavailability was increased by using the low lattice force principles and validated the hypothesis for the acidic drug and its pro-drug in the colonic dog model. Chemical and physicochemical stability of the investigated solid dispersions was confirmed for at least 18 months at room temperature. Amorphous solid dispersions were investigated to lower lattice forces of a neutral molecule. Solid dispersions are well known from literature; however, they are not frequently used as principles for dosage forms due to limitations in physical stability and complex manufacturing processes. A viable formulation principle was developed for a neutral compound assuming that the stability of a solid dispersion with a drug load below the maximal miscibility will be better than one which exceeds the maximal miscibility. The dispersed and amorphous state of the neutral compound resulted in a higher energy level and chemical potential compared to a crystalline form implying that they are thermodynamically instable and sensitive to recrystallization. This was confirmed by the fast recrystallization of an amorphous solid dispersion made from HPMC with 50\% drug load which recrystallized within a few days. Solid dispersions with different drug loads in different polymers and in polymer mixtures were prepared by lyophilization. The miscibility of the compound and the polymer was determined by DSC as the miscibility is a surrogate for maximal stable drugload of the solid dispersion. HPMC was found to be miscible with 20\% compound confirming the instability of the 50\% HPMC solid dispersion observed earlier. Based on dosing needs, a miscibility/drug load of at least 30\% was mandatory because of the dosing requirements to dose less than 1500 mg of final formulation. This was considered as maximal swallowable volume for later clinical development. Thus, all systems with a miscibility higher or equal to 30\% drug in polymer were evaluated in an in vitro dissolution test and ranked in comparison with amorphous pure compound, crystalline compound and a 20\% drug load solid dispersion made from HPMC. The HPMC based solid dispersion which gave good exposure in previous in vivo experiments did not support the high drugload that was needed. Therefore, similar in vitro behavior of this solid dispersion should result in similar in vivo performance. The polyvinylpyrrolidone (PVP) based solid dispersions scored with high drug load and medium initial kinetic solubility. The Soluplus based solid dispersion offer lower drug load and slightly lower initial kinetic solubility, but showed an extended supersaturation. The 4 best performing systems were evaluated in rats. They resulted in a short Tmax of 15 minutes and BAV higher than 85\% indicating fast and complete absorption. The reference HPMC based solid dispersion with a drug load of 20\% showed 65\% BAV. This showed that higher drug loads were feasible and did not limit absorption in this animal model. Since the estimated human dose required a higher formulation density than obtained from lyophilization or spray drying, melt extrusion of the solid dispersion was considered to be the most adequate technology. The process temperature needed to be below 200 °C as this value represents the degradation temperature of the polymers. It was investigated by differential scanning calorimetry whether the compound can be mixed with the molten polymer. None of the polymers could dissolve the crystalline compound below the degradation point of the polymer. The temperature had to be increased to 260 °C until the compound was molten together to a monophasic system with polymer. This resulted in degradation of the polymers. Therefore, different plasticizers and small organic molecules with similar functional groups as the compound were investigated on their ability to reduce the melting point of the mixture of polymer and compound. Positive results were obtained with several small molecules. Based on a literature review, nicotinamide had the least concerning pharmaceutical activities and was chosen for further development. Solid dispersions with the same composition as the ones tested in rat were prepared with 9\% nicotinamide as softener. Extrusion without nicotinamide was not possible at 135 °C or at 170 °C whereas the addition of 9\% nicotinamide led to a homogenous extrudate when processed at 135 °C. The solid state of the extrudates was not molecularly dispersed but the compound was in a crystalline state. They could not reach the in vitro performance observed for the lyophilized solid dispersions with Soluplus or PVP derivatives. Nevertheless, the performances in the supersaturation assay were comparable to the HPMC based lyophilized solid dispersion. The Soluplus and PVP based crystalline extrudates were evaluated in a dog PK showing that the crystalline solid dispersion does not enable BAV higher than 90\% within 24 hours after application. In parallel, the hygroscopicity of the meltextrudates was investigated by DVS and the best performing system based on Kollidon VA64 was further optimized regarding the solid state after its extrusion. The minimal process temperature to obtain a fully amorphous solid dispersion was determined by hot stage X-ray powder diffraction analysis (XRPD) and confirmed by lab scale extrusion. Addition of 9\% nicotinamide lowered the process temperature from 220 °C (without nicotinamide) to 200 °C with nicotinamide. The minimal temperature for obtaining crystal free material was independent of the nicotinamide amount as soon as it exceeded 9\%. Lowering the process temperature with nicotinamide reduced the impurity levels from 3.5\% at 220 °C to 1.1\% at 200 °C. The fully amorphous extrudates performed now better in the in vitro supersaturation assay than the lyophilized amorphous HPMC solid dispersion and the crystalline extrudates which were extruded at 135 °C. The process was up-scaled to a pilot scale extruder with alternative screw designs increasing mechanical shear forces and mixing which enabled lower process temperatures. This resulted in a maximal process temperature of 195 °C when nicotinamide was present and 205 °C without nicotinamide. However, shorter process time and reduced process temperatures (compared to the lab scale equipment) resulted in impurity levels smaller than 0.5\% for both compositions and temperatures and made the nicotinamide obsolete. The amorphous extrudates from the pilot scale extruder performed better in vitro than the crystalline extrudates from the lab scale extruder and the lyophilized HPMC solid dispersion. A comparable PK profile of the HPMC solid dispersion and the amorphous melt extruded formulation principle was anticipated from these in vitro results. This was confirmed by the pharmacokinetic profile in dogs after oral administration of the final extruded solid dispersion formulation which was equivalent with the pharmacokinetic profile of the HPMC based solid dispersion formulation. The assumption that using a drug load below the miscibility prevents the solid dispersion from recrystallization was verified at least for a limited time by a stability test at elevated temperatures for 3 months showing no change in solid state. This indicates the opportunities of the low lattice forces approach, but also showed the importance of developing principles first assuring stable solid state, performance in vitro and in vivo, tailor them in a second step based on performance and combine them with technology such as melt extrusion as third step. If these steps are done in the context of clinical needs and quality it can rationalize the development of a solid dispersion and minimalize the formulation related risks regarding biopharmacy and stability.}, subject = {Arzneimittel}, language = {en} } @phdthesis{Puhl2015, author = {Puhl, Sebastian}, title = {Methods for protein crystal delivery: Exploring new techniques for encapsulation and controlled release}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126371}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {More and more newly registered drugs are proteins. Although many of them suffer from instabilities in aqueous media, the most common way of protein drug administration still is the injection of a solution. Numerous protein drugs require frequent administration, but suitable controlled release systems for proteins are rare. Chapter 1 presents current advances in the field of controlled delivery of particulate protein formulations. While the main focus lies on batch crystallized proteins, amorphous particulate proteins are also discussed in this work. The reason is that, on the one hand precipitated protein particles hold some of the advantages of crystalline proteins and on the other hand the physical state of the protein may simply be unknown for many drug delivery systems or semi-crystalline particles have been used. Crystallization and precipitations methods as well as controlled delivery methods with and without encapsulation in a polymeric delivery system are summarized and critically discussed. In chapter 2 a novel way of protein crystal encapsulation by electrospinning is introduced. Electrospinning of proteins has been shown to be challenging via the use of organic solvents, frequently resulting in protein unfolding or aggregation. Encapsulation of protein crystals represents an attractive but largely unexplored alternative to established protein encapsulation techniques because of increased thermodynamic stability and improved solvent resistance of the crystalline state. We herein explore the electrospinning of protein crystal suspensions and establish basic design principles for this novel type of protein delivery system. Poly-ε-caprolactone (PCL) is an excellent polymer for electrospinning and matrix-controlled drug delivery combining optimal processability and good biocompatibility. PCL was deployed as a matrix, and lysozyme was used as a crystallizing model protein. By rational combination of lysozyme crystals with a diameter of 0.7 or 2.1 μm and a PCL fiber diameter between 1.6 and 10 μm, release within the first 24 h could be varied between approximately 10 and 100\%. Lysozyme loading of PCL microfibers between 0.5 and 5\% was achieved without affecting processability. While relative release was unaffected by loading percentage, the amount of lysozyme released could be tailored. PCL was blended with poly(ethylene glycol) and poly(lactic-co-glycolic acid) to further modify the release rate. Under optimized conditions, an almost constant lysozyme release over 11 weeks was achieved. Chapter 3 takes on the findings made in chapter 2 and further modifies the properties of the nonwovens as protein crystal delivery system. Nonwoven scaffolds consisting of poly-ε-caprolactone (PCL), poly(lactic-co-glycolic acid) (PLGA) and polidocanol (PD), and loaded with lysozyme crystals were prepared by electrospinning. The composition of the matrix was varied and the effect of PD content in binary mixtures, and of PD and PLGA content in ternary mixtures regarding processability, fiber morphology, water sorption, swelling and drug release was studied. Binary PCL/PD blend nonwovens showed a PD-dependent increase in swelling of up to 30\% and of lysozyme burst release of up to 45\% associated with changes of the fiber morphology. Furthermore, addition of free PD to the release medium resulted in a significant increase of lysozyme burst release from pure PCL nonwovens from approximately 2\% to 35\%. Using ternary PCL/PD/PLGA blends, matrix degradation could be significantly improved over PCL/PD blends, resulting in a biphasic release of lysozyme with constant release over 9 weeks, followed by constant release with a reduced rate over additional 4 weeks. Based on these results, protein release from PCL scaffolds is improved by blending with PD due to improved lysozyme desorption from the polymer surface and PD-dependent matrix swelling. Chapter 4 gives deeper insight on lysozyme batch crystallization and shows the influences of the temperature on the precipitation excipients. Yet up to now protein crystallization in a pharmaceutical useful scale displays a challenge with crystal size and purity being important but difficult to control parameters. Some of these influences are being discussed here and a detailed description of crystallization methods and the achieved crystals are demonstrated. Therapeutic use of such protein crystals may require further modification of the protein release rate through encapsulation. Silk fibroin (SF) harvested from the cocoons of Bombyx mori is a well-established protein suitable for encapsulation of small molecules as well as proteins for controlled drug delivery. This novel polymer was deployed for as carrier for the model drug crystals. Lysozyme again was used as a crystallizable protein and the effect of process- as well as formulation parameters of batch crystallization on crystal size were investigated using statistical design of experiments. Lysozyme crystal size depended on temperature and sodium chloride and poly(ethylenglycol) concentration of precipitant solution. Under optimized conditions, lysozyme crystals in a size range of approximately 0.3 to 10 µm were obtained. Furthermore, a solid-in-oil-in-water process for encapsulation of lysozyme crystals into SF was developed. Using this process, coating of protein crystals with another protein was achieved for the first time. Encapsulation resulted in a significant reduction of dissolution rate of lysozyme crystals, leading to prolonged release over up to 24 hours.}, subject = {Kontrollierte Wirkstofffreisetzung}, language = {en} } @phdthesis{Balk2015, author = {Balk, Anja}, title = {Ionic liquids of active pharmaceutical ingredients: A novel platform addressing solubility challenges of poorly water soluble drugs}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121925}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Starting in the late 1990s ionic liquids (ILs) gained momentum both in academia as well as industry. ILs are defined as organic salts with a melting point below 100 °C. Active pharmaceutical ingredients (APIs) may be transferred into ILs by creating salts with a bulky counterion with a soft electron density. ILs have demonstrated the potential to tune important pharmaceutical features such as the solubility and the dissolution rate, particularly addressing the challenge of poor water soluble drugs (PWSD). Due to the tunability of ILs, modification of physico-chemical properties of APIs may be envisioned without any modifications of the chemical structure. In the first chapter the potential as well as the limitation of ILs are discussed. The chapter commences with an overview of preparation and characterization of API-ILs. Moreover, examples for pharmaceutical parameters are presented which may be affected by IL formation, including the dissolution rate, kinetic solubility or hygroscopicity as well as biopharmaceutical performance and toxicology. The impact of IL formation on those pharmaceutically relevant features is highlighted, resulting in a blueprint for a novel formulation concept to overcome PWSD challenges without the need for structural changes of the API. Within the second chapter the IL concept is detailed for one specific API - counterion combination. A poorly water soluble acidic API against migraine attacks was transformed into an IL in an effort to minimize the time to maximum plasma concentration (tmax) and optimize the overall bioavailability. These studies were conducted in parallel to a prodrug of the API for comparison of the IL strategy versus a strategy involving modification of the API's structure. A significantly longer duration of API supersaturation and a 700 fold faster dissolution rate of the IL in comparison to the free acid were obtained and the underlying mechanism was elucidated. The transepithelial absorption was determined using Caco-2 cell layers. For the IL about 3 times more substance was transported in comparison to the prodrug when substances were applied as suspensions, despite the higher permeability of the prodrug, as increased solubility of the IL exceeded this effect. Cytotoxicity of the counterion was assessed in hepatic, renal and macrophage cell lines, respectively, and IC50 values were in the upper µM / lower mM range. The outcome of the study suggested the IL approach instrumental for tuning biopharmaceutical properties, without structural changes of the API as required for preparation of prodrugs. Thus the toolbox for formulation strategies of poorly water soluble drugs could be extended by an efficient concept. The third chapter focuses on the effect of different counterions on the physico-chemical properties of an API-IL, in particular to overcome the challenge of poor water solubility. Therefore, the same poorly water soluble acidic API against migraine attacks mentioned above was combined with 36 counterions resulting in ILs and low lattice enthalpy salts (LLES). Depending on the counterions, different dissolution rates, durations of supersaturation and hygroscopicities were obtained and release profiles could be tailored from immediate to sustained release. Besides, in vitro the cytotoxicity of the counterions was assessed in three cell lines. Using molecular descriptors such as the number of hydrophobic atoms, the graph theoretical diameter and the number of positive charges of the counterion, the dissolution rate, supersaturation and hygroscopicity as well as the cytotoxicity of counterions could be adequately modeled, rendering it possible to predict properties of new LLESs. Within the forth chapter different poorly water soluble APIs were combined with the counterion tetrabutylphosphonium (TBP) studying the impact on the pharmaceutical and physical properties of the APIs. TBP-ILs and low lattice enthalpy salts were prepared of the acidic APIs Diclofenac, Ibuprofen, Ketoprofen, Naproxen, Sulfadiazine, Sulfamethoxazole and Tolbutamide. NMR and IR spectroscopy, DSC, XRPD, DVS and dissolution rate measurements, release profiles and saturation concentration measurements were used to characterize the free acids and TBP salts as compared to the corresponding sodium salts. The TBP salts as compared to the free acids displayed lower melting points and glass transition temperatures and up to 1000 times higher dissolution rates. The increase in the dissolution rate directly correlated with the salts' hygroscopicity, an aspect which is critically discussed in terms of pharmaceutical translation challenges. In summary TBP ILs of solid salts were proved instrumental to approach the challenge of poor water solubility. The outcome profiled tailor-made counterions as a powerful formulation strategy to address poor water solubility, hence bioavailability and ultimately therapeutic potential of challenging APIs. In summary, a plethora of ILs and LLESs were prepared by combination of different acidic APIs and counterions. The IL and LLESs concept was compared to conventional salt and prodrug strategies. By choice of the counterion, biopharmaceutical relevant parameters were deliberately modified and release profiles were tuned ranging from immediate to prolonged release. The impact of distinct structural counterion features controlling the dissolution, supersaturation, hygroscopicity and counterion cytotoxicity were identified, correlations were presented and predictive models were built. ILs and LLESs could be proven to be a powerful concept for the formulation of poorly water soluble acidic APIs.}, subject = {Arzneimittel}, language = {en} } @phdthesis{Saedtler2021, author = {Saedtler, Marco}, title = {Pharmaceutical formulation strategies for novel antibiotic substances utilizing salt formation and two- and three-dimensional printing techniques}, doi = {10.25972/OPUS-21978}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-219784}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Salt formation is a routinely used strategy for poorly water-soluble drugs and traditionally performed with small inorganic counterions. High energy crystal lattices as well as effects on the local pH within the aqueous boundary layer during dissolution drive the increased dissolution rate and apparent solubility. Ionic liquids however, by definition low melting ionic salts with often large organic counterions, combine an increased dissolution rate with solubilization of the drug by the counterion itself. Long lasting supersaturation profiles of increased kinetic solubility were reported for several drugs formulated as ionic liquids increasing their overall bioavailability. Furthermore, aggregation and micellization between highly lipophilic compounds and amphiphilic bile acids was described before, demonstrating the capabilities of the human body itself to utilize solubilization of poorly water-soluble compounds. Development of novel counterions not only tailoring the desired physicochemical properties e.g. dissolution rate of the parent drug but adding - in a best-case scenario synergistic - pharmacological activity has been driven forward in the last years. However, salt formation can only be applied for ionizable i.e. acidic or basic compounds. While co-crystals can be used as a nonionized alternative, their formation is not always successful leading to an urgent need for other formulation strategies. In these lines, development of 2D and 3D printing techniques has been ongoing for the last decades and their pharmaceutical application has been demonstrated. The versatile nature and commercial availability allow a decentralized production further elaborating this technique for a highly flexible and patient-oriented supply with medication. This thesis focuses on the theoretical background and potential application of salt formation in the pharmaceutical development of a drug candidate. The first section presents the current knowledge and state of the art in preparation of low melting ionic liquids i.e. salts and is translated to the in vitro investigation of molecular interaction between the poorly water-soluble drug imatinib and components of the human intestinal fluid in the second section. Development of novel antibiotic counterions and assessment of their potential use in pharmaceutical formulations with fluoroquinolones is described in the last two sections. Chapter I describes the application of low melting ionic liquids in pharmaceutical formulation and details their development in the last two decades from versatile organic solvents in chemical synthesis towards amorphous strategies for drug delivery. The chapter gives a general overview on molecular structure and physicochemical properties of several drug containing ionic liquids and details the mechanisms which attribute to a typically fast dissolution, increased aqueous solubility as well as enhanced permeation which was reported in several publications. Chapter II translates the increased aqueous solubility of drugs by an organic counterion to the human gastrointestinal tract with taurocholate and lecithin as main drivers for the solubilization of highly lipophilic and poorly water-soluble drugs. Investigation of the interaction of imatinib - a poorly water-soluble weak base - with fasted- and fed state simulated intestinal fluids revealed a complex interplay between the components of the intestinal fluid and the drug. Mixed vesicles and micelles were observed in concentration dependent aggregation assays and revealed differences in their size, molecular arrangement as well as composition, depending on the tested drug concentration. Overall, the study outlines the effective interaction of weakly basic drugs with taurocholate and lecithin to minimize recrystallization during intestine passage finally leading to favorable supersaturation profiles. Chapter III focuses on the development of novel antibiotic counterions which potentially move the evolution of ionic liquids from a pharmaceutical salt with tailored physicochemical properties to a synergistic combination of two active pharmaceutical ingredients. The natural occurring anacardic acid derived from the cashew nut shell inspired a series of antibacterial active acidic compounds with increasing alkyl chain length. Their physicochemical properties, antibacterial activity, bacterial biofilm inhibition and cytotoxicity were detailed and in vivo activity in a Galleria mellonella model was assessed. This group of anacardic acid derivatives is synthetically accessible, easily modifiable and yielded two compounds with favorable activity and physicochemical profile for further drug development. Chapter IV outlines the potential application of anacardic acid derivatives in pharmaceutical formulations by salt formation with fluoroquinolone antibiotics as well as novel techniques such as 2D/3D printing for preparation of drug imprinted products. Despite anacardic acid derivatives demonstrated promising physicochemical properties, salt formation with fluoroquinolone antibiotics was not feasible. However, 2D/3D printed samples with anacardic acid derivative alone or in combination with ciprofloxacin demonstrated physical compatibility between drug and matrix as well as antibacterial activity against three S. aureus strains in an agar diffusion assay. Conclusively, drug printing can be applied for the herein tested compounds, but further process development is necessary. In summary, preparation of low melting ionic liquids, salts or co-crystals is an appropriate strategy to increase the aqueous solubility of poorly water-soluble drugs and tailor physicochemical properties. The counterion itself solubilizes the drug and furthermore potentially interferes with the complex micellar environment in the human intestine. However, salt formation as routinely used formulation strategy is not feasible in every case and development of alternative techniques is crucial to hurdle challenges related to unfavorable physicochemical properties. The outlined techniques for 2D/3D drug printing provide versatile production of drug products while extending the design space for novel drug development.}, subject = {L{\"o}slichkeit}, language = {en} } @phdthesis{Guentzel2022, author = {G{\"u}ntzel, Paul Mathias}, title = {Bioinspired Ion Pairs Transforming Poorly Water-soluble Compounds into Protic Ionic Liquids and Deep Eutectic Solvents}, doi = {10.25972/OPUS-21980}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-219806}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Microbial, mammalian and plant cells produce and contain secondary metabolites, which typically are soluble in water to prevent cell damage by crystallization. The formation of ion pairs, e.g. with carboxylic acids or mineral acids, is a natural blueprint to keep basic metabolites in solution. It was aimed at showing whether the mostly large carboxylates form soluble protic ionic liquids (PILs) with basic natural products resulting in enhanced aqueous solubility. Furthermore, their supramolecular pattern in aqueous solution was studied. Thereby, naturally occurring carboxylic acids were identified being appropriate counterions for natural basic compounds and facilitate the formation of PILs with their beneficial characteristics, like improved dissolution rate and enhanced apparent solubility.}, subject = {Ionic Liquids}, language = {en} } @phdthesis{Kutscher2016, author = {Kutscher, Marika}, title = {Novel Approaches to Antimicrobial Therapy of Pneumonia using Antibiotics and Therapeutic Antibodies}, edition = {1. Aufl.}, publisher = {Verlag Dr. Hut}, address = {M{\"u}nchen}, isbn = {978-3-8439-2784-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-138475}, school = {Universit{\"a}t W{\"u}rzburg}, pages = {176}, year = {2016}, abstract = {Nosocomial pneumonia is mostly caused by methicillin-resistant Staphylococcus aureus (MRSA). However, the standard antibiotic therapy is affected by increasing emergence of bacterial resistance. Therefore, novel therapeutic options are in high demand. New antimicrobial agents alone cannot handle the problem of increasing bacterial resistance but innovative drug delivery strategies and fast identification of infection causing pathogens are required to diminish bacterial resistance development. A very promising approach to improve the therapy of pneumonia is presented by local drug delivery to the lung. This application method enables high local drug concentrations in the lung leading to shorter application of antibiotics and hence reduces the risk of resistance development. Furthermore, the systemic concentration is lowered reducing the emergence of adverse effects. Therefore, in this thesis several approaches to improve the therapy of MRSA pneumonia are studied. One approach to achieve an efficient local delivery of antibiotics are nano-sized drug delivery systems which enable the nebulization of poorly-soluble antibiotics and can lead to even higher local drug concentrations due to their small size since nanoparticles improve mucus penetration and decrease phagocytosis by alveolar macrophages. Here, an analytical setup was developed that facilitates the identification of optimal preparation conditions for drug polyelectrolyte nanoplexes. Another promising approach to support antimicrobial therapy of pneumonia is presented by antibody-based immunotherapy. Since the stability of the antibody and hence its therapeutic activity are endangered during production, transport, storage, and application, a stabilizing formulation was developed for hUK-66, an antibody targeting surface antigens of S. aureus. Furthermore, nebulization of this formulated monoclonal antibody was studied to enable local application. Finally, the immunotherapeutic efficacy of the nebulized hUK-66 formulation was investigated in an animal in vivo study. Furthermore, rapid identification of the infection triggering pathogen is very important. The selective detection of S. aureus was achieved using optical planar Bragg grating sensors functionalized with hUK-66. In addition, the reusability of this system was studied applying a surface functionalization based on the cross-linker SPDP which enables a reversible fixation of the antibody.}, subject = {Lungenentz{\"u}ndung}, language = {en} } @phdthesis{Rossi2017, author = {Rossi, Angela Francesca}, title = {Development of functionalized electrospun fibers as biomimetic artificial basement membranes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137618}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {The basement membrane separates the epithelium from the stroma of any given barrier tissue and is essential in regulating cellular behavior, as mechanical barrier and as structural support. It further plays an important role for new tissue formation, homeostasis, and pathological processes, such as diabetes or cancer. Breakdown of the basement membrane is believed to be essential for tumor invasion and metastasization. Since the basement membrane is crucial for many body functions, the development of artificial basement membranes is indispensable for the ultimate formation of engineered functional tissue, however, challenging due to their complex structure. Electrospinning enables the production of fibers in the nano- or microscale range with morphological similarities to the randomly orientated collagen and elastic fibers in the basement membrane. However, electrospun fibers often lack the functional similarity to guide cells and maintain tissue-specific functions. Hence, their possible applications as matrix structure for tissue engineering are limited. Herein, the potential of polyester meshes, modified with six armed star-shaped pre-polymers and cell-adhesion-mediating peptides, was evaluated to act as functional isotropic and bipolar artificial basement membranes. Thereby, the meshes were shown to be biocompatible and stable including under dynamic conditions, and the degradation profile to correlate with the rate of new tissue formation. The different peptide sequences did not influence the morphology and integrity of the fibers. The modified membranes exhibited protein-repellent properties over 12 months, indicating the long-term stability of the cross-linked star-polymer surfaces. Cell culture experiments with primary fibroblasts and a human keratinocyte cell line (HaCaT) revealed that cell adhesion and growth strongly depends on the peptide sequences and their combinations employed. HaCaT cells grew to confluence on membranes modified with a combination of laminin/collagen type IV derived binding sequences and with a combination of fibronectin/laminin/collagen type IV derived peptide sequences. Fibroblasts strongly adhered to the fibronectin derived binding sequence and to membranes containing a combination of fibronectin/laminin/collagen type IV derived peptide sequences. The adhesion and growth of fibroblasts and HaCaT cells were significantly reduced on membranes modified with laminin, as well as collagen IV derived peptide sequences. HaCaT cells and fibroblasts barely adhered onto meshes without peptide sequences. Co-culture experiments at the air-liquid interface with fibroblasts and HaCaT cells confirmed the possibility of creating biocompatible, biofunctional and biomimetic isotropic and bipolar basement membranes, based on the functionalized fibers. HaCaT cells grew in several layers, differentiating towards the surface and expressing cytokeratin 10 in the suprabasal and cytokeratin 14 in the basal layers. Migration of fibroblasts into the electrospun membrane was shown by vimentin staining. Moreover, specific staining against laminin type V, collagen type I, III, IV and fibronectin illustrated that cells started to remodel the electrospun membrane and produced new extracellular matrix proteins following the adhesion to the synthetic surface structures. The culturing of primary human skin keratinocytes proved to be difficult on electrospun fibers. Cells attached to the membrane, but failed to form a multilayered, well-stratified, and keratinized epidermal layer. Changing the fiber composition and fixation methods did not promote tissue development. Further investigations of the membrane demonstrated the tremendous influence of the pore size of the membrane on epithelial formation. Furthermore, primary keratinocytes reacted more sensitive to pH changes in the medium than HaCaT cells did. Since primary keratinocytes did not adequately develop on the functionalized meshes, polycarbonate membranes were used instead of electrospun meshes to establish oral mucosa models. The tissue-engineered models represented important features of native human oral mucosa. They consisted of a multilayered epithelium with stratum basale, stratum spinosum, stratum granulosum, and stratum corneum. The models formed a physical barrier and the expression of characteristic cell markers was comparable with that in native human oral mucosa. The results from the ET-50 assay and the irritation study reflected the reproducibility of the tissue equivalents. Altogether, electrospinning enables the production of fibers with structural similarity to the basement membrane. Incorporating extracellular matrix components to mimic the functional composition offers a safe and promising way to modify the fibers so that they can be used for different tissue engineering applications. The resultant biomimetic membranes that can be functionalized with binding sequences derived from widely varying proteins can be used as a toolbox to study the influence of isotropic and bipolar basement membranes on tissue formation and matrix remodeling systematically, with regards to the biochemical composition and the influence and importance of mono- and co-culture. The oral mucosa models may be useful for toxicity and permeation studies, to monitor the irritation potential of oral health care products and biomaterials or as a disease model.}, subject = {Tissue Engineering}, language = {en} } @phdthesis{Memmel2015, author = {Memmel, Elisabeth}, title = {Vom Glycochip zur lebenden Zelle - Studien zu Infektions- und Tumor-relevanten Kohlenhydrat-Erkennungsprozessen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115825}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Kohlenhydrat-Protein-Wechselwirkungen sind h{\"a}ufig entscheidend beteiligt an verschiedenen einer Infektion oder malignen Erkrankung zugrunde liegenden molekularen Erkennungs-prozessen, die zu Adh{\"a}sion, Zell-Zell-Interaktion sowie Immunreaktion und -toleranz f{\"u}hren. Trotz der hohen Relevanz f{\"u}r Diagnostik und Therapie dieser Erkrankungen sind die betreffenden Strukturen und Mechanismen bisher nur ungen{\"u}gend untersucht und verstanden. Ziel dieser stark interdisziplin{\"a}r angelegten Arbeit war es daher, Methoden der Fachbereiche Chemie und Pharmazie, Biologie und Medizin, aber auch Physik zu kombinieren, um Kohlenhydraterkennungsprozesse im Detail zu untersuchen und auf dieser Basis strukturell neuartige diagnostische und therapeutische Anwendungen zu entwerfen. Die hochkomplexe Zusammensetzung einer Zelloberfl{\"a}che wurde zun{\"a}chst auf ihren Glycan-anteil reduziert und stark vereinfacht auf der Oberfl{\"a}che sogenannter Glycochips imitiert. Die verwendeten Systeme auf Basis einer Gold- bzw. Glasoberfl{\"a}che erg{\"a}nzen sich optimal in ihrer Eignung f{\"u}r komplement{\"a}re analytische Methoden wie Massenspektrometrie sowie quantifizierbare Fluoreszenzspektroskopie. Der {\"U}bergang auf die lebende Zelloberfl{\"a}che gelang mit Hilfe des Metabolic Glyco-engineering, das die kovalente Pr{\"a}sentation definierter Motive durch eine Cycloaddition zwischen zwei bioorthogonalen Reaktionspartnern (z.B. Azid und Alkin) erm{\"o}glicht. Auf diese Weise wurden in Zusammenarbeit mit der Arbeitsgruppe Sauer (Universit{\"a}t W{\"u}rzburg) zun{\"a}chst die Dichte und Verteilung verschiedener Oberfl{\"a}chenglycane auf humanen Zellen mittels hochaufl{\"o}sender Fluoreszenzmikroskopie (dSTORM) bestimmt. Diese Parameter zeigten im Modell des Glycochips einen entscheidenden Einfluss auf Bindungsereignisse und multivalente Erkennung und z{\"a}hlen auch auf nat{\"u}rlichen Zelloberfl{\"a}chen - in engem Zusammenhang mit der lateralen und temporalen Dynamik der Motive - zu den wichtigen Faktoren molekularer Erkennungsprozesse. Die gezielte Modifikation zellul{\"a}rer Oberfl{\"a}chenglycane eignet sich aber auch selbst als Methode zur Beeinflussung molekularer Wechselwirkungsprozesse. Dies wurde anhand des humanpathogenen Bakteriums S. aureus gezeigt, dessen Adh{\"a}sion auf Epithelzellen der Blasenwand durch Metabolic Glycoengineering partiell unterdr{\"u}ckt werden konnte. In einem erg{\"a}nzenden Projekt wurden zwei potentielle Metabolite eines konventionellen Antibiotikums - des Nitroxolins - mit bakteriostatischer sowie antiadh{\"a}siver Wirksamkeit dargestellt. Diese dienten als Referenzsubstanzen zur Verifizierung der postulierten Struktur der Derivate, werden aber auch selbst auf ihr Wirkprofil hin untersucht. Gleichzeitig stehen sie zusammen mit der Grundverbindung zudem als Referenz f{\"u}r die Wirkst{\"a}rke potentieller neu entwickelter Antiadh{\"a}siva zur Verf{\"u}gung.}, subject = {Microarray}, language = {de} } @phdthesis{Werner2015, author = {Werner, Vera}, title = {Pharmaceutically relevant protein-protein interactions for controlled drug delivery}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117409}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Protein-protein interactions play a crucial role in the development of drug delivery devices for the increasingly important biologicals, including antibodies, growth factors and cytokines. The understanding thereof might offer opportunities for tailoring carriers or drug proteins specifically for this purpose and thereby allow controlled delivery to a chosen target. The possible applications range from trigger-dependent release to sustained drug delivery and possibly permanently present stimuli, depending on the anticipated mechanism. Silk fibroin (SF) is a biomaterial that is suitable as a carrier for protein drug delivery devices. It combines processability under mild conditions, good biocompatibility and stabilizing effects on incorporated proteins. As SF is naturally produced by spiders and silkworms, the understanding of this process and its major factors might offer a blueprint for formulation scientists, interested in working with this biopolymer. The natural process of silk spinning covers a fascinating versatility of aggregate states, ranging from colloidal solutions through hydrogels to solid systems. The transition among these states is controlled by a carefully orchestrated process in vivo. Major players within the natural process include the control of spatial pH throughout passage of the silk dope, the composition and type of ions, and fluid flow mechanics within the duct, respectively. The function of these input parameters on the spinning process is reviewed before detailing their impact on the design and manufacture of silk based drug delivery systems (DDS). Examples are reported including the control of hydrogel formation during storage or significant parameters controlling precipitation in the presence of appropriate salts, respectively. The review details the use of silk fibroin to develop liquid, semiliquid or solid DDS with a focus on the control of SF crystallization, particle formation, and drug-SF interaction for tailored drug load. Although we were able to show many examples for SF drug delivery applications and there are many publications about the loading of biologics to SF systems, the mechanism of interaction between both in solution was not yet extensively explored. This is why we made this the subject of our work, as it might allow for direct influence on pharmaceutical parameters, like aggregation and drug load. In order to understand the underlying mechanism for the interaction between SF and positively charged model proteins, we used isothermal titration calorimetry for thermodynamic characterization. This was supported by hydrophobicity analysis and by colloidal characterization methods including static light scattering, nanoparticle tracking analysis and zeta potential measurements. We studied the effects of three Hofmeister salts - NaCl (neutral), NaSCN (chaotropic) and Na2SO4 (cosmotropic) - and the pH on the interaction of SF with the model proteins in dependence of the ratio from one to another. The salts impacted the SF structure by stabilizing (cosmotropic) or destabilizing (chaotropic) the SF micelles, resulting in completely abolished (cosmotropic) or strongly enhanced (chaotropic) interaction. These effects were responsible for different levels of loading and coacervation when varying type of salt and its concentration. Additionally, NaCl and NaSCN were able to prolong the stability of aqueous SF solution during storage at 25°C in a preliminary study. Another approach to influence protein-protein interactions was followed by covalent modification. Interleukin-4 (IL-4) is a cytokine driving macrophages to M2 macrophages, which are known to provide anti-inflammatory effects. The possibility to regulate the polarization of macrophages to this state might be attractive for a variety of diseases, like atherosclerosis, in which macrophages are involved. As these cases demand a long-term treatment, this polarization was supposed to be maintained over time and we were planning to achieve this by keeping IL-4 permanently present in an immobilized way. In order to immobilize it, we genetically introduced an alkyne-carrying, artificial amino acid in the IL-4 sequence. This allowed access to a site-specific click reaction (Cu(I)-catalyzed Huisgen azide-alkyne cycloaddition) with an azide partner. This study was able to set the basis for the project by successful expression and purification of the IL-4 analogue and by proving the availability for the click reaction and maintained bioactivity. The other side of this project was the isolation of human monocytes and the polarization and characterization of human macrophages. The challenge here was that the majority of related research was based on murine macrophages which was not applicable to human cells and the successful work was so far limited to establishing the necessary methods. In conclusion, we were able to show two different methods that allow the influence of protein-protein interactions and thereby the possible tailoring of drug loading. Although the results were very promising for both systems, their applicability in the development of drug delivery devices needs to be shown by further studies.}, subject = {Protein-Protein-Wechselwirkung}, language = {en} } @phdthesis{Dodt2021, author = {Dodt, Katharina Anna}, title = {Monitoring enzyme activity by using mass-encoded peptides and multiplexed detection}, doi = {10.25972/OPUS-22937}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229377}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Cell culture models are helpful tools to study inflammatory diseases, like rheumatoid arthritis (RA), osteoarthritis (OA), arteriosclerosis or asthma, which are linked to increased matrix metalloproteinase (MMP) activity. Such cell culture models often focus on the secretion of cytokines and growth factors or the direct effects of disease on tissue destruction. Even though the crucial role of MMPs in inflammatory diseases is known, the results of MMP studies are contradictious and the use of MMPs as biomarkers is inconsistent. MMPs play an important role in disease pathology, as they are involved in elastin degradation in the walls of alveoli in chronic obstructive pulmonary disease (COPD), tumor angiogenesis and metastasis and in cartilage and bone degradation in arthropathies. In RA and OA MMPs are secreted by osteocytes, synoviocytes, and by infiltrating immune cells in response to the increased concentration of inflammatory mediators, like growth factors and cytokines. MMPs are zinc and calcium-dependent proteinases and play an important role in physiological and pathological extracellular matrix (ECM) turn over. Their substrate specificity gives them the ability to degrade all major ECM components, like aggrecan, elastin, gelatin, fibronectin and all types of collagen even the triple helix of collagen monomers. The ECM consists of two large three-dimensional cross-linked macromolecule classes: one are fibrous proteins, like collagen and elastin fibers that are responsible for ECM's structure, tensile strength, resiliency, reversible extensibility, and deformability and the second class is comprised of proteoglycans composed of glycosaminoglycan (GAG) chains covalently attached to protein cores that are multifunctionally involved in signaling pathways and cell interactions. ECM is present within all tissues and organs and changes in ECM structure contribute to pathogenesis, e.g. wounded and fibrotic tissue, COPD or tumours. This thesis primarily focuses on the development of a diagnostic peptide system, that enables to gain information on MMP activity from ECM by deploying the isobaric mass encoding strategy. The core element of the developed system is an isotopically labelled peptide sequence (mass tag), that is released in response to elevated levels of MMPs and allows multiplexed detection in tandem mass spectrometry (LC-MS/MS). The mass reporters possess a modular structure with different functionalities. C-terminal either a transglutaminase (TG) recognition sequence or a high molecular weight polyethylene glycol (PEG) moiety was attached to immobilize the mass reporters covalently or physically at the injection site. The following matrix metalloproteinase substrate sequence (MSS) is incorporated in two different versions with different sensitivity to MMPs. The MSS were applied in pairs for relative quantification consisting of the cleavable version synthesized with natural L-amino acids and the non-cleavable D-amino acid variant. The mass tag was synthesized with isotopically labelled amino acids and is separated from the MSS by a UV light-sensitive molecule. N-terminal the mass tag is followed by a tobacco etch virus protease (TEV) sensitive sequence, that is responsible to separate the mass tag from the affinity tag, which was either the Strep-tag II sequence or biotin and were added for purification purposes. Chapter 1 presents a step-by-step protocol on how to design a mass tag family allowing for multiplexed analysis by LC-MS/MS. The multiplexing is achieved by developing an isobar mass tag family with four family members, which are chromatographically indistinguishable, but due to the mass encoding principles they fragment in distinct y-type ions with a mass difference of 1 or 2 Da each in MS2. Furthermore, it is explained how to covalently attach the mass reporter peptides onto ECM by the activated calcium-catalyzed blood coagulation transglutaminase factor XIII (FXIIIa). The lysine of mass reporter's TG sequence (D-domain of insulin-like growth factor-I (IGF-I)) and a glutamine in fibronectin are covalently crosslinked by FXIIIa and build an isopeptide bond. Elevated levels of MMP release the mass reporters from ECM by recognizing the inter-positioned MSS. The designed mass reporters were able to monitor enzyme activity in an in vitro setting with cell-derived ECM, which was shown in Chapter 2. The modular structured mass reporters were investigated in a proof of concept study. First, the different modules were characterized in terms of their MMP responsiveness and their sensitivity to TEV protease and UV light. Then the FXIIIa-mediated coupling reaction was detailed and the successful coupling on ECM was visualized by an immunosorbent assay or confocal laser scanning microscopy. Finally, the immobilized mass reporters on ECM were incubated with MMP-9 to investigate their multiplexing ability of MMP activity. The cleaved mass reporter fragments were purified in three steps and mass tags were analyzed as mix of all four in LC-MS/MS. Chapter 3 describes the change from an immobilizing system as seen in chapter 1 and 2 to a soluble enzyme activity monitoring system that was applied in an osteoarthritic mouse model. Instead of the immobilizing TG sequence the C-terminal MMS was extended with two amino acids where one holds an azide moiety to perform a strain-promoted azide-alkyne cycloaddition to a high molecular weight dibenzocyclooctyne-polyethylene glycol (DBCO-PEG), which was chosen to retain the mass reporters at the injection site. Furthermore, the N-terminal affinity tag was extended with a 2.5 kDa PEG chain to increase the half-life of the mass reporter peptides after MMP release. The systems biocompatibility was proved but its enzyme monitoring ability in an in vivo setting could not be analyzed as samples degraded during shipping resulting from the Chinese customs blocking transport to Germany. In summary the diagnostic peptide system was developed in two variants. The immobilized version one from chapter 1 and 2 was designed to be covalently attached to ECM by the transglutaminase-mediated cross-linking reaction. In an in vitro setting the functionality of the mass reporter system for the detection of MMP activity was successfully verified. The second variant comprises of a soluble mass reporter system that was tested in an OA mouse model and showed biocompatibility. With these two designed systems this thesis provides a flexible platform based on multiplexed analysis with mass-encoded peptides to characterize cell culture models regarding their MMP activity, to deploy cell-derived ECM as endogenous depot scaffold and to develop a mass tag family that enables simultaneous detection of at least four mass tags.}, subject = {Extrazellul{\"a}re Matrix}, language = {en} } @phdthesis{Werner2014, author = {Werner, Katharina Julia}, title = {Adipose Tissue Engineering - In vitro Development of a subcutaneous fat layer and a vascularized adipose tissue construct utilizing extracellular matrix structures}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-104676}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Each year millions of plastic and reconstructive procedures are performed to regenerate soft tissue defects after, for example, traumata, deep burns or tumor resections. Tissue engineered adipose tissue grafts are a promising alternative to autologous fat transfer or synthetic implants to meet this demand for adipose tissue. Strategies of tissue engineering, especially the use of cell carriers, provide an environment for better cell survival, an easier positioning and supplemented with the appropriate conditions a faster vascularization in vivo. To successfully engineer an adipose tissue substitute for clinical use, it is crucial to know the actual intended application. In some areas, like the upper and lower extremities, only a thin subcutaneous fat layer is needed and in others, large volumes of vascularized fat grafts are more desirable. The use and interplay of stem cells and selected scaffolds were investigated and provide now a basis for the generation of fitted and suitable substitutes in two different application areas. Complex injuries of the upper and lower extremities, in many cases, lead to excessive scarring. Due to severe damage to the subcutaneous fat layer, a common sequela is adhesion formation to mobile structures like tendons, nerves, and blood vessels resulting in restricted motion and disabling pain [Moor 1996, McHugh 1997]. In order to generate a subcutaneous fat layer to cushion scarred tissue after substantial burns or injuries, different collagen matrices were tested for clinical handling and the ability to support adipogenesis. When testing five different collagen matrices, PermacolTM and StratticeTM showed promising characteristics; additionally both possess the clinical approval. Under culture conditions, only PermacolTM, a cross-linked collagen matrix, exhibited an excellent long-term stability. Ranking nearly on the same level was StratticeTM, a non-cross-linked dermal scaffold; it only exhibited a slight shrinkage. All other scaffolds tested were severely compromised in stability under culture conditions. Engineering a subcutaneous fat layer, a construct would be desirable with a thin layer of emerging fat for cushioning on one side, and a non-seeded other side for cell migration and host integration. With PermacolTM and StratticeTM, it was possible to produce constructs with ASC (adipose derived stem cells) seeded on one side, which could be adipogenically differentiated. Additionally, the thickness of the cell layer could be varied. Thereby, it becomes possible to adjust the thickness of the construct to the surrounding tissue. In order to reduce the pre-implantation time ex vivo and the costs, the culture time was varied by testing different induction protocols. An adipogenic induction period of only four days was demonstrated to be sufficient to obtain a substantial adipogenic differentiation of the applied ASC. Thus, seeded with ASC, PermacolTM and StratticeTM are suitable scaffolds to engineer subcutaneous fat layers for reconstruction of the upper and lower extremities, as they support adipogenesis and are appropriately thin, and therefore would not compromise the cosmesis. For the engineering of large-volume adipose tissue, adequate vascularization still represents a major challenge. With the objective to engineer vascularized fat pads, it is important to consider the slow kinetics of revascularization in vivo. Therefore, a decellularized porcine jejunum with pre-existing vascular structures and pedicles to connect to the host vasculature or the circulation of a bioreactor system was used. In a first step, the ability of a small decellularized jejunal section was tested for cell adhesion and for supporting adipogenic differentiation of hASC mono-cultures. Cell adhesion and adipogenic maturation of ASC seeded on the jejunal material was verified through histological and molecular analysis. After the successful mono-culture, the goal was to establish a MVEC (microvascular endothelial cells) and ASC co-culture; suitable culture conditions had to be found, which support the viability of both cell types and do not interfere with the adipogenic differentiation. After the elimination of EGF (epidermal growth factor) from the co-culture medium, substantial adipogenic maturation was observed. In the next step, a large jejunal segment (length 8 cm), with its pre-existing vascular structures and arterial/venous pedicles, was connected to the supply system of a custom-made bioreactor. After successful reseeding the vascular structure with endothelial cells, the lumen was seeded with ASC which were then adipogenically induced. Histological and molecular examinations confirmed adipogenic maturation and the existence of seeded vessels within the engineered construct. Noteworthily, a co-localization of adipogenically differentiating ASC and endothelial cells in vascular networks could be observed. So, for the first time a vascularized fat construct was developed in vitro, based on the use of a decellularized porcine jejunum. As this engineered construct can be connected to a supply system or even to a patient vasculature, it is versatile in use, for example, as transplant in plastic and reconstruction surgery, as model in basic research or as an in vitro drug testing system. To summarize, in this work a promising substitute for subcutaneous fat layer reconstruction, in the upper and lower extremities, was developed, and the first, as far as reported, in vitro generated adipose tissue construct with integrated vascular networks was successfully engineered.}, subject = {Tissue Engineering}, language = {en} } @phdthesis{Staiger2022, author = {Staiger, Simona}, title = {Chemical and physical nature of the barrier against active ingredient penetration into leaves: effects of adjuvants on the cuticular diffusion barrier}, doi = {10.25972/OPUS-19937}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-199375}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Agrochemicals like systemic active ingredients (AI) need to penetrate the outermost barrier of the plant, known as the plant cuticle, to reach its right target site. Therefore, adjuvants are added to provide precise and efficient biodelivery by i.a. modifying the cuticular barrier and increasing the AI diffusion. This modification process is depicted as plasticization of the cuticular wax which mainly consists of very long-chain aliphatic (VLCA) and cyclic compounds. Plasticization of cuticular waxes is pictured as an increase of amorphous domains and/or a decrease of crystalline fractions, but comprehensive, experimental proof is lacking to date. Hence, the objective of this thesis was to i) elucidate the permeation barrier of the plant cuticle to AIs in terms of the different wax fractions and ii) holistically investigate the modification of this barrier using selected oil and surface active adjuvants, an aliphatic leaf wax and an artificial model wax. Therefore, the oil adjuvant methyl oleate (MeO) and other oil derivatives like methyl linolenate (MeLin), methyl stearate (MeSt) and oleic acid (OA) were selected. Three monodisperse, non-ionic alcohol ethoxylates with increasing ethylene oxide monomer (EO) number (C10E2, C10E5, C10E8) were chosen as representatives of the group of surface active agents (surfactants). Both adjuvant classes are commonly used as formulation aids for agrochemicals which are known for its penetration enhancing effect. The aliphatic leaf wax of Schefflera elegantissima was selected, as well as a model wax comprising the four most abundant cuticular wax compounds of this species. Permeation, transpiration and penetration studies were conducted using enzymatically isolated cuticles of Prunus laurocerasus and Garcinia xanthochymus. Cuticular permeability to the three organic solutes theobromine, caffeine and azoxystrobin differing in lipophilicity was measured using a steady-state two-chamber system separated by the isolated leaf cuticles of the evergreen species P. laurocerasus and G. xanthochymus. Treating the isolated cuticles with methanol selectively removed the cyclic fraction, and membrane permeability to the organic compounds was not altered. In contrast, fully dewaxing the membranes using chloroform resulted in a statistically significant increase in permeance for all compounds and species, except caffeine with cuticles of G. xanthochymus due to a matrix-specific influence on the semi-hydrophilic compound. Crystalline regions may reduce the accessibility to the lipophilic pathway across the waxes and also block hydrophilic domains in the cuticle. Knowing that the aliphatic wax fraction builds the cuticular diffusion barrier, the influence of the adjuvants on the phase behaviour of an aliphatic cuticular wax as well as the influence on the cuticular penetration of AIs were investigated. Differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR) were selected to investigate the phase behaviour and thus possible plasticization of pure Schefflera elegantissima leaf wax, its artificial model wax comprising the four most abundant compounds (n-nonacosane, n-hentriacontane, 1-triacontanol and 1-dotriacontanol) and wax adjuvant mixtures. DSC thermograms showed a shift of the melting ranges to lower temperatures and decreased absolute values of the total enthalpy of transition (EOT) for all adjuvant leaf wax blends at 50 \% (w/w) adjuvant proportion. The highest decrease was found for C10E2 followed by MeO > OA and C10E8 > MeLin > MeSt. The aliphatic crystallinity determined by FTIR yielded declined values for the leaf and the artificial wax with 50 \% MeO. All other adjuvant leaf wax blends did not show a significant decrease of crystallinity. As it is assumed that the cuticular wax is formed by crystalline domains which consist of aliphatic hydrocarbon chains and an amorphous fraction comprising aliphatic chain ends and functional groups, the plasticizers are depicted as wax disruptors influencing amorphization and/or crystallization. The adjuvants can increase crystalline domains using the aliphatic tail whereas their more hydrophilic head is embedded in the amorphous wax fraction. DSC and FTIR showed similar trends using the leaf wax and the model wax in combination with the adjuvants. In general, cuticular transpiration increased after adding the pure adjuvants to the surface of isolated cuticles or leaf envelopes. As waxes build the cuticular permeation barrier not only to AIs but also to water, the adjuvant wax interaction might affect the cuticular barrier properties leading to increased transpiration. Direct evidence for increased AI penetration with the adjuvants was given using isolated cuticles of P. laurocerasus in combination with the non-steady-state setup simulation of foliar penetration (SOFP) and caffeine at relative humidity levels (RH) of 30, 50 and 80 \%. The increase in caffeine penetration was much more pronounced using C10E5 and C10E8 than MeO but always independent of RH. Only C10E2 exhibited an increased penetration enhancing effect positively related to RH. The role of the molecular structure of adjuvants in terms of humectant and plasticizer properties are discussed. Hence, the current work shows for the first time that the cuticular permeation barrier is associated with the VLCAs rather than the cyclic fraction and that adjuvants structurally influence this barrier resulting in penetration enhancing effects. Additionally, this work demonstrates that an artificial model wax is feasible to mimic the wax adjuvant interaction in conformity with a leaf wax, making it feasible for in-vitro experiments on a larger scale (e.g. screenings). This provides valuable knowledge about the cuticular barrier modification to enhance AI penetration which is a crucial factor concerning the optimization of AI formulations in agrochemistry.}, subject = {Adjuvans}, language = {en} } @phdthesis{Schlauersbach2023, author = {Schlauersbach, Jonas}, title = {The bile-drug-excipient interplay}, doi = {10.25972/OPUS-29653}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-296537}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The bile system in vertebrates is an evolutionary conserved endogenous solubilization system for hydrophobic fats and poorly water-soluble vitamins. Bile pours out from the gallbladder through the common bile duct into the duodenum triggered by cholecystokinin. Cholecystokinin is released from enteroendocrine cells after food intake. The small intestine is also the absorption site of many orally administered drugs. Most emerging drug candidates belong to the class of poorly water-soluble drugs (PWSDs). Like hydrophobic vitamins, these PWSDs might as well be solubilized by bile. Therefore, this natural system is of high interest for drug formulation strategies. Simulated intestinal fluids containing bile salts (e.g., taurocholate TC) and phospholipids (e.g., lecithin L) have been widely applied over the last decade to approximate the behavior of PWSDs in the intestine. Solubilization by bile can enhance the oral absorption of PWSDs being at least in part responsible for the positive "food effect". The dissolution rate of PWSDs can be also enhanced by the presence of bile. Furthermore, some PWSDs profit from supersaturation stabilization by bile salts. Some excipients solubilizing PWSDs seemed to be promising candidates for drug formulation when investigated in vitro without bile. When tested in vivo, these excipients reduced the bioavailability of drugs. However, these observations have been hardly examined on a molecular level and general links between bile interaction in vitro and bioavailability are still missing. This thesis investigated the interplay of bile, PWSDs, and excipients on a molecular level, providing formulation scientists a blueprint for rational formulation design taking bile/PWSD/excipient/ interaction into account. The first chapter focus on an in silico 1H nuclear magnetic resonance (NMR) spectroscopy-based algorithm for bile/drug interaction prediction. Chapter II to IV report the impact of excipients on bioavailability of PWSDs interacting with bile. At last, we summarized helpful in vitro methods for drug formulation excipient choice harnessing biopharmaceutic solubilization in chapter V. Chapter I applies 1H NMR studies with bile and drugs on a large scale for quantitative structure-property relationship analysis. 141 drugs were tested in simulated intestinal media by 1H NMR. Drug aryl-proton signal shifts were correlated to in silico calculated molecular 2D descriptors. The probability of a drug interacting with bile was dependent on its polarizability and lipophilicity, whereas interaction with lipids in simulated intestinal media components was dependent on molecular symmetry, lipophilicity, hydrogen bond acceptor capability, and aromaticity. The probability of a drug to interact with bile was predictive for a positive food effect. This algorithm might help in the future to identify a bile and lipid interacting drug a priori. Chapter II investigates the impact of excipients on bile and free drug fraction. Three different interaction patterns for excipients were observed. The first pattern defined excipients that interacted with bile and irreversibly bound bile. Therefore, the free drug fraction of bile interacting drugs increased. The second pattern categorized excipients that formed new colloidal entities with bile which had a high affinity to bile interacting drugs. These colloids trapped the drug and decreased the free drug fraction. The last excipient pattern described excipients that formed supramolecular structures in coexistence with bile and had no impact on the free drug fraction. These effects were only observed for drugs interacting with bile (Perphenazine and Imatinib). Metoprolol's free drug fraction, a compound not interacting with bile, was unaffected by bile or bile/excipient interaction. We hypothesized that bile/excipient interactions may reduce the bioavailability of bile interacting drugs. Chapter III addresses the hypothesis from chapter II. A pharmacokinetic study in rats revealed that the absorption of Perphenazine was reduced by bile interacting excipients due to bile/excipient interaction. The simultaneous administration of excipient patterns I and II did not further reduce or enhance Perphenazine absorption. Conversely, the absorption of Metoprolol was not impacted by excipients. This reinforced the hypothesis, that drugs interacting with bile should not be formulated with excipients also interacting with bile. Chapter IV further elaborates which in vitro methods using simulated intestinal fluids are predictive for a drug's pharmacokinetic profile. The PWSD Naporafenib was analyzed in vitro with simulated intestinal fluids and in presence of excipients regarding solubility, supersaturation, and free drug fraction. Naporafenib showed a strong interaction with TC/L from simulated bile. Assays with TC/L, but not without identified one excipient as possibly bioavailability reducing, one as supersaturation destabilizing, and the last as bile not interacting and supersaturation stabilizing excipient. A pharmacokinetic study in beagle dogs outlined and confirmed the in vitro predictions. The Appendix summarizes in vivo predictive methods as presented in chapter I to IV and rationalizes experimental design paving the way towards a biopharmaceutic excipient screening. The first presented preliminary decision tree is transformed into a step-by-step instruction. The presented decision matrix might serve as a blueprint for processes in early phase drug formulation development. In summary, this thesis describes how a drug can be defined as bile interacting or non-interacting and gives a guide as well how to rate the impact of excipients on bile. We showed in two in vivo studies that bile/excipient interaction reduced the bioavailability of bile interacting drugs, while bile non-interacting drugs were not affected. We pointed out that the bile solubilization system must be incorporated during drug formulation design. Simulated gastrointestinal fluids offer a well-established platform studying the fate of drugs and excipients in vivo. Therefore, rational implementation of biopharmaceutic drug and excipient screening steers towards efficacy of oral PWSD formulation design.}, subject = {Solubilisation}, language = {en} } @phdthesis{Masota2023, author = {Masota, Nelson Enos}, title = {The Search for Novel Effective Agents Against Multidrug-Resistant Enterobacteriaceae}, doi = {10.25972/OPUS-30263}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-302632}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {This thesis aimed at searching for new effective agents against Multidrug-Resistant Enterobacteriaceae. This is necessitated by the urgent need for new and innovative antibacterial agents addressing the critical priority pathogens prescribed by the World Health Organization (WHO). Among the available means for antibiotics discovery and development, nature has long remained a proven, innovative, and highly reliable gateway to successful antibacterial agents. Nevertheless, numerous challenges surrounding this valuable source of antibiotics among other drugs are limiting the complete realization of its potential. These include the availability of good quality data on the highly potential natural sources, limitations in methods to prepare and screen crude extracts, bottlenecks in reproducing biological potentials observed in natural sources, as well as hurdles in isolation, purification, and characterization of natural compounds with diverse structural complexities. Through an extensive review of the literature, it was possible to prepare libraries of plant species and phytochemicals with reported high potentials against Escherichia coli and Klebsiella pneumnoniae. The libraries were profiled to highlight the existing patterns and relationships between the reported antibacterial activities and studied plants' families and parts, the type of the extracting solvent, as well as phytochemicals' classes, drug-likeness and selected parameters for enhanced accumulation within the Gram-negative bacteria. In addition, motivations, objectives, the role of traditional practices and other crucial experimental aspects in the screening of plant extracts for antibacterial activities were identified and discussed. Based on the implemented strict inclusion criteria, the created libraries grant speedy access to well-evaluated plant species and phytochemicals with potential antibacterial activities. This way, further studies in yet unexplored directions can be pursued from the indicated or related species and compounds. Moreover, the availability of compound libraries focusing on related bacterial species serves a great role in the ongoing efforts to develop the rules of antibiotics penetrability and accumulation, particularly among Gram-negative bacteria. Here, in addition to hunting for potential scaffolds from such libraries, detailed evaluations of large pool compounds with related antibacterial potential can grant a better understanding of structural features crucial for their penetration and accumulation. Based on the scarcity of compounds with broad structural diversity and activity against Gram-negative bacteria, the creation and updating of such libraries remain a laborious but important undertaking. A Pressurized Microwave Assisted Extraction (PMAE) method over a short duration and low-temperature conditions was developed and compared to the conventional cold maceration over a prolonged duration. This method aimed at addressing the key challenges associated with conventional extraction methods which require long extraction durations, and use more energy and solvents, in addition to larger quantities of plant materials. Furthermore, the method was intended to replace the common use of high temperatures in most of the current MAE applications. Interestingly, the yields of 16 of 18 plant samples under PMAE over 30 minutes were found to be within 91-139\% of those obtained from the 24h extraction by maceration. Additionally, different levels of selectivity were observed upon an analytical comparison of the extracts obtained from the two methods. Although each method indicated selective extraction of higher quantities or additional types of certain phytochemicals, a slightly larger number of additional compounds were observed under maceration. The use of this method allows efficient extraction of a large number of samples while sparing heat-sensitive compounds and minimizing chances for cross-reactions between phytochemicals. Moreover, findings from another investigation highlighted the low likelihood of reproducing antibacterial activities previously reported among various plant species, identified the key drivers of poor reproducibility, and proposed possible measures to mitigate the challenge. The majority of extracts showed no activities up to the highest tested concentration of 1024 µg/mL. In the case of identical plant species, some activities were observed only in 15\% of the extracts, in which the Minimum Inhibitory Concentrations (MICs) were 4 - 16-fold higher than those in previous reports. Evaluation of related plant species indicated better outcomes, whereby about 18\% of the extracts showed activities in a range of 128-512 μg/mL, some of the activities being superior to those previously reported in related species. Furthermore, solubilizing plant crude extracts during the preparation of test solutions for Antibacterial Susceptibility Testing (AST) assays was outlined as a key challenge. In trying to address this challenge, some studies have used bacteria-toxic solvents or generally unacceptable concentrations of common solubilizing agents. Both approaches are liable to give false positive results. In line with this challenge, this study has underscored the suitability of acetone in the solubilization of crude plant extracts. Using acetone, better solubility profiles of crude plant extracts were observed compared to dimethyl sulfoxide (DMSO) at up to 10 \%v/v. Based on lacking toxicity against many bacteria species at up to 25 \%v/v, its use in the solubilization of poorly water-soluble extracts, particularly those from less polar solvents is advocated. In a subsequent study, four galloylglucoses were isolated from the leaves of Paeonia officinalis L., whereby the isolation of three of them from this source was reported for the first time. The isolation and characterization of these compounds were driven by the crucial need to continually fill the pre-clinical antibiotics pipeline using all available means. Application of the bioautography-guided isolation and a matrix of extractive, chromatographic, spectroscopic, and spectrometric techniques enabled the isolation of the compounds at high purity levels and the ascertainment of their chemical structures. Further, the compounds exhibited the Minimum Inhibitory Concentrations (MIC) in a range of 2-256 µg/mL against Multidrug-Resistant (MDR) strains of E. coli and K. pneumonia exhibiting diverse MDR phenotypes. In that, the antibacterial activities of three of the isolated compounds were reported for the first time. The observed in vitro activities of the compounds resonated with their in vivo potentials as determined using the Galleria mellonella larvae model. Additionally, the susceptibility of the MDR bacteria to the galloylglucoses was noted to vary depending on the nature of the resistance enzymes expressed by the MDR bacteria. In that, the bacteria expressing enzymes with higher content of aromatic amino acids and zero or positive net charges were generally more susceptible. Following these findings, a plausible hypothesis for the observed patterns was put forward. The generally challenging pharmacokinetic properties of galloylglucoses limit their further development into therapeutic agents. However, the compounds can replace or reduce the use of antibiotics in livestock keeping as well as in the treatment of septic wounds and topical or oral cavity infections, among other potential uses. Using nature-inspired approaches, a series of glucovanillin derivatives were prepared following feasible synthetic pathways which in most cases ensured good yields and high purity levels. Some of the prepared compounds showed MIC values in a range of 128 - 512 μg/mL against susceptible and MDR strains of Klebsiella pneumoniae, Methicillin-Resistant Staphylococcus aureus (MRSA) and Vancomycin-Resistant Enterococcus faecium (VRE). These findings emphasize the previously reported essence of small molecular size, the presence of protonatable amino groups and halogen atoms, as well as an amphiphilic character, as crucial features for potential antibacterial agents. Due to the experienced limited success in the search for new antibacterial agents using purely synthetic means, pursuing semi-synthetic approaches as employed in this study are highly encouraged. This way, it is possible to explore broader chemical spaces around natural scaffolds while addressing their inherent limitations such as solubility, toxicity, and poor pharmacokinetic profiles.}, subject = {Enterobacteriaceae}, language = {en} } @phdthesis{Hauptstein2023, author = {Hauptstein, Niklas}, title = {Site directed molecular design and performances of Interferon-α2a and Interleukin-4 bioconjugates with PEG alternative polymers}, doi = {10.25972/OPUS-29691}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-296911}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Serum half-life elongation as well as the immobilization of small proteins like cytokines is still one of the key challenges for biologics. This accounts also for cytokines, which often have a molecular weight between 5 and 40 kDa and are therefore prone to elimination by renal filtration and sinusoidal lining cells. To solve this problem biologics are often conjugated to poly(ethylene glycol) (PEG), which is the gold standard for the so called PEGylation. PEG is a synthetic, non-biodegradable polymer for increasing the hydrodynamic radius of the conjugated protein to modulate their pharmacokinetic performance and prolong their therapeutic outcome. Though the benefits of PEGylation are significant, they also come with a prize, which is a loss in bioactivity due to steric hindrance and most often the usage of heterogeneous bioconjugation chemistries. While PEG is a safe excipient in most cases, an increasing number of PEG related side-effects, such as immunological responses like hypersensitivity and accelerated blood clearance upon repetitive exposure occur, which highlights the need for PEG alternative polymers, that can replace PEG in such cases. Another promising method to significantly prolong the residence time of biologics is to immobilize them at a desired location. To achieve this, the transglutaminase (TG) Factor XIIIa (FXIIIa), which is an important human enzyme during blood coagulation can be used. FXIIIa can recognize specific peptide sequences that contain a lysine as substrates and link them covalently to another peptide sequence, that contains a glutamine, forming an isopeptide bond. This mechanism can be used to link modified proteins, which have a N- or C-terminal incorporated signal peptide by mutation, to the extracellular matrix (ECM) of tissues. Additionally, both above-described methods can be combined. By artificially introducing a TG recognition sequence, it is possible to attach an azide group containing peptide site-specifically to the TG, recognition sequence. This allows the creation of a site-selective reactive site at the proteins N- or C-terminus, which can then be targeted by cyclooctyne functionalized polymers, just like amber codon functionalized proteins. This thesis has focused on the two cytokines human Interferon-α2a (IFN-α2a) and human, as well as murine Interleukin-4 (IL-4) as model proteins to investigate the above-described challenges. IFN-α2a has been chosen as a model protein because it is an approved drug since 1986 in systemic applications against some viral infections, as well as several types of cancer. Furthermore, IFN-α2 is also approved in three PEGylated forms, which have different molecular weights and use different conjugation techniques for polymer attachment. This turns it into an ideal candidate to compare new polymers against the gold standard PEG. Interleukin-4 (IL-4) has been chosen as the second model protein due to its similar size and biopotency. This allows to compare found trends from IFN-α2a with another bioconjugate platform and distinguish between IFN-α2a specific, or general trends. Furthermore, IL-4 is a promising candidate for clinical applications as it is a potent anti-inflammatory protein, which polarizes macrophages from the pro-inflammatory M1 state into the anti-inflammatory M2 state.}, subject = {Cytokine}, language = {en} } @phdthesis{Werthmueller2024, author = {Werthm{\"u}ller, Dominic Pascal}, title = {Relevance of bioaccessibility for the oral bioavailability of poorly water-soluble drugs}, doi = {10.25972/OPUS-29920}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-299200}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Poor or variable oral bioavailability is of major concern regarding safety and efficacy for the treatment of patients with poorly water-soluble drugs (PWSDs). The problem statement of this work involves a pharmaceutical development perspective, the physicochemical basis of the absorption process and physiological / biopharmaceutical aspects. A methodology was developed aiming at closing the gap between drug liberation and dissolution on the one hand and the appearance of drug in the blood on the other. Considering what is out of control from a formulation development perspective, a clear differentiation between bioavailability and bioaccessibility was necessary. Focusing on the absorption process, bioaccessibility of a model compound, a poorly soluble but well permeable weak base, was characterized by means of flux across artificial biomimetic membranes. Such setups can be considered to reasonably mimic relevant oral absorption resistances in vitro in terms of diffusion through an unstirred water layer (UWL) and a lipidic barrier. Mechanistic understanding of the driving force for permeation was gained by differentiating drug species and subsequently linking them to the observed transfer rates using a bioaccessibility concept. The three key species that need to be differentiated are molecularly dissolved drug, drug associated in solution with other components (liquid reservoir) and undissolved drug (solid reservoir). An innovative approach to differentiate molecularly dissolved drug from the liquid reservoir using ultracentrifugation in combination with dynamic light scattering as control is presented. A guidance for rational formulation development of PWSDs is elaborated based on the employed model compound. It is structured into five guiding questions to help drug formulation scientists in selecting drug form, excipients and eventually the formulation principle. Overall, the relevance but also limitations of characterizing bioaccessibility were outlined with respect to practical application e.g. in early drug formulation development.}, subject = {Bioverf{\"u}gbarkeit}, language = {en} } @phdthesis{Hanio2024, author = {Hanio, Simon}, title = {The impact of bile on intestinal permeability of drug substances}, doi = {10.25972/OPUS-34890}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-348906}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Most medicines are taken orally. To enter the systemic circulation, they dissolve in the intestinal fluid, cross the epithelial barrier, and pass through the liver. Intestinal absorption is driven by the unique features of the gastrointestinal tract, including the bile colloids formed in the lumen and the mucus layer covering the intestinal epithelium. Neglecting this multifaceted environment can lead to poor drug development decisions, especially for poorly water-soluble drugs that interact with bile and mucus. However, there is a lack of a rationale nexus of molecular interactions between oral medicines and gastrointestinal components with drug bioavailability. Against this background, this thesis aims to develop biopharmaceutical strategies to optimize the presentation of oral therapeutics to the intestinal epithelial barrier. In Chapter 1, the dynamics of bile colloids upon solubilization of the poorly-water soluble drug Perphenazine was studied. Perphenazine impacted molecular arrangement, structure, binding thermodynamics, and induced a morphological transition from vesicles to worm-like micelles. Despite these dynamics, the bile colloids ensured stable relative amounts of free drug substance. The chapter was published in Langmuir. Chapter 2 examined the impact of pharmaceutical polymeric excipients on bile-mediated drug solubilization. Perphenazine and Imatinib were introduced as model compounds interacting with bile, whereas Metoprolol did not. Some polymers altered the arrangement and geometry of bile colloids, thereby affecting the molecularly soluble amount of those drugs interacting with bile. These insights into the bile-drug-excipient interplay provide a blueprint to optimizing formulations leveraging bile solubilization. The chapter was published in Journal of Controlled Release. Chapter 3 deals with the impact of bile on porcine intestinal mucus. Mucus exposed to bile solution changed transiently, it stiffened, and the overall diffusion rate increased. The bile-induced changes eased the transport of the bile-interacting drug substance Fluphenazine, whereas Metoprolol was unaffected. This dichotomous pattern was linked to bioavailability in rats and generalized based on two previously published data sets. The outcomes point to a bile-mucus interaction relevant to drug delivery. The chapter is submitted. The Appendix provides a guide for biopharmaceutical characterization of drug substances by nuclear magnetic resonance spectroscopy aiming at establishing a predictive algorithm. In summary, this thesis deciphers bile-driven mechanisms shaping intestinal drug absorption. Based on these molecular insights, pharmaceuticals can be developed along a biopharmaceutical optimization, ultimately leading to better oral drugs of tomorrow.}, subject = {Solubilisation}, language = {en} } @phdthesis{Terveer2017, author = {Terveer, Nils}, title = {Springs and Parachutes - Development and Characterization of Novel Formulations for Poorly Water-Soluble Drugs}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154311}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Successful formulation development of novel, particularly organic APIs of low molecular weight as candidates for ground-breaking pharmaceutical products is a major challenge for the pharmaceutical industry because of the poor aqueous solubility of most of these compounds. The hit identification strategies of drug development in use today apply high throughput screening techniques for the investigation of thousands of substances. This approach led to a systematical increase in molecular weight and lipophilicity and a decrease of water solubility of lead compounds reaching market access. The high lipophilicity causes an excellent permeability of the compounds which favours the absorption process from the small intestine, but it causes a decrease of water-solubility. It becomes evident that an adequate aqueous solubility is necessary for absorption of the API from the gastrointestinal fluids into the systemic circulation and hence for efficacy of the pharmaceutical product. Only an dissolved API is getting absorbed and becomes efficacious. The precipitated proportion is resigned directly. Therefore, the development of an individual formulation aligning the physicochemical characteristics is necessary for every API to produce supersaturated solutions in the small intestine and to reach an adequate bioavailability after absorption into the systemic circulation. In this thesis a specific formulation development was investigated for two exemplary poorly water-soluble APIs to replace the empirical approach often used today. The basic tyrosine-kinase inhibitor imatinib and six different acetylated amino acids were transferred into ILs. As compared to the free base and the mesylate salt, which is marketed by Novartis AG as Gleevec®, the dissolution rate as well as the supersaturation time was increased significantly. By changing the mesylate anion with its potential genotoxic risks, the total toxicity of the drug product could be decreased. The amorphous ILs proved adequate stability under forcing conditions and there was no recrystallization of the free base observed. The amorphous character of the ILs caused an increased amount of water vapour sorption which can be compensated by special packaging materials. Taken together, the presentation of imatinib as an IL is intended for oral administration as a tablet and can cause a reduction of dose because of the increased solubility. Therefore, the occurrence of side effects can be reduced as compared to Gleevec®. If there is actually an increased bioavailability to observe, has to be proved by the execution of animal trials. The novel NOX inhibitor VAS3947 is intended for the treatment of endothelial dysfunctions causing diseases like heart failure and stroke. The compounds poor aqueous solubility hindered further clinical development so far and make the drug candidate to remain in a very early stage of the drug development process. Therefore, different formulation concepts were evaluated in this study: An amorphous solid dispersion prepared from VAS3947 and Eudragit® L100 by means of spray drying was able to increase the dissolution rate and solubility of the compound significantly, but with the accomplished kinetic solubility being in the low µM range it is not possible to reach therapeutic plasma concentrations. In contrast, the incorporation into cyclodextrins resulted in an 760-fold increased solubility. Different cyclodextrins were evaluated. Especially the lipophilic derivatives of the β-cyclodextrin showed to be the most adequate excipients. The incorporation of the API into the cyclodextrin cavity was proved by means of NMR spectroscopy. Additionally, a formulation of VAS3947 and hydroxypropyl-β-cyclodextrin was prepared. This formulation is intended for the intravenous application during animal trials, which have to be conducted to get to know the pharmacokinetics of VAS3947. This formulation reached a concentration of 1 mg/mL spending striking protection of VAS3947 against degradation. Presentation of VAS3947 as a microemulsion system led also to increase the aqueous solubility of the compound, but not in the same extent as the cyclodextrin formulation. Beside the formulation development a physicochemical characterization was performed to get to know important parameters such as log P and pKa values of VAS3947. An HPLC method was developed and validated to analyse the extent of solubility improvement. A major issue of the compound VAS3947 and all related triazolopyrimidine derivatives, developed by Vasopharm GmbH, is the insufficient chemical stability because of presence of a hemiaminal moiety in the chemical structure. Stability investigations and an extensive biopharmaceutical characterization confirm the hindering of further clinical development by insufficient drug stability and high cytotoxicity. Poor aqueous solubility is an additional disadvantage which can be handled by a concerted formulation development.}, language = {en} } @phdthesis{Wu2019, author = {Wu, Fang}, title = {Adding new functions to insulin-like growth factor-I (IGF-I) via genetic codon expansion}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175330}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Insulin-like growth factor-I (IGF-I) is a 70-amino acid polypeptide with a molecular weight of approximately 7.6 kDa acting as an anabolic effector. It is essential for tissue growth and remodeling. Clinically, it is used for the treatment of growth disorders and has been proposed for various other applications including musculoskeletal diseases. Unlike insulin, IGF-I is complexed to at least six high-affinity binding proteins (IGFBPs) exerting homeostatic effects by modulating IGF-I availability to its receptor (IGF-IR) on most cells in the body as well as changing the distribution of the growth factor within the organism.1-3 Short half-lived IGF-I have been the driving forces for the design of localized IGF-I depot systems or protein modification with enhanced pharmacokinetic properties. In this thesis, we endeavor to present a versatile biologic into which galenical properties were engineered through chemical synthesis, e.g., by site-specific coupling of biomaterials or complex composites to IGF-I. For that, we redesigned the therapeutic via genetic codon expansion resulting in an alkyne introduced IGF-I, thereby becoming a substrate for biorthogonal click chemistries yielding a site-specific decoration. In this approach, an orthogonal pyrrolysine tRNA synthetase (PylRS)/tRNAPyl CUA pair was employed to direct the co-translational incorporation of an unnatural amino acid—¬propargyl-L-lysine (plk)—bearing a clickable alkyne functional handle into IGF-I in response to the amber stop codon (UAG) introduced into the defined position in the gene of interest. We summarized the systematic optimization of upstream and downstream process alike with the ultimate goal to increase the yield of plk modified IGF-I therapeutic, from the construction of gene fusions resulting in (i) Trx-plk-IGF-I fusion variants, (ii) naturally occurring pro-IGF-I protein (IGF-I + Ea peptide) (plk-IGF-I Ea), over the subsequent bacterial cultivation and protein extraction to the final chromatographic purification. The opportunities and hurdles of all of the above strategies were discussed. Evidence was provided that the wild-type IGF-I yields were pure by exploiting the advantages of the pHisTrx expression vector system in concert with a thrombin enzyme with its highly specific proteolytic digestion site and multiple-chromatography steps. The alkyne functionality was successfully introduced into IGF-I by amber codon suppression. The proper folding of plk-IGF-I Ea was assessed by WST-1 proliferation assay and the detection of phosphorylated AKT in MG-63 cell lysate. The purity of plk-IGF-I Ea was monitored with RP-HPLC and SDS-PAGE analysis. This work also showed site-specific coupling an alkyne in plk-IGF-I Ea by copper (I)-catalyzed azide-alkyne cycloaddition (CuAAC) with potent activities in vitro. The site-specific immobilization of plk-IGF-I Ea to the model carrier (i.e., agarose beads) resulted in enhanced cell proliferation and adhesion surrounding the IGF-I-presenting particles. Cell proliferation and differentiation were enhanced in the accessibility of IGF-I decorated beads, reflecting the multivalence on cellular performance. Next, we aimed at effectively showing the disease environment by co-delivery of fibroblast growth factor 2 (FGF2) and IGF-I, deploying localized matrix metalloproteinases (MMPs) upregulation as a surrogate marker driving the response of the drug delivery system. For this purpose, we genetically engineered FGF2 variant containing an (S)-2-amino-6-(((2-azidoethoxy)carbonyl)amino)hexanoic acid incorporated at its N-terminus, followed by an MMPs-cleavable linker (PCL) and FGF2 sequence, thereby allowing site-directed, specific decoration of the resultant azide-PCL-FGF2 with the previously mentioned plk-IGF-I Ea to generate defined protein-protein conjugates with a PCL in between. The click reaction between plk-IGF-I Ea and azide-PCL-FGF2 was systematically optimized to increase the yield of IGF-FGF conjugates, including reaction temperature, incubation duration, the addition of anionic detergent, and different ratios of the participating biopharmaceutics. The challenge here was that CuAAC reaction components or conditions might oxidize free cysteines of azide-PCL-FGF2 and future work needs to present the extent of activity retention after conjugation. Furthermore, our study provides potential options for dual-labeling of IGF-I either by the introduction of unnatural amino acids within two distinct positions of the protein of interest for parallel "double-click" labeling of the resultant plk-IGF-I Ea-plk or by using a combination of enzymatic-catalyzed and CuAAC bioorthogonal coupling strategies for sequentially dual-labeling of plk-IGF-I Ea. In conclusion, genetic code expansion in combination with click-chemistry provides the fundament for novel IGF-I analogs allowing unprecedented site specificity for decoration. Considerable progress towards IGF-I based therapies with enhanced pharmacological properties was made by demonstrating the feasibility of the expression of plk incorporated IGF-I using E. coli and retained activity of unconjugated and conjugated IGF-I variant. Dual-labeling of IGF-I provides further insights into the functional requirements of IGF-I. Still, further investigation warrants to develop precise IGF-I therapy through unmatched temporal and spatial regulation of the pleiotropic IGF-I.}, subject = {Insulin-like Growth Factor I}, language = {en} } @phdthesis{Gador2018, author = {Gador, Eva}, title = {Strategies to improve the biological performance of protein therapeutics}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161798}, school = {Universit{\"a}t W{\"u}rzburg}, pages = {199}, year = {2018}, abstract = {During the last decades the number of biologics increased dramatically and several biopharmaceutical drugs such as peptides, therapeutic proteins, hormones, enzymes, vaccines, monoclonal antibodies and antibody-drug conjugates conquered the market. Moreover, administration and local delivery of growth factors has gained substantial importance in the field of tissue engineering. Despite progress that has been made over the last decades formulation and delivery of therapeutic proteins is still a challenge. Thus, we worked on formulation and delivery strategies of therapeutic proteins to improve their biological performance. Phase I of this work deals with protein stability with the main focus on a liquid protein formulation of the dimeric fusion protein PR-15, a lesion specific platelet adhesion inhibitor. In order to develop an adequate formulation ensuring the stability and bioactivity of PR-15 during storage at 4 °C, a pH screening, a forced degradation and a Design of Experiments (DoE) was performed. First the stability and bioactivity of PR-15 in 50 mM histidine buffer in relation to pH was evaluated in a short-term storage stability study at 25 °C and 40 °C for 4 and 8 weeks using different analytical methods. Additionally, potential degradation pathways of PR-15 were investigated under stressed conditions such as heat treatment, acidic or basic pH, freeze-thaw cycles, light exposure, induced oxidation and induced deamidation during the forced degradation study. Moreover, we were able to identify the main degradation product of PR-15 by performing LC/ESI-MS analysis. Further optimization of the injectable PR 15 formulation concerning pH, the choice of buffer and the addition of excipients was studied in the following DoE and finally an optimal PR-15 formulation was found. The growth factors BMP-2, IGF-I and TGF-β3 were selected for the differentiation of stem cells for tissue engineering of cartilage and bone in order to prepare multifunctionalized osteochondral implants for the regeneration of cartilage defects. Silk fibroin (SF) was chosen as biomaterial because of its biocompatibility, mechanical properties and its opportunity for biofunctionalization. Ideal geometry of SF scaffolds with optimal porosity was found in order to generate both tissues on one scaffold. The growth factors BMP-2 and IGF-I were modified to allow spatially restricted covalent immobilization on the generated porous SF scaffolds. In order to perform site-directed covalent coupling by the usage of click chemistry on two opposite sides of the scaffold, we genetically engineered BMP-2 (not shown in this work; performed by Barbara Tabisz) and IGF-I for the introduction of alkyne or azide bearing artificial amino acids. TGF β3 was immobilized to beads through common EDC/NHS chemistry requiring no modification and distributed in the pores of the entire scaffold. For this reason protein modification, protein engineering, protein immobilization and bioconjugation are investigated in phase II. Beside the synthesis the focus was on the characterization of such modified proteins and its conjugates. The field of protein engineering offers a wide range of possibilities to modify existing proteins or to design new proteins with prolonged serum half-life, increased conformational stability or improved release rates according to their clinical use. Site-directed click chemistry and non-site-directed EDC/NHS chemistry were used for bioconjugation and protein immobilization with the aim to underline the preferences of site-directed coupling. We chose three strategies for the incorporation of alkyne or azide functionality for the performance of click reaction into the protein of interest: diazonium coupling reaction, PEGylation and genetic engineering. Azido groups were successfully introduced into SF by implementation of diazonium coupling and alkyne, amino or acid functionality was incorporated into FGF-2 as model protein by means of thiol PEGylation. The proper folding of FGF-2 after PEGylation was assessed by fluorescence spectroscopy, WST-1 proliferation assay ensured moderate bioactivity and the purity of PEGylated FGF-2 samples was monitored with RP-HPLC. Moreover, the modification of native FGF-2 with 10 kDa PEG chains resulted in enhanced thermal stability. Additionally, we genetically engineered one IGF-I mutant by incorporating the unnatural amino acid propargyl-L-lysine (plk) at position 65 into the IGF-I amino acid sequence and were able to express hardly verifiable amounts of plk-IGF-I. Consequently, plk-IGF-I expression has to be further optimized in future studies in order to generate plk-IGF-I with higher yields. Bioconjugation of PEGylated FGF-2 with functionalized silk was performed in solution and was successful for click as well as EDC/NHS chemistry. However, substantial amounts of unreacted PEG-FGF-2 were adsorbed to SF and could not be removed from the reaction mixture making it impossible to expose the advantages of click chemistry in relation to EDC/NHS chemistry. The immobilization of PEG-FGF-2 to microspheres was a trial to increase product yield and to remove unreacted PEG-FGF-2 from reaction mixture. Bound PEG-FGF-2 was visualized by fluorescence imaging or flow cytometry and bioactivity was assessed by analysis of the proliferation of NIH 3T3 cells. However, immobilization on beads raised the same issue as in solution: adsorption caused by electrostatic interactions of positively charged FGF-2 and negatively charged SF or beads. Finally, we were not able to prove superiority of site-directed click chemistry over non-site-directed EDC/NHS. The skills and knowledge in protein immobilization as well as protein characterization acquired during phase II helped us in phase III to engineer cartilage tissue in biofunctionalized SF scaffolds. The approach of covalent immobilization of the required growth factors is relevant because of their short in vivo half-lives and aimed at controlling their bioavailability. So TGF-β3 was covalently coupled by means of EDC/NHS chemistry to biocompatible and biostable PMMA beads. Herein, we directly compared bioactivity of covalently coupled and adsorbed TGF-β3. During the so-called luciferase assay bioactivity of covalent coupled as well as adsorbed TGF-β3 on PMMA beads was ensured. In order to investigate the real influence of EDC/NHS chemistry on TGF-β3's bioactivity, the amount of immobilized TGF-β3 on PMMA beads was determined. Therefore, an ELISA method was established. The assessment of total amount of TGF-β3 immobilized on the PMMA beads allowed as to calculate coupling efficiency. A significantly higher coupling efficiency was determined for the coupling of TGF-β3 via EDC/NHS chemistry compared to the reaction without coupling reagents indicating a small amount of adsorbed TGF-β3. These results provide opportunity to determine the consequence of coupling by means of EDC/NHS chemistry for TGF β3 bioactivity. At first sight, no statistically significant difference between covalent immobilized and adsorbed TGF-β3 was observed regarding relative luciferase activities. But during comparison of total and active amount of TGF-β3 on PMMA beads detected by ELISA or luciferase assay, respectively, a decrease of TGF-β3's bioactivity became apparent. Nevertheless, immobilized TGF β3 was further investigated in combination with SF scaffolds in order to drive BMSCs to the chondrogenic lineage. According to the results obtained through histological and immunohistochemical studies, biochemical assays as well as qRT-PCR of gene expression from BMSCs after 21 days in culture immobilized TGF-β3 was able to engineer cartilage tissue. These findings support the thesis that local presentation of TGF β3 is superior towards exogenous TGF β3 for the development of hyaline cartilage. Furthermore, we conclude that covalent immobilized TGF β3 is not only superior towards exogenously supplemented TGF-β3 but also superior towards adsorbed TGF-β3 for articular hyaline cartilage tissue engineering. Diffusion processes were inhibited through covalent immobilization of TGF-β3 to PMMA beads and thereby a stable and consistent TGF-β3 concentration was maintained in the target area. With the knowledge acquired during phase II and III as well as during the studies of Barbara Tabisz concerning the expression and purification of plk-BMP-2 we made considerable progress towards the formation of multifunctionalized osteochondral implants for the regeneration of cartilage defects. However, further studies are required for the translation of these insights into the development of multifunctionalized osteochondral SF scaffolds.}, subject = {biologics}, language = {en} } @phdthesis{Braun2018, author = {Braun, Alexandra Carolin}, title = {Bioresponsive delivery of anticatabolic and anabolic agents for muscle regeneration using bioinspired strategies}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169047}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Progressive loss of skeletal muscle mass, strength and function poses a major threat to independence and quality of life, particularly in the elderly. To date, sarcopenia therapy consists of resistance exercise training in combination with protein supplementation due to the limited efficacy of available pharmacological options in counteracting the effects of muscle wasting. Therapeutic intervention with growth factors including insulin-like growth factor I (IGF-I) or inhibitors of myostatin  a potent suppressor of myogenesis  hold potential to rebalance the altered activity of anabolic and catabolic cytokines. However, dosing limitations due to acute side effects and disruptions of the homeostasis have so far precluded clinical application. Intending to provide a therapy with a superior safety and efficacy profile by directing drug release to inflamed tissue and minimizing off-target activity, we designed bioresponsive delivery systems for an anti-catabolic peptide and anabolic IGF-I responding to local flares of muscle wasting. In Chapter I, current concepts for bioorthogonal conjugation methods are discussed and evaluated based on various drug delivery applications. With a focus on protein delivery, challenges and potential pitfalls of each chemical and enzymatic conjugation strategy are analyzed and opportunities regarding their use for coupling of biomolecules are given. Based on various studies conjugating proteins to polymers, particles and biomaterials using different site-directed approaches, the chapter summarizes available strategies and highlights certain aspects requiring particular consideration when applied to biomolecules. Finally, a decision process for selection of an optimum conjugation strategy is exemplarily presented. Three of these bioorthogonal coupling reactions are applied in Chapter II detailing the potential of site-directed conjugation in the development of novel, homogenous drug delivery systems. The chapter describes the design of a delivery system of a myostatin inhibitor (MI) for controlled and local release counteracting myositis flares. MI release from the carrier is driven by increased matrix metalloproteinase (MMP) levels in compromised muscle tissues cleaving the interposed linker, thereby releasing the peptide inhibitor from the particulate carrier. Release experiments were performed to assess the response towards various MMP isoforms (MMP-1, -8, -9 and -13) - as upregulated during skeletal muscle myopathies - and the release pattern of the MI in case of disease progression was analyzed. By selection of the protease-sensitive linker (PSL) showing variable susceptibilities to proteases, release rates of the MI can be controlled and adapted. Immobilized MI as well as released MI as response to MMP upregulation was able to antagonize the effects of myostatin on cell signalling and myoblast differentiation. The approach of designing bioresponsive protein delivery systems was also applied to the anabolic growth factor IGF-I, as described in Chapter III. Numerous studies of PEGylated proteins or peptides reveal, that successful therapy is challenged by safety and efficacy issues, as polymer attachment considerably alters the properties of the biologic, thereby jeopardizing clinical efficacy. To this end, a novel promising approach is presented, intending to exploit beneficial effects of PEGylation on pharmacokinetics, but addressing the pharmacodynamic challenges by releasing the protein upon entering the target tissue. This was realized by integration of a PSL between the PEG moiety and the protein. The soluble polymer conjugate was produced by site-directed, enzymatic conjugation of IGF-I to the PSL, followed by attachment of a 30 kDa-PEG using Strain-promoted azide-alkyne cycloaddition (SPAAC). This strategy illustrates the potential of bioorthogonal conjugation (as described in Chapter I) for generation of homogenous protein-polymer conjugates with reproducible outcome, but also emphasizes the altered protein properties resulting from permanent polymer conjugation. As compared to wild type IGF-I, the PEGylated protein showed considerable changes in pharmacologic effects - such as impaired insulin-like growth factor binding protein (IGFBPs) interactions, submaximal proliferative activity and altered endocytosis patterns. In contrast, IGF-I characteristics were fully restored upon local disintegration of the conjugate triggered by MMP upregulation and release of the natural growth factor. For successful formulation development for the proteins and conjugates, the careful selection of suitable excipients is crucial for a safe and reliable therapy. Chapter IV addresses one aspect by highlighting the chemical heterogeneity of excipients and associated differences in performance. Polysorbate 80 (PS80) is a surfactant frequently used in protein formulations to prevent aggregation and surface adsorption. Despite being widely deployed as a standard excipient, heterogeneous composition and performance entails the risk of eliciting degradation and adverse effects on protein stability. Based on a comprehensive study using different batches of various suppliers, the PS80 products were characterized regarding chemical composition and physicochemical properties, facilitating the assessment of excipient performance in a formulation. Noticeable deviations were recorded between different suppliers as well as between batches of the same suppliers. Correlation of all parameters revealed, that functionality related characteristics (FRCs) could be reliably predicted based on chemical composition alone or by a combination of chemical and physicochemical properties, respectively. In summary, this thesis describes and evaluates novel strategies for the targeted delivery and controlled release of biologics intended to counteract the imbalance of anabolic and catabolic proteins observed during aging and musculoskeletal diseases. Two delivery platforms were developed and characterized in vitro - (i) using anti-catabolic peptides immobilized on a carrier for local delivery and (ii) using soluble IGF-I polymer conjugates for systemic application. Both approaches were implemented by bioorthogonal coupling strategies, which were carefully selected in consideration of limitations, side reactions and efficiency aspects. Bioresponsive release of the active biomolecules following increased protease activity could be successfully realized. The therapeutic potential of these approaches was demonstrated using various cell-based potency assays. The systems allow targeted and controlled release of the growth factor IGF-I and anti-catabolic peptides thereby overcoming safety concerns of current growth factor therapy and thus positively impacting the benefit-risk profile of potent therapeutics. Taking potential heterogeneity and by-product concerns into account, comprehensive excipient characterization was performed and a predictive algorithm for FRCs developed, in order to facilitate formulation design and guarantee a safe and efficient therapy from start to finish.}, subject = {Muskelatrophie}, language = {en} } @phdthesis{Gunesch2021, author = {Gunesch, Sandra}, title = {Molecular Mode of Action of Flavonoids: From Neuroprotective Hybrids to Molecular Probes for Chemical Proteomics}, doi = {10.25972/OPUS-23936}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239360}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Alzheimer's disease (AD) is the most common form of dementia, and currently, there is no treatment to cure or halt disease progression. Because the one-target strategy focusing on amyloid-β has failed to generate successful pharmaceutical treatment, this work studies natural products with pleiotropic effects focusing on oxidative stress and neuroinflammation as key drivers of disease progression. The central part of this work focused on flavonoids as neuroprotectants. 7-O-Esters of taxifolin and cinnamic or ferulic acid were synthesized and investigated towards their neuroprotective potential addressing aging and disease. 7-O-Feruloyl- and 7-O-cinnamoyltaxifolin showed overadditive effects in oxidative stress-induced assays in the mouse neuronal cell line HT22 and proved to be protective against neuroinflammation in microglial BV-2 cells. The overadditive effect translated to animals using an Aβ25-35-induced memory-impaired AD mouse model where the compounds were able to ameliorate short-term memory defects. While the disease-modifying effects in vivo were observed, the detailed mechanisms of action and intracellular targets of the compounds remained unclear. Hence, a chemical probe of the neuroprotective flavonoid ester 7-O-cinnamoyltaxifolin was developed and applied in an activity-based protein profiling approach. SERCA and ANT-1 were identified as potential targets. Further, chemical modifications on the flavonoids taxifolin, quercetin, and fisetin were performed. The achievements of this work are an important contribution to the use of secondary plant metabolites as neuroprotectants. Chemical modifications increased the neuroprotective effect of the natural products, and distinct intracellular pathways involved in the neuroprotective mechanisms were identified. The results of this work support the use of secondary plant metabolites as potential therapeutics and hint towards new pharmacological targets for the treatment of neurodegenerative disorders.}, subject = {Alzheimerkrankheit}, language = {en} }