@phdthesis{Fackler2014, author = {Fackler, Marc}, title = {Biochemical characterization of GAS2L3, a target gene of the DREAM complex}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-103394}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {GAS2L3 was identified recently as a target gene of the DREAM complex (Reichert et al., 2010; Wolter et al., 2012). It was shown that GAS2L3 is expressed in a cell cycle specific manner and that depletion of the protein leads to defects in cytokinesis and genomic instability (Wolter et al., 2012). Major aim of this thesis was, to further characterize the biochemical properties and physiological function of GAS2L3. By in vitro co-sedimentation and bundling assays, GAS2L3 was identified as a cytoskeleton associated protein which bundles, binds and crosslinks F-actin and MTs. GST pulldown assays and co-immunoprecipitation experiments revealed that GAS2L3 interacts in vitro and in vivo with the chromosomal passenger complex (CPC), a very important regulator of mitosis and cytokinesis, and that the interaction is mediated by the GAR domain of GAS2L3 and the C-terminal part of Borealin and the N-terminal part of Survivin. Kinase assays showed that GAS2L3 is not a substrate of the CPC but is strongly phosphorylated by CDK1 in vitro. Depletion of GAS2L3 by shRNA influenced protein stability and activity of the CPC. However pharmacological studies showed that the decreased CPC activity is not responsible for the observed cytokinesis defects upon GAS2L3 depletion. Immunofluorescence experiments revealed that GAS2L3 is localized to the constriction zone by the CPC in a GAR dependent manner and that the GAR domain is important for proper protein function. New interacting proteins of GAS2L3 were identified by stable isotope labelling by amino acids in cell culture (SILAC) in combination with tandem affinity purification and subsequent mass spectrometrical analysis. Co-immunoprecipitation experiments further confirmed the obtained mass spectrometrical data. To address the physiological function of GAS2L3 in vivo, a conditional and a non-conditional knockout mouse strain was established. The non-conditional mouse strain showed a highly increased mortality rate before weaning age probably due to heart failure. The physiological function of GAS2L3 in vivo as well as the exact reason for the observed heart phenotype is not known at the moment.}, subject = {Zellzyklus}, language = {en} } @phdthesis{Hondke2014, author = {Hondke, Sylvia}, title = {Elucidation of WISP3 function in human mesenchymal stem cells and chondrocytes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-109641}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {WISP3 is a member of the CCN family which comprises six members found in the 1990's: Cysteine-rich,angiogenic inducer 61 (CYR61, CCN1), Connective tissue growth factor (CTGF, CCN2), Nephroblastoma overexpressed (NOV, CNN3) and the Wnt1 inducible signalling pathway protein 1-3 (WISP1-3, CCN4-6).They are involved in the adhesion, migration, mitogenesis, chemotaxis, proliferation, cell survival, angiogenesis, tumorigenesis, and wound healing by the interaction with different integrins and heparan sulfate proteoglycans. Until now the only member correlated to the musculoskeletal autosomal disease Progressive Pseudorheumatoid Dysplasia (PPD) is WISP3. PPD is characterised by normal embryonic development followed by cartilage degradation over time starting around the age of three to eight years. Animal studies in mice exhibited no differences between knock out or overexpression compared to wild type litter mates, thus were not able to reproduce the symptoms observed in PPD patients. Studies in vitro and in vivo revealed a role for WISP3 in antagonising BMP, IGF and Wnt signalling pathways. Since most of the knowledge of WISP3 was gained in epithelial cells, cancer cells or chondrocyte cell lines, we investigated the roll of WISP3 in primary human mesenchymal stem cells (hMSCs) as well as primary chondrocytes. WISP3 knock down was efficiently established with three short hairpin RNAs in both cell types, displaying a change of morphology followed by a reduction in cell number. Simultaneous treatment with recombinant WISP3 was not enough to rescue the observed phenotype nor increase the endogenous expression of WISP3. We concluded that WISP3 acts as an essential survival factor, where the loss resulted in the passing of cell cycle control points followed by apoptosis. Nevertheless, Annexin V-Cy3 staining and detection of active caspases by Western blot and immunofluorescence staining detected no clear evidence for apoptosis. Furthermore, the gene expression of the death receptors TRAILR1 and TRAILR2,important for the extrinsic activation of apoptosis, remained unchanged during WISP3 mRNA reduction. Autophagy as cause of cell death was also excluded, given that the autophagy marker LC3 A/B demonstrated to be uncleaved in WISP3-deficient hMSCs. To reveal correlated signalling pathways to WISP3 a whole genome expression analyses of WISP3-deficient hMSCs compared to a control (scramble) was performed. Microarray analyses exhibited differentially regulated genes involved in cell cycle control, adhesion, cytoskeleton and cell death. Cell death observed by WISP3 knock down in hMSCs and chondrocytes might be explained by the induction of necroptosis through the BMP/TAK1/RIPK1 signalling axis. Loss of WISP3 allows BMP to bind its receptor activating the Smad 2/3/4 complex which in turn can activate TAK1 as previously demonstrated in epithelial cells. TAK1 is able to block caspase-dependent apoptosis thereby triggering the assembly of the necrosome resulting in cell death by necroptosis. Together with its role in cell cycle control and extracellular matrix adhesion, as demonstrated in human mammary epithelial cells, the data supports the role of WISP3 as tumor suppressor and survival factor in cells of the musculoskeletal system as well as epithelial cells.}, subject = {Knorpelzelle}, language = {en} } @phdthesis{Pasch2016, author = {Pasch, Elisabeth}, title = {The role of SUN4 and related proteins in sperm head formation and fertility}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139092}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Spermiogenesis describes the differentiation of haploid germ cells into motile, fertilization-competent spermatozoa. During this fundamental transition the species-specific sperm head is formed, which necessitates profound nuclear restructuring coincident with the assembly of sperm-specific structures and chromatin compaction. In the case of the mouse, it is characterized by reshaping of the early round spermatid nucleus into an elongated sickle-shaped sperm head. This tremendous shape change requires the transduction of cytoskeletal forces onto the nuclear envelope (NE) or even further into the nuclear interior. LINC (linkers of nucleoskeleton and cytoskeleton) complexes might be involved in this process, due to their general function in bridging the NE and thereby physically connecting the nucleus to the peripheral cytoskeleton. LINC complexes consist of inner nuclear membrane integral SUN-domain proteins and outer nuclear membrane KASH-domain counterparts. SUN- and KASH-domain proteins are directly connected to each other within the perinuclear space, and are thus capable of transferring forces across the NE. To date, these protein complexes are known for their essential functions in nuclear migration, anchoring and positioning of the nucleus, and even for chromosome movements and the maintenance of cell polarity and nuclear shape. In this study LINC complexes were investigated with regard to their potential role in sperm head formation, in order to gain further insight into the processes occurring during spermiogenesis. To this end, the behavior and function of the testis-specific SUN4 protein was studied. The SUN-domain protein SUN4, which had received limited characterization prior to this work, was found to be exclusively expressed in haploid stages during germ cell development. In these cell stages, it specifically localized to the posterior NE at regions decorated by the manchette, a spermatid-specific structure which was previously shown to be involved in nuclear shaping. Mice deficient for SUN4 exhibited severely disorganized manchette residues and gravely misshapen sperm heads. These defects resulted in a globozoospermia-like phenotype and male mice infertility. Therefore, SUN4 was not only found to be mandatory for the correct assembly and anchorage of the manchette, but also for the correct localization of SUN3 and Nesprin1, as well as of other NE components. Interaction studies revealed that SUN4 had the potential to interact with SUN3, Nesprin1, and itself, and as such is likely to build functional LINC complexes that anchor the manchette and transfer cytoskeletal forces onto the nucleus. Taken together, the severe impact of SUN4 deficiency on the nucleocytoplasmic junction during sperm development provided direct evidence for a crucial role of SUN4 and other LINC complex components in mammalian sperm head formation and fertility.}, subject = {Maus}, language = {en} } @phdthesis{WasgebHouben2023, author = {Was [geb. Houben], Nina}, title = {Die Rolle der nicht-kodierenden RNAs miR-26 und \(Malat1\) bei der \(in\) \(vitro\) Differenzierung zu Neuronen}, doi = {10.25972/OPUS-30371}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-303714}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {W{\"a}hrend der embryonalen Neurogenese spielt die Repression neuraler Gene in nicht neuralen Zellen, sowie in neuralen Vorl{\"a}uferzellen durch den REST (repressor element silencing transcription factor)-Komplex eine wichtige Rolle. Durch die schrittweise Inaktivierung diese Komplexes im Verlauf der Differenzierung werden neurale Genexpressionsprogramme gesteuert. Zus{\"a}tzlich kommt bei der Kontrolle der r{\"a}umlichen und zeitlichen Regulation der Genexpression w{\"a}hrend der Neurogenese verschiedenen miRNAs eine wichtige Rolle zu. So konnte in vorangegangenen Arbeiten im Zebrafischen gezeigt werden, dass miR-26b die Transkription eines wichtigen Effektorproteins des REST-Komplexes, CTDSP2 (C-terminal domain small phosphatases), w{\"a}hrend der Neurogenese negativ reguliert. Da dar{\"u}ber hinaus die miR-26 Repression zu einer stark verminderten neuronalen Differenzierung f{\"u}hrte, kommt diesem regulatorischen Schaltkreis eine zentrale Rolle bei der Neurogenese im Zebrafisch zu. Die zusammen mit ihren Ctdsp-Wirtsgenen koexprimierte miR-26 Familie liegt in Vertebraten evolution{\"a}r hoch konserviert vor. Analog zum Zebrafisch konnte im murinen in vitro ES-Zell Differenzierungssystem gezeigt werden, dass miR-26 die Expression von Ctdsp2 reprimiert. Weiterhin konnte in diesem System gezeigt werden, dass auch Rest ein miR-26 Zielgen ist und dass der Verlust der miR-26 zu einem Arrest der differenzierenden Zellen im neuronalen Vorl{\"a}uferstadium f{\"u}hrt. Zusammengenommen deuten diese vorangegangenen Arbeiten auf eine zentrale Rolle der miR-26 w{\"a}hrend der Neurogenese hin. Die hier vorgestellte Arbeit zielte zun{\"a}chst darauf ab die Regulation des REST-Komplexes durch die miR-26 auf molekularer Ebene besser zu verstehen. Der Verlust der miR-26 Bindestelle in der Ctdsp2 mRNA f{\"u}hrte zu einer erh{\"o}hten Ctdsp2 Expression, beeinflusste aber nicht die terminale Differenzierung zu Neuronen. Im Gegensatz hierzu f{\"u}hrte der Verlust der miR-26 Bindestelle in der Rest mRNA zu einem Arrest der Differenzierung im neuralen Vorl{\"a}uferzellstadium. Zellen in denen die miR-26 Bindestelle in Rest deletiert war, zeigten zudem, genau wie miR-26 knockout (KO) Zellen, eine erh{\"o}hte Expression von REST-Komplex Komponenten, sowie eine verringerte Expression von REST-regulierten miRNAs. Zusammengenommen weisen diese Daten daraufhin, dass w{\"a}hrend der Neurogenese im S{\"a}ugersystem die Inaktivierung von Rest durch miR-26 f{\"u}r die Maturierung von Neuronen eine zentrale Rolle spielt. Ein weiterer Fokus dieser Arbeit lag auf der Regulation der miR-26 Expression w{\"a}hrend der Neurogenese. Vorangegangene Arbeiten in nicht-neuronalen Zelltypen identifizierten die lnc (long-non-coding) RNA Malat1 als eine ce (competitive endogenous) RNA der miR-26. Um den Einfluss von Malat1 auf die miR-26 Expression w{\"a}hrend der Neurogenese zu untersuchen, wurde zun{\"a}chst mittels CRISPR/Cas9 der vollst{\"a}ndige Malat1-Lokus in ESCs deletiert. Der Verlust von Malat1 f{\"u}hrte zu einer erh{\"o}hten Expression der miR-26 Familienmitglieder sowie deren Ctdsp-Wirtsgene. Weiterhin war die Proliferation von Malat1 KO neuronalen Vorl{\"a}uferzellen stark vermindert, was mit einer Erh{\"o}hung der Frequenz seneszenter Zellen einherging. Durch die Inaktivierung von miR-26 in differenzierenden Malat1 KO ESCs konnte dieser proliferative Ph{\"a}notyp aufgehoben werden. Dar{\"u}ber hinaus konnte eine verst{\"a}rkte neuronale Differenzierung dieser Zellen beobachtet werden. Zusammenfassend zeigen diese Daten, dass neben der Regulation des REST-Komplexes durch miR-26 auch die Kontrolle des Zellzyklus {\"u}ber die Malat1-vermittelte Regulation der miR-26 in neuronalen Vorl{\"a}uferzellen einen kritischen Schritt bei der Differenzierung von neuronalen Vorl{\"a}uferzellen zu maturen Neuronen darstellt.}, subject = {Neurogenese}, language = {de} }