@phdthesis{MuellerHuebner2020, author = {M{\"u}ller-H{\"u}bner, Laura}, title = {The role of nuclear architecture in the context of antigenic variation in Trypanosoma brucei}, doi = {10.25972/OPUS-18707}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187074}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Antigenic variation of surface proteins is a commonly used strategy among pathogens to evade the host immune response [63]. The mechanism underlying antigenic variation relies on monoallelic exclusion of a single gene from a hypervariable multigene family combined with repeated, systematic changes in antigen expression. In many systems, these gene families are arranged in subtelomeric contingency loci that are subject to both transcriptional repression and enhanced mutagenesis and recombination [16]. Eviction of a selected gene from a repressed antigen repertoire can be achieved e.g. by recombination into a dedicated, transcriptionally permissive site or by local epigenetic alterations in chromatin composition of the selected gene. Both processes are ultimately affected by genome architecture. Architectural proteins controlling antigenic variation have, however, remained elusive in any pathogen. The unicellular protozoan parasite Trypanosoma brucei evades the host immune response by periodically changing expression of a single variant surface glycoprotein (VSG) from a repertoire of ~3000 VSG genes - the largest mutually exclusively expressed gene family described today. To activate a selected VSG gene, it needs to be located in a dedicated expression site that becomes subject to relocation into a distinct, transcriptionally active subnuclear compartment, the expression site body (ESB). Whereas this emphasizes the importance of nuclear architecture in regulating antigen expression in T. brucei, the mechanisms underlying spatial positioning of DNA in T. brucei are not well understood. In this study I applied genome-wide chromosome conformation capture (Hi-C) to obtain a comprehensive picture of the T. brucei genome in three dimensions, both in procyclic and bloodstream form parasites. Hi-C revealed a highly structured nucleus with megabase chromosomes occupying distinct chromosome territories. Further, specific trans interactions between chromosomes, among which are clusters of centromeres, rRNA genes and procyclins became apparent. With respect to antigenic variation, Hi-C revealed a striking compaction of the subtelomeric VSG gene repertoire and a strong clustering of transcriptionally repressed VSG-containing expression sites. Further, Hi-C analyses confirmed the spatial separation of the actively transcribed from the silenced expression sites in three dimensions. I further sought to characterize architectural proteins mediating nuclear architecture in T. brucei. Whereas CTCF is absent in non-metazoans, we found cohesin to be expressed throughout the cell cycle, emphasizing a function beyond sister chromatid cohesion in S-phase. By Chromatin-Immunoprecipitation with sequencing (ChIPseq), I found cohesin enrichment to coincide with the presence of histone H3 vari- ant (H3.V) and H4 variant (H4.V). Most importantly, cohesin and the histone variants were enriched towards the VSG gene at silent and active expression sites. While the deletion of H3.V led to increased clustering of expression sites in three dimensions and increased chromatin accessibility at expression site promoters, the additional deletion of H4.V increased chromatin accessibility at expression sits even further. RNAseq showed that mutually exclusive VSG expression was lost in H3.V and H4.V single and double deletion mutants. Immunofluorescence imaging of surface VSGs, flow cytometry and single-cell RNAseq revealed a progressive loss of VSG-2 expression, indicative of an increase in VSG switching rate in the H3.V/H4.V double deletion mutants. Using long-read sequencing technology, we found that VSG switching occurred via recombination and concluded, that the concomitant increase in spatial proximity and accessibility among expression sites facilitated the recombination event. I therefore identified the histone variants H3.V and H4.V to act at the interface of global nuclear architecture and chromatin accessibility and to represent a link between genome architecture and antigenic variation.}, subject = {Trypanosoma brucei brucei}, language = {en} }