@phdthesis{Kagerer2024, author = {Kagerer, Philipp Thomas}, title = {Two-Dimensional Ferromagnetism and Topology at the Surface of MnBi\(_2\)Te\(_4\) - Bi\(_2\)Te\(_3\) Heterostructures - MBE Growth, Magnetism and Electronic Properties}, doi = {10.25972/OPUS-36012}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-360121}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {In this thesis, a model system of a magnetic topological heterostructure is studied, namely a heterosystem consisting of a single ferromagnetic septuple-layer (SL) of \(MnBi_2Te_4\) on the surface of the three-dimensional topological insulator \(Bi_2Te_3\). Using MBE and developing a specialized experimental setup, the first part of this thesis deals with the growth of \(Bi_2Te_3\) and thin films of \(MnBi_2Te_4\) on \(BaF_2\)-substrates by the co-evaporation of its binary constituents. The structural analysis is conducted along several suitable probes such as X-ray diffraction (XRD, XRR), AFM and scanning tunnelling electron microscopy (STEM). It is furthermore found that the growth of a single septuple-layer of \(MnBi_2Te_4\) on the surface of \(Bi_2Te_3\) can be facilitated. By using X-ray absorption and circular magnetic dichroism (XAS, XMCD), the magnetic properties of \(MnBi_2Te_4\) are explored down to the monolayer limit. The layered nature of the vdW crystal and a strong uniaxial magnetocrystalline anisotropy establish stable out-of plane magnetic order at the surface of \(MnBi_2Te_4\), which is stable even down to the 2D limit. Pushing the material system to there, i.e. a single SL \(MnBi_2Te_4\) further allows to study the phase transition of this 2D ferromagnet and extract its critical behaviour with \(T_c \, = \, 14.89~k\) and \(\beta \, = \, 0.484\). Utilizing bulk crystals of the ferromagnetic \(Fe_3GeTe_2\) as substrate allows to influence, enhance and bias the magnetism in the single SL of \(MnBi_2Te_4\). By growing heterostructures of the type \(MnBi_2Te_4\) -- n layer \(Bi_2Te_3\) -- \(Fe_3GeTe_2\)for n between 0 and 2, it is shown, that a considerable magnetic coupling can be introduced between the \(MnBi_2Te_4\) top-layer and the substrate. Finally the interplay between topology and magnetism in the ferromagnetic extension is studied directly by angle-resolved photoemission spectroscopy. The heterostructure is found to host a linearly dispersing TSS at the centre of the Brillouin zone. Using low temperature and high-resolution ARPES a large magnetic gap opening of \(\sim\) 35 meV is found at the Dirac point of the TSS. By following its temperature evolution, it is apparent that the scaling behaviour coincides with the magnetic order parameter of the modified surface.}, subject = {Molekularstrahlepitaxie}, language = {en} } @phdthesis{Bauernfeind2023, author = {Bauernfeind, Maximilian Josef Xaver}, title = {Epitaxy and Spectroscopy of Two-Dimensional Adatom Systems: the Elemental Topological Insulator Indenene on SiC}, doi = {10.25972/OPUS-31166}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311662}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Two-dimensional (2D) topological insulators are a new class of materials with properties that are promising for potential future applications in quantum computers. For example, stanene represents a possible candidate for a topological insulator made of Sn atoms arranged in a hexagonal lattice. However, it has a relatively fragile low-energy spectrum and sensitive topology. Therefore, to experimentally realize stanene in the topologically non-trivial phase, a suitable substrate that accommodates stanene without compromising these topological properties must be found. A heterostructure consisting of a SiC substrate with a buffer layer of adsorbed group-III elements constitutes a possible solution for this problem. In this work, 2D adatom systems of Al and In were grown epitaxially on SiC(0001) and then investigated structurally and spectroscopically by scanning tunneling microscopy (STM) and photoelectron spectroscopy. Al films in the high coverage regime \( (\Theta_{ML}\approx2\) ML\( ) \) exhibit unusually large, triangular- and rectangular-shaped surface unit cells. Here, the low-energy electron diffraction (LEED) pattern is brought into accordance with the surface topography derived from STM. Another Al reconstruction, the quasi-one-dimensional (1D) Al phase, exhibits a striped surface corrugation, which could be the result of the strain imprinted by the overlayer-substrate lattice mismatch. It is suggested that Al atoms in different surface areas can occupy hexagonal close-packed and face-centered cubic lattice sites, respectively, which in turn lead to close-packed transition regions forming the stripe-like corrugations. On the basis of the well-known herringbone reconstruction from Au(111), a first structural model is proposed, which fits well to the structural data from STM. Ultimately, however, thermal treatments of the sample could not generate lower coverage phases, i.e. in particular, a buffer layer structure. Strong metallic signatures are found for In high coverage films \( (\Theta_{ML}\approx3\) to \(2\) ML\() \) by scanning tunneling spectroscopy (STS) and angle-resolved photoelectron spectroscopy (ARPES), which form a \( (7\times7) \), \( (6\times4\sqrt{3}) \), and \( (4\sqrt{3}\times4\sqrt{3}) \) surface reconstruction. In all these In phases electrons follow the nearly-free electron model. Similar to the Al films, thermal treatments could not obtain the buffer layer system. Surprisingly, in the course of this investigation a triangular In lattice featuring a \( (1\times1) \) periodicity is observed to host massive Dirac-like bands at \( K/K^{\prime} \) in ARPES. Based on this strong electronic similarity with graphene at the Brillouin zone boundary, this new structure is referred to as \textit{indenene}. An extensive theoretical analysis uncovers the emergence of an electronic honeycomb network based on triangularly arranged In \textit{p} orbitals. Due to strong atomic spin-orbit coupling and a comparably small substrate-induced in-plane inversion symmetry breaking this material system is rendered topologically non-trivial. In indenene, the topology is intimately linked to a bulk observable, i.e., the energy-dependent charge accumulation sequence within the surface unit cell, which is experimentally exploited in STS to confirm the non-trivial topological character. The band gap at \( K/K^{\prime} \), a signature of massive Dirac fermions, is estimated by ARPES to approximately 125 meV. Further investigations by X-ray standing wave, STM, and LEED confirm the structural properties of indenene. Thus, this thesis presents the growth and characterization of the novel quantum spin Hall insulator material indenene.}, subject = {Dreiecksgitter}, language = {en} } @phdthesis{Friedrich2023, author = {Friedrich, Felix}, title = {Magnetic Excitations in Single and Coupled Atoms on Surfaces: From the Kondo Effect to Yu-Shiba-Rusinov States}, doi = {10.25972/OPUS-32069}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-320699}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Magnetic systems underlie the physics of quantum mechanics when reaching the limit of few or even single atoms. This behavior limits the minimum size of magnetic bits in data storage devices as spontaneous switching of the magnetization leads to the loss of information. On the other hand, exactly these quantum mechanic properties allow to use such systems in quantum computers. Proposals to realize qubits involve the spin states of single atoms as well as topologically protected Majorana zero modes, that emerge in coupled systems of magnetic atoms in proximity to a superconductor. In order to implement and control the proposed applications, a detailed understanding of atomic spins and their interaction with the environment is required. In this thesis, two different systems of magnetic adatoms coupled to metallic and superconducting surfaces are studied by means of scanning tunneling microscopy (STM) and spectroscopy: Co atoms on the clean Cu(111) were among the first systems exhibiting signatures of the Kondo effect in an individual atom. Yet, a recent theoretical work proposed an alternative interpretation of these early experimental results, involving a newly described many-body state. Spin-averaged and -polarized experiments in high magnetic fields presented in this thesis confirm effects beyond the Kondo effect that determine the physics in these Co atoms and suggest a potentially even richer phenomenology than proposed by theory. The second studied system are single and coupled Fe atoms on the superconducting Nb(110) surface. Magnetic impurities on superconducting surfaces locally induce Yu-Shiba-Rusinov (YSR) states inside the superconducting gap due to their pair breaking potential. Coupled systems of such impurities exhibit YSR bands and, if the bands cross the Fermi level such that the band structure is inverted, host Majorana zero modes. Using the example of Fe atoms on Nb(110), the YSR states' dependence on the adatom-substrate interaction as well as the interatomic YSR state coupling is investigated. In the presence of oxygen on the Nb surface, the adatom-substrate interaction is shown to be heavily modified and the YSR states are found to undergo a quantum phase transition, which can be directly linked to a modified Kondo screening. STM tips functionalized with CO molecules allow to resolve self-assembled one-dimensional chains of Fe atoms on the clean Nb(110) surface to study the YSR states' coupling. Mapping out the states' wave functions reveals their symmetry, which is shown to alter as a function of the states' energy and number of atoms in the chain. These experimental results are reproduced in a simple tight-binding model, demonstrating a straightforward possibility to describe also more complex YSR systems toward engineered, potentially topologically non-trivial states.}, subject = {Rastertunnelmikroskopie}, language = {en} } @phdthesis{Jung2023, author = {Jung, Johannes}, title = {Wechselwirkungen zwischen Kantenzust{\"a}nden auf dem topologisch kristallinen Isolator Pb\(_{1-x}\)Sn\(_x\)Se}, doi = {10.25972/OPUS-29861}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-298616}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Einerseits besteht die einfachste M{\"o}glichkeit zum Ladungs- und Informationstransport zwischen zwei Punkten in deren direkter Verbindung durch eindimensionale Kan{\"a}le. Andererseits besitzen topologische Materialien exotische und {\"a}ußerst vorteilhafte Eigenschaften, weshalb es nahe liegt, dass schon bald neue Anwendungen aus ihnen realisiert werden. Wenn diese beiden Entwicklungen zusammenkommen, dann ist ein grundlegendes Verst{\"a}ndnis von Quanteninterferenz oder Hybridisierungseffekten in eindimensionalen, topologischen Kan{\"a}len von fundamentaler Wichtigkeit. Deshalb werden in der vorliegenden Arbeit Wechselwirkungen von eindimensionalen, topologisch gesch{\"u}tzten Kantenzust{\"a}nden, die an ungeradzahligen Stufenkanten auf der (001)-Oberfl{\"a}che von Pb1-xSnxSe auftreten, untersucht. Aufgrund der lateralen Lokalisierung auf wenige Nanometer um eine Stufenkante herum und der Notwendigkeit zwischen gerad- und ungeradzahligen Stufenkantenh{\"o}hen zu unterscheiden, bieten sich die Rastertunnelmikroskopie und -spektroskopie als Methoden an. Die neu entdeckten Kopplungs- bzw. Wechselwirkungseffekte zwischen benachbarten Kantenzust{\"a}nden treten auf, sobald der Stufe zu Stufe Abstand einen kritischen Wert von dkri ≈ 25nm unterschreitet. Dieses Kriterium kann durch verschiedene r{\"a}umliche Anordnungen von Stufenkanten erf{\"u}llt werden. Infolgedessen werden sich kreuzende, parallel verlaufende und zusammenlaufende Stufenkanten genauer untersucht. Bei letzteren ver{\"a}ndert sich entlang der Struktur kontinuierlich der Abstand und damit die Kopplungsst{\"a}rke zwischen den beiden Randkan{\"a}len. Infolgedessen wurden drei Koppelungsregime identifiziert. (I) Ausgehend von einer schwachen Wechselwirkung zeigt der f{\"u}r die Kantenzust{\"a}nde charakteristische Peak im Spektrum zun{\"a}chst eine Verbreiterung und Verminderung der Intensit{\"a}t. (II) Mit weiter zunehmender Wechselwirkung beginnt sich der Zustand in zwei Peaks aufzuspalten, sodass ab dkri ≈ 15nm an beiden Stufenkanten durchgehen eine Doppelpeak zu beobachten ist . Mit weiter abnehmendem Abstand erreicht die Aufspaltung Werte von einigen 10 meV, w{\"a}hrend sich die Intensit{\"a}t weiter reduziert. (III) Sobald zwei Stufenkanten weniger als etwa 5nm voneinander getrennt sind, konvergieren aufgrund der schwindenden Intensit{\"a}t und des sinkenden energetischen Abstands der beiden Peaks zu den van Hove Singularit{\"a}ten die Spektren an den Stufenkanten gegen das Spektrum {\"u}ber einer Terrasse. i Die Aufspaltung verl{\"a}uft in den Bereichen I und II asymmetrisch, d. h. ein Peak verbleibt ungef{\"a}hr bei der Ausgangsenergie, w{\"a}hrend der andere mit zunehmender Kopplung immer weiter weg schiebt. Bez{\"u}glich der Asymmetrie kann kein Unterschied festgestellt werden, ob die zusammenlaufenden Stufenkanten eine Insel oder Fehlstelleninsel bilden oder ob die Stufenkanten sogar g{\"a}nzlich parallel verlaufen. Es zeigt sich keine Pr{\"a}ferenz, ob zun{\"a}chst der niederenergetische oder der hochenergetische Peak schiebt. Erst im Regime starker Kopplung (III) kann beobachtet werden, dass beide Peaks die Ausgangsenergie deutlich verlassen. Im Gegensatz dazu kann bei sich kreuzenden Stufen ein erheblicher Einfluss der Geometrie, in Form des eingeschlossenen Winkels, auf das Spektrum beobachtet werden. Unabh{\"a}ngig vom Winkel existiert am Kreuzungspunkt selbst kein Kantenzustand mehr. Die Zust{\"a}nde an den vier Stufen beginnen, abh{\"a}ngig vom Winkel, etwa 10-15nm vor dem Kreuzungspunkt abzuklingen. {\"U}berraschenderweise zeigt sich dabei, dass im Fall rechtwinkliger Stufen gar keine Aufspaltung zu beobachten ist, w{\"a}hrend bei allen anderen Winkeln ein Doppelpeak festgestellt werden kann. Diese Entdeckung deutet auf Orthogonalit{\"a}t bez{\"u}glich einer Quantenzahl bei den beteiligten Kantenzust{\"a}nde hin. Neben einer nur theoretisch vorhergesagten Spinpolarisation kann dieser Effekt auch von dem orbitalem Charakter der beteiligten Dirac-Kegel verursacht sein. Da der topologische Schutz in Pb1-xSnxSe durch Kristallsymmetrien garantiert ist, wird als letzter intrinsischer Effekt der Einfluss von eindimensionalen Defekten auf die Kantenzust{\"a}nde untersucht. Ber{\"u}cksichtigt werden dabei ein nicht n{\"a}her klassifizierbarer, oberfl{\"a}chennaher Defekt und Schraubversetzungen. In beiden F{\"a}llen kann ebenfalls eine Aufspaltung des Kantenzustands in einen Doppelpeak gezeigt werden. Im zweiten Teil dieser Arbeit werden die Grundlagen f{\"u}r eine Wiederverwendung von (Pb,Sn)Se-Oberfl{\"a}chen bei zuk{\"u}nftige Experimenten mit (magnetischen) Adatomen geschaffen. Durch Kombination von Inoenzerst{\"a}ubung und Tempern wird dabei nicht nur eine gereinigte Oberfl{\"a}che erzeugt, sondern es kann auch das Ferminiveau gezielt erh{\"o}ht oder gesenkt werden. Dieser Effekt beruht auf eine Modifikation der Sn- Konzentration und der von ihr kontrollierten Anzahl an Defektelektronen. Als letztes sind erste Messungen an Cu- und Fe-dotierte Proben gezeigt. Durch die Adatome tritt eine n-Dotierung auf, welche den Dirac-Punkt des Systems in Richtung des Ferminiveaus verschiebt. Sobald er dieses erreicht hat kommt es zu Wechselwirkungsph{\"a}nomenen an freistehenden Stufenkanten. Dies f{\"u}hrt zu einer Doppelpeakstruktur mit einer feinen Aufspaltung von wenigen meV. Das Ph{\"a}nomen ist auf ein schmales Energiefenster beschr{\"a}nkt, bei dem die Lage des Dirac-Punkts nur etwa 5 meV (in beide Richtungen) von der des Ferminiveaus abweichen darf.}, subject = {Topologischer Isolator}, language = {de} } @phdthesis{Reis2022, author = {Reis, Felix}, title = {Realization and Spectroscopy of the Quantum Spin Hall Insulator Bismuthene on Silicon Carbide}, doi = {10.25972/OPUS-25825}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258250}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Topological matter is one of the most vibrant research fields of contemporary solid state physics since the theoretical prediction of the quantum spin Hall effect in graphene in 2005. Quantum spin Hall insulators possess a vanishing bulk conductivity but symmetry-protected, helical edge states that give rise to dissipationless charge transport. The experimental verification of this exotic state of matter in 2007 lead to a boost of research activity in this field, inspired by possible ground-breaking future applications. However, the use of the quantum spin Hall materials available to date is limited to cryogenic temperatures owing to their comparably small bulk band gaps. In this thesis, we follow a novel approach to realize a quantum spin Hall material with a large energy gap and epitaxially grow bismuthene, i.e., Bi atoms adopting a honeycomb lattice, in a \((\sqrt{3}\times\sqrt{3})\) reconstruction on the semiconductor SiC(0001). In this way, we profit both from the honeycomb symmetry as well as the large spin-orbit coupling of Bi, which, in combination, give rise to a topologically non-trivial band gap on the order of one electronvolt. An in-depth theoretical analysis demonstrates that the covalent bond between the Si and Bi atoms is not only stabilizing the Bi film but is pivotal to attain the quantum spin Hall phase. The preparation of high-quality, unreconstructed SiC(0001) substrates sets the basis for the formation of bismuthene and requires an extensive procedure in ultra-pure dry H\(_2\) gas. Scanning tunneling microscopy measurements unveil the (\(1\times1\)) surface periodicity and smooth terrace planes, which are suitable for the growth of single Bi layers by means of molecular beam epitaxy. The chemical configuration of the resulting Bi film and its oxidation upon exposure to ambient atmosphere are inspected with X-ray photoelectron spectroscopy. Angle-resolved photoelectron spectroscopy reveals the excellent agreement of probed and calculated band structure. In particular, it evidences a characteristic Rashba-splitting of the valence bands at the K point. Scanning tunneling spectroscopy probes signatures of this splitting, as well, and allows to determine the full band gap with a magnitude of \(E_\text{gap}\approx0.8\,\text{eV}\). Constant-current images and local-density-of-state maps confirm the presence of a planar honeycomb lattice, which forms several domains due to different, yet equivalent, nucleation sites of the (\(\sqrt{3}\times\sqrt{3}\))-Bi reconstruction. Differential conductivity measurements demonstrate that bismuthene edge states evolve at atomic steps of the SiC substrate. The probed, metallic local density of states is in agreement with the density of states expected from the edge state's energy dispersion found in density functional theory calculations - besides a pronounced dip at the Fermi level. By means of temperature- and energy-dependent tunneling spectroscopy it is shown that the spectral properties of this suppressed density of states are successfully captured in the framework of the Tomonaga-Luttinger liquid theory and most likely originate from enhanced electronic correlations in the edge channel.}, subject = {Zweidimensionales Material}, language = {en} } @phdthesis{Leisegang2021, author = {Leisegang, Markus}, title = {Eine neue Methode zur Detektion ballistischen Transports im Rastertunnelmikroskop: Die Molekulare Nanosonde}, doi = {10.25972/OPUS-25076}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250762}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Verlustarmer Ladungstr{\"a}gertransport ist f{\"u}r die Realisierung effizienter und kleiner elektronischer Bauteile von großem Interesse. Dies hilft entstehende W{\"a}rme zu minimieren und den Energieverbrauch gleichzeitig zu reduzieren. Einzelne Streuprozesse, die den Verlust bei Ladungstr{\"a}gertransport bestimmen, laufen jedoch auf L{\"a}ngenskalen von Nano- bis Mikrometern ab. Um diese detailliert untersuchen zu k{\"o}nnen, bedarf es Messmethoden mit hoher zeitlicher oder {\"o}rtlicher Aufl{\"o}sung. F{\"u}r Letztere gibt es wenige etablierte Experimente, h{\"a}ufig basierend auf der Rastertunnelmikroskopie, welche jedoch verschiedenen Einschr{\"a}nkungen unterliegen. Um die M{\"o}glichkeiten der Detektion von Ladungstr{\"a}gertransport auf Distanzen der mittleren freien Wegl{\"a}nge und damit im ballistischen Regime zu verbessern, wurde im Rahmen dieser Dissertation die Molekulare Nanosonde charakterisiert und etabliert. Diese Messmethode nutzt ein einzelnes Molek{\"u}l als Detektor f{\"u}r Ladungstr{\"a}ger, welche mit der Sondenspitze des Rastertunnelmikroskops (RTM) wenige Nanometer entfernt vom Molek{\"u}l in das untersuchte Substrat injiziert werden. Die hohe Aufl{\"o}sung des RTM in Kombination mit der geringen Ausdehnung des molekularen Detektors erm{\"o}glicht dabei atomare Kontrolle von Transportpfaden {\"u}ber wenige Nanometer. Der erste Teil dieser Arbeit widmet sich der Charakterisierung der Molekularen Nanosonde. Hierf{\"u}r werden zun{\"a}chst die elektronischen Eigenschaften dreier Phthalocyanine mittels Rastertunnelspektroskpie untersucht, welche im Folgenden zur Charakterisierung des Molek{\"u}ls als Detektor Anwendung finden. Die anschließende Analyse der Potentiallandschaft der Tautomerisation von H2Pc und HPc zeigt, dass die NH- Streckschwinung einem effizienten Schaltprozess zu Grunde liegt. Darauf basierend wird der Einfluss der Umgebung anhand von einzelnen Adatomen sowie des Substrats selbst auf den molekularen Schalter analysiert. In beiden F{\"a}llen zeigt sich eine signifikante {\"A}nderung der Potentiallandschaft der Tautomerisation. Anschließend wird der Einfluss geometrischer Eigenschaften des Molek{\"u}ls selbst untersucht, wobei sich eine Entkopplung vom Substrat auf Grund von dreidimensionalen tert-Butyl-Substituenten ergibt. Zus{\"a}tzlich zeigt sich bei dem Vergleich von Naphthalocyanin zu Phthalocyanin der Einfluss lateraler Ausdehnung auf die Detektionsfl{\"a}che, was einen nicht-punktf{\"o}rmigen Detektor best{\"a}tigt. Im letzten Abschnitt werden zwei Anwendungen der Molekularen Nanosonde pr{\"a}sentiert. Zun{\"a}chst wird mit Phthalocyanin auf Ag(111) demonstriert, dass die Interferenz von ballistischen Ladungstr{\"a}gern auf Distanzen von wenigen Nanometern mit dieser Technik detektierbar ist. Im zweiten Teil zeigt sich, dass der ballistische Transport auf einer Pd(110)-Oberfl{\"a}che durch die anisotrope Reihenstruktur auf atomarer Skala moduliert wird.}, subject = {Rastertunnelmikroskopie}, language = {de} } @phdthesis{Adler2021, author = {Adler, Florian Rudolf}, title = {Electronic Correlations in Two-dimensional Triangular Adatom Lattices}, doi = {10.25972/OPUS-24175}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241758}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Two-dimensional triangular lattices of group IV adatoms on semiconductor substrates provide a rich playground for the investigation of Mott-Hubbard physics. The possibility to combine various types of adatoms and substrates makes members of this material class versatile model systems to study the influence of correlation strength, band filling and spin-orbit coupling on the electronic structure - both experimentally and with dedicated many-body calculation techniques. The latter predict exotic ground states such as chiral superconductivity or spin liquid behavior for these frustrated lattices, however, experimental confirmation is still lacking. In this work, three different systems, namely the \(\alpha\)-phases of Sn/SiC(0001), Pb/Si(111), and potassium-doped Sn/Si(111) are investigated with scanning tunneling microscopy and photoemission spectroscopy in this regard. The results are potentially relevant for spintronic applications or quantum computing. For the novel group IV triangular lattice Sn/SiC(0001), a combined experimental and theoretical study reveals that the system features surprisingly strong electronic correlations because they are boosted by the substrate through its partly ionic character and weak screening capabilities. Interestingly, the spectral function, measured for the first time via angle-resolved photoemission, does not show any additional superstructure beyond the intrinsic \(\sqrt{3} \times \sqrt{3} R30^{\circ}\) reconstruction, thereby raising curiosity regarding the ground-state spin pattern. For Pb/Si(111), preceding studies have noted a phase transition of the surface reconstruction from \(\sqrt{3} \times \sqrt{3} R30^{\circ}\) to \(3 \times 3\) at 86 K. In this thesis, investigations of the low-temperature phase with high-resolution scanning tunneling microscopy and spectroscopy unveil the formation of a charge-ordered ground state. It is disentangled from a concomitant structural rearrangement which is found to be 2-up/1-down, in contrast to previous predictions. Applying an extended variational cluster approach, a phase diagram of local and nonlocal Coulomb interactions is mapped out. Based on a comparison of theoretical spectral functions with scattering vectors found via quasiparticle interference, Pb/Si(111) is placed in said phase diagram and electronic correlations are found to be the driving force of the charge-ordered state. In order to realize a doped Mott insulator in a frustrated geometry, potassium was evaporated onto the well-known correlated Sn/Si(111) system. Instead of the expected insulator-to-metal transition, scanning tunneling spectroscopy data indicates that the electronic structure of Sn/Si(111) is only affected locally around potassium atoms while a metallization is suppressed. The potassium atoms were found to be adsorbed on empty \(T_4\) sites of the substrate which eventually leads to the formation of two types of K-Sn alloys with a relative potassium content of 1/3 and 1/2, respectively. Complementary measurements of the spectral function via angle-resolved photoemission reveal that the lower Hubbard band of Sn/Si(111) gradually changes its shape upon potassium deposition. Once the tin and potassium portion on the surface are equal, this evolution is complete and the system can be described as a band insulator without the need to include Coulomb interactions.}, subject = {Rastertunnelmikroskopie}, language = {en} } @phdthesis{Bathon2021, author = {Bathon, Thomas}, title = {Gezielte Manipulation Topologischer Isolatoren}, doi = {10.25972/OPUS-23920}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239204}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Neue physikalische Erkenntnisse vervollst{\"a}ndigen die Sicht auf die Welt und erschließen gleichzeitig Wege f{\"u}r Folgeexperimente und technische Anwendungen. Das letzte Jahrzehnt der Festk{\"o}rperforschung war vom zunehmenden Fokus der theoretischen und experimentellen Erkundung topologischer Materialien gepr{\"a}gt. Eine fundamentale Eigenschaft ist ihre Resistenz gegen{\"u}ber solchen St{\"o}rungen, welche spezielle physikalische Symmetrien nicht verletzen. Insbesondere die Topologischen Isolatoren - Halbleiter mit isolierenden Volumen- sowie gleichzeitig leitenden und spinpolarisierten Oberfl{\"a}chenzust{\"a}nden - sind vielversprechende Kandidaten zur Realisierung breitgef{\"a}cherter spintronischer Einsatzgebiete. Bis zur Verwirklichung von Quantencomputern und anderer, heute noch exotisch anmutender Konzepte bedarf es allerdings ein umfassenderes Verst{\"a}ndnis der grundlegenden, physikalischen Zusammenh{\"a}nge. Diese kommen vor allem an Grenzfl{\"a}chen zum Tragen, weshalb oberfl{\"a}chensensitive Methoden bei der Entdeckung der Topologischen Isolatoren eine wichtige Rolle spielten. Im Rahmen dieser Arbeit werden daher strukturelle, elektronische und magnetische Eigenschaften Topologischer Isolatoren mittels Tieftemperatur-Rastertunnelmikroskopie und -spektroskopie sowie begleitenden Methoden untersucht. Die Ver{\"a}nderung der Element-Ausgangskonzentration w{\"a}hrend dem Wachstum des prototypischen Topologischen Isolators Bi2Te3 f{\"u}hrt zur Realisierung eines topologischen p-n {\"U}bergangs innerhalb des Kristalls. Bei einem spezifischen Verh{\"a}ltnis von Bi zu Te in der Schmelze kommt es aufgrund unterschiedlicher Erstarrungstemperaturen der Komponenten zu einer Ansammlung von Bi- und Te-reichen Gegenden an den gegen{\"u}berliegenden Enden des Kristalls. In diesen bildet sich infolge des jeweiligen Element{\"u}berschusses durch Kristallersetzungen und -fehlstellen eine Dotierung des Materials aus. Daraus resultiert die Existenz eines {\"U}bergangsbereiches, welcher durch Transportmessungen verifiziert werden kann. Mit der r{\"a}umlich aufl{\"o}senden Rastertunnelmikroskopie wird diese Gegend lokalisiert und strukturell sowie elektronisch untersucht. Innerhalb des {\"U}bergangsbereiches treten charakteristische Kristalldefekte beider Arten auf - eine Defektunterdr{\"u}ckung bleibt folglich aus. Dennoch ist dort der Beitrag der Defekte zum Stromtransport aufgrund ihres gegens{\"a}tzlichen Dotiercharakters vernachl{\"a}ssigbar, sodass der topologische Oberfl{\"a}chenzustand die maßgeblichen physikalischen Eigenschaften bestimmt. Dar{\"u}ber hinaus tritt der {\"U}bergangsbereich in energetischen und r{\"a}umlichen Gr{\"o}ßenordnungen auf, die Anwendungen bei Raumtemperatur denkbar machen. Neben der Ver{\"a}nderung Topologischer Isolatoren durch den gezielten Einsatz intrinsischer Kristalldefekte bieten magnetische St{\"o}rungen die M{\"o}glichkeit zur Pr{\"u}fung des topologischen Oberfl{\"a}chenzustandes auf dessen Widerstandsf{\"a}higkeit sowie der gegenseitigen Wechselwirkungen. Die Zeitumkehrinvarianz ist urs{\"a}chlich f{\"u}r den topologischen Schutz des Oberfl{\"a}chenzustandes, weshalb magnetische Oberfl{\"a}chen- und Volumendotierung diese Symmetrie brechen und zu neuartigem Verhalten f{\"u}hren kann. Die Oberfl{\"a}chendotierung Topologischer Isolatoren kann zu einer starken Bandverbiegung und einer energetischen Verschiebung des Fermi-Niveaus f{\"u}hren. Bei einer wohldosierten Menge der Adatome auf p-dotiertem Bi2Te3 kommt die Fermi-Energie innerhalb der Volumenzustands-Bandl{\"u}cke zum Liegen. Folglich wird bei Energien rund um das Fermi-Niveau lediglich der topologische Oberfl{\"a}chenzustand bev{\"o}lkert, welcher eine Wechselwirkung zwischen den Adatomen vermitteln kann. F{\"u}r Mn-Adatome kann R{\"u}ckstreuung beobachtet werden, die aufgrund der Zeitumkehrinvarianz in undotierten Topologischen Isolatoren verboten ist. Die {\"u}berraschenderweise starken und fokussierten Streuintensit{\"a}ten {\"u}ber mesoskopische Distanzen hinweg resultieren aus der ferromagnetischen Kopplung nahegelegener Adsorbate, was durch theoretische Berechnungen und R{\"o}ntgendichroismus-Untersuchungen best{\"a}tigt wird. Gleichwohl wird f{\"u}r die Proben ein superparamagnetisches Verhalten beobachtet. Im Gegensatz dazu f{\"u}hrt die ausreichende Volumendotierung von Sb2Te3 mit V-Atomen zu einem weitreichend ferromagnetischen Verhalten. Erstaunlicherweise kann trotz der weitl{\"a}ufig verbreiteten Theorie Zeitumkehrinvarianz-gebrochener Dirac-Zust{\"a}nde und der experimentellen Entdeckung des Anormalen Quanten-Hall-Effektes in {\"a}hnlichen Probensystemen keinerlei Anzeichen einer spektroskopischen Bandl{\"u}cke beobachtet werden. Dies ist eine direkte Auswirkung der dualen Natur der magnetischen Adatome: W{\"a}hrend sie einerseits eine magnetisch induzierte Bandl{\"u}cke {\"o}ffnen, besetzen sie diese durch St{\"o}rstellenresonanzen wieder. Ihr stark lokaler Charakter kann durch die Aufnahme ihrer r{\"a}umlichen Verteilung aufgezeichnet werden und f{\"u}hrt zu einer Mobilit{\"a}ts-Bandl{\"u}cke, deren Indizien durch vergleichende Untersuchungen an undotiertem und dotiertem Sb2Te3 best{\"a}tigt werden.}, subject = {Rastertunnelmikroskopie}, language = {de} } @phdthesis{Vogt2020, author = {Vogt, Matthias Guido}, title = {Elektronische Eigenschaften von Wabengittern mit starker Spin-Bahn-Kopplung}, doi = {10.25972/OPUS-20750}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-207506}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Im Rahmen dieser Arbeit wurden die elektronischen Eigenschaften von Graphen auf Metalloberfl{\"a}chen mittels Rastertunnelmikroskopie und Quasiteilcheninterferenz (englisch quasiparticle interference, QPI)-Messungen untersucht. Durch das Verwenden schwerer Substrate sollte die Spin-Bahn-Wechselwirkung des Graphen verst{\"a}rkt werden und damit eine Bandl{\"u}cke am K-Punkt der Bandstruktur mittels QPI beobachtet werden. Um das Messen von QPI auf Graphen zu testen, wurde auf der Oberfl{\"a}che eines SiC(0001)-Kristalls durch Erhitzen Graphen erzeugt und mit dem Rastertunnelmikroskop untersucht. Dieses System wurde schon ausf{\"u}hrlich in der Literatur beschrieben und bereits bekannte QPI-Messungen von Streuringen, die auf den Dirac-Kegeln des Graphen am K-Punkt basieren, konnte ich auf gr/SiC(0001) in guter Qualit{\"a}t erfolgreich reproduzieren. Anschließend wurde Graphen nach einem wohlbekannten Verfahren durch Aufbringen von Ethylen auf ein erhitztes Ir(111)-Substrat erzeugt. Dieses gr/Ir(111)-System diente auch als Grundlage f{\"u}r Interkalationsversuche von Bismut (gr/Bi/Ir(111)) und Gadolinium (gr/Gd/Ir(111)) zwischen das Graphen und das Substrat. Auf gr/Bi/Ir(111) wurde ein schon aus der Literatur bekanntes Netzwerk aus Versetzungslinien beobachtet, dem zus{\"a}tzlich eine Temperaturabh{\"a}ngigkeit nachgewiesen werden konnte. Beim Versuch, Gadolinium zu interkalieren, wurden zwei verschieden Oberfl{\"a}chenstrukturen beobachtet, die auf eine unterschiedlich Anordnung bzw. Menge des interkalierten Gadoliniums zur{\"u}ckzuf{\"u}hren sein k{\"o}nnten. Auf keinem dieser drei Systeme konnten allerdings Streuringe mittels QPI beobachtet werden. Als Vorbereitung der Interkalation von Gadolinium wurden dessen Wachstum und magnetische Eigenschaften auf einem W(110)-Kristall untersucht. Dabei konnte eine aus der Literatur bekannte temperaturabh{\"a}ngige Austauschaufspaltung reproduziert werden. Dar{\"u}ber hinaus konnten sechs verschieden magnetische Dom{\"a}nen beobachtet werden. Zus{\"a}tzlich sind auf der Oberfl{\"a}che magnetische Streifen auszumachen, die m{\"o}glicherweise auf einer Spinspirale basieren. Als Grundlage f{\"u}r die m{\"o}gliche zuk{\"u}nftige Erzeugung Graphen-artiger Molek{\"u}lgitter wurde das Wachstum von H-TBTQ und Me-TBTQ auf Ag(111) untersucht. Die Molek{\"u}le richten sich dabei nach der Oberfl{\"a}chenstruktur des Silber aus und bilden l{\"a}ngliche Inseln, deren Kanten in drei Vorzugsrichtungen verlaufen. Auf H-TBTQ wurde zudem eine zweite, Windm{\"u}hlen-artige Ausrichtung der Molek{\"u}le auf der Oberfl{\"a}che beobachtet. Auf den mit den Molek{\"u}len bedeckten Stellen der Oberfl{\"a}che wurde eine Verschiebung des Ag-Oberfl{\"a}chenzustands beobachtet, die mit einem Ladungstransfer vom Ag(111)-Substrat auf die TBTQ-Molek{\"u}le zu erkl{\"a}ren sein k{\"o}nnte.}, subject = {Spin-Bahn-Wechselwirkung}, language = {de} } @phdthesis{Schuetz2020, author = {Sch{\"u}tz, Philipp}, title = {Dimensionality-Driven Metal-Insulator Transition in Spin-Orbit-Coupled SrIrO\(_3\)}, doi = {10.25972/OPUS-21278}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212781}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {In the past decades correlated-electron physics due to strong Coulomb interactions and topological physics caused by band inversion often induced by strong spin-orbit coupling have been the workhorses of solid state research. While commonly considered as disparate phenomena, it was realized in the early 2010s that the interplay between the comparably strong Coulomb and spin-orbit interactions in the \$5d\$ transition metal oxides may result in hitherto unforeseen properties. The layered perovskite Sr\$\textsubscript{2}\$IrO\$\textsubscript{4}\$ has attracted special attention due to the observation of an unconventional Mott-insulating phase and predictions of exotic superconductivity. Less is known about its three-dimensional counterpart SrIrO\$\textsubscript{3}\$, since rather than the cubic perovskite structure it adopts the thermodynamically stable hexagonal polymorph thereof. This thesis therefore sets out to establish the synthesis of epitaxially stabilized perovskite SrIrO\$\textsubscript{3}\$ by pulsed laser deposition and to investigate its electronic and magnetic structure by state-of-the-art x-ray spectroscopy techniques. In this endeavor the appropriate thermodynamic conditions for the growth of high-quality SrIrO\$\textsubscript{3}\$ are identified with a focus on the prevention of cation off-stoichiometry and the sustainment of layer-by-layer growth. In the thus-optimized films the cubic perovskite symmetry is broken by a tetragonal distortion due to epitaxial strain and additional cooperative rotations of the IrO\$\textsubscript{6}\$ octahedra. As a consequence of the thermodynamic instability of the IrO\$\textsubscript{2}\$ surface layer, the films unexpectedly undergo a conversion to a SrO termination during growth. In an attempt to disentangle the interplay between spin-orbit and Coulomb interaction the three-dimensional electronic structure of perovskite SrIrO\$\textsubscript{3}\$ is investigated in a combined experimental and theoretical approach using soft x-ray angle-resolved photoelectron spectroscopy and \textit{ab initio} density functional theory calculations. The experimentally found metallic ground state hosts coherent quasiparticle peaks with a well-defined Fermi surface and is theoretically described by a single half-filled band with effective total angular momentum \$J_\text{eff} = 1/2\$ only upon incorporation of a sizeable local Coulomb repulsion and -- to a lesser extent -- the broken cubic crystal symmetry in the film. Upon reduction of the SrIrO\$\textsubscript{3}\$ thickness below a threshold of four unit cells the scales are tipped in favor of a Mott-insulating phase as the on-site Coulomb repulsion surmounts the diminishing kinetic energy upon transition into the two-dimensional regime. Concomitantly, a structural transition occurs because the corner-shared octahedral network between substrate and film imposes constraints upon the IrO\$\textsubscript{6}\$ octahedral rotations in the thin-film limit. The striking similarity between the quasi-two-dimensional spin-orbit-induced Mott insulator Sr\$\textsubscript{2}\$IrO\$\textsubscript{4}\$ and SrO-terminated SrIrO\$\textsubscript{3}\$ in the monolayer limit underlines the importance of dimensionality for the metal-insulator transition and possibly opens a new avenue towards the realization of exotic superconductivity in iridate compounds. Whether the analogy between SrIrO\$\textsubscript{3}\$ in the two-dimensional limit and its Ruddlesden-Popper bulk counterparts extends to their complex magnetic properties ultimately remains an open question, although no indications for a remanent (anti)ferromagnetic order were found. The unprecedented observation of an x-ray magnetic circular dichroism at the O~\$K\$-absorption edge of iridium oxides in an external magnetic field promises deeper insights into the intricate connection between the \$J_\text{eff} = 1/2\$ pseudospin state, its hybridization with the oxygen ligand states and the magnetic order found in the Ruddlesden-Popper iridates.}, subject = {Festk{\"o}rperphysik}, language = {en} } @phdthesis{Gabel2019, author = {Gabel, Judith}, title = {Interface Engineering of Functional Oxides: A Photoemission Study}, doi = {10.25972/OPUS-19227}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192275}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Due to their complex chemical structure transition metal oxides display many fascinating properties which conventional semiconductors lack. For this reason transition metal oxides hold a lot of promise for novel electronic functionalities. Just as in conventional semiconductor heterostructures, the interfaces between different materials play a key role in oxide electronics. The textbook example is the (001) interface between the band insulators LaAlO\(_3\) and SrTiO\(_3\) at which a two-dimensional electron system (2DES) forms. In order to utilize such a 2DES in prospective electronic devices, it is vital that the electronic properties of the interface can be controlled and manipulated at will. Employing photoelectron spectroscopy as well as electronic transport measurements, this thesis examines how such interface engineering can be realized in the case of the LaAlO\(_3\)/SrTiO\(_3\) heterostructure: By photoemission we manage to unambiguously distinguish the different mechanisms by which SrTiO\(_3\) can be doped with electrons. An electronic reconstruction is identified as the driving mechanism to render stoichiometric LaAlO\(_3\)/SrTiO\(_3\) interfaces metallic. The doping of the LaAlO\(_3\)/SrTiO\(_3\) heterointerface can furthermore be finely adjusted by changing the oxygen vacancy \(V_{\mathrm{O}}\) concentration in the heterostructure. Combining intense x-ray irradiation with oxygen dosing, we even achieve control over the \(V_{\mathrm{O}}\) concentration and, consequently, the doping in the photoemission experiment itself. Exploiting this method, we investigate how the band diagram of SrTiO\(_3\)-based heterostructures changes as a function of the \(V_{\mathrm{O}}\) concentration and temperature by hard x-ray photoemission spectroscopy. With the band bending in the SrTiO\(_3\) substrate changing as a function of the \(V_{\mathrm{O}}\) concentration, the interfacial band alignment is found to vary as well. The relative permittivity of the SrTiO\(_3\) substrate and, in particular, its dependence on temperature and electric field is identified as one of the essential parameters determining the electronic interface properties. That is also why the sample temperature affects the charge carrier distribution. The mobile charge carriers are shown to shift toward the SrTiO\(_3\) bulk when the sample temperature is lowered. This effect is, however, only pronounced if the total charge carrier concentration is small. At high charge carrier concentrations the charge carriers are always confined to the interface, independent of the sample temperature. The dependence of the electronic interface properties on the \(V_{\mathrm{O}}\) concentration is also investigated by a complementary method, viz. by electronic transport measurements. These experiments confirm that the mobile charge carrier concentration increases concomitantly to the \(V_{\mathrm{O}}\) concentration. The mobility of the charge carriers changes as well depending on the \(V_{\mathrm{O}}\) concentration. Comparing spectroscopy and transport results, we are able to draw conclusions about the processes limiting the mobility in electronic transport. We furthermore build a memristor device from our LaAlO\(_3\)/SrTiO\(_3\) heterostructures and demonstrate how interface engineering is used in practice in such novel electronic applications. This thesis furthermore investigates how the electronic structure of the 2DES is affected by the interface topology: We show that, akin to the (001) LaAlO\(_3\)/SrTiO\(_3\) heterointerface, an electronic reconstruction also renders the (111) interface between LaAlO\(_3\) and SrTiO\(_3\) metallic. The change in interface topology becomes evident in the Fermi surface of the buried 2DES which is probed by soft x-ray photoemission. Based on the asymmetry in the Fermi surface, we estimate the extension of the conductive layer in the (111)-oriented LaAlO\(_3\)/SrTiO\(_3\) heterostructure. The spectral function measured furthermore identifies the charge carriers at the interface as large polarons.}, subject = {{\"U}bergangsmetalloxide}, language = {en} } @phdthesis{Schmitt2019, author = {Schmitt, Martin}, title = {Strukturanalyse und magnetische Eigenschaften von Ketten aus 3d-{\"U}bergangsmetalloxiden auf Ir(001) und Pt(001)}, doi = {10.25972/OPUS-19182}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191823}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {In der vorliegenden Arbeit werden die strukturellen und magnetischen Eigenschaften verschiedener 3d-{\"U}bergangsmetalloxidketten (TMO-Ketten) auf Ir(001) und Pt(001) untersucht. Diese weisen eine (3 × 1) Struktur mit periodisch angeordneten Ketten auf, die nur {\"u}ber die Sauerstoffbindung an das Substrat gekoppelt sind. W{\"a}hrend die Struktur durch experimentelle und theoretische Untersuchungen best{\"a}tigt ist, liegen f{\"u}r die magnetischen Eigenschaften ausschließlich Rechnungen vor. Zur {\"U}berpr{\"u}fung dieser theoretischen Vorhersagen wird die Methode der spinpolarisierten Rastertunnelmikroskopie (SP-STM) verwendet, die die Abbildung der magnetischen Ordnung mit atomarer Aufl{\"o}sung erlaubt. Die Untersuchungen beginnen mit der Vorstellung der Ir(001) Oberfl{\"a}che, die eine (5 × 1) Rekonstruktion aufweist. Eine Aufhebung dieser Rekonstruktion erreicht man durch das Heizen des Ir-Substrats in Sauerstoffatmosph{\"a}re unter Bildung einer (2 × 1) Sauerstoffrekonstruktion. Die Qualit{\"a}t der Oberfl{\"a}che h{\"a}ngt dabei von der Wachstumstemperatur T und dem verwendeten Sauerstoffdruck pOx ab. Die bei T = 550°C und pOx = 1 × 10^-8 mbar hergestellte Sauerstoffrektonstruktion dient als Ausgangspunkt f{\"u}r die folgenden Pr{\"a}parationen von CoO2, FeO2 und MnO2-Ketten. Dazu wird jeweils eine drittel Monolage (ML) des {\"U}bergangsmetalls auf die Oberfl{\"a}che des Substrates gedampft und die Probe unter Sauerstoffatmosph{\"a}re ein weiteres Mal geheizt. Auf diese Weise kann die (3 × 1) Struktur der bekannten Ketten best{\"a}tigt und die Gruppe der TMO-Ketten um die CrO2-Ketten erweitert werden. In der einschl{\"a}gigen Fachliteratur wurden Vorhersagen bez{\"u}glich der magnetischen Struktur der TMO-Ketten publiziert, wonach entlang und zwischen CoO2-Ketten eine ferromagnetische (FM) und f{\"u}r FeO2 und MnO2-Ketten eine antiferromagnetische (AFM-) Kopplung vorliegt.W{\"a}hrend die {\"U}berpr{\"u}fung dieser Vorhersagen mit SP-STM f{\"u}r CoO2 und CrO2-Ketten keine Hinweise auf magnetische Strukturen liefert, liegen bei FeO2 und MnO2-Ketten unterschiedliche magnetische Phasen vor. In der Tat kann mit den experimentell gefundenen Einheitszellen die AFM-Kopplung entlang beider Ketten best{\"a}tigt werden. Im Gegensatz widersprechen die Kopplungen zwischen den Ketten den Berechnungen. Bei FeO2-Ketten liegt eine stabile FM Ordnung vor, die zu einer magnetischen (3 × 2) Einheitszelle mit einer leichten Magnetisierung in Richtung der Oberfl{\"a}chennormalen f{\"u}hrt (out-of-plane). Die MnO2-Ketten weichen ebenfalls von der berechneten magnetischen kollinearen Ordnung zwischen benachbarten Ketten ab und zeigen eine chirale Struktur. Durch die Rotation der Mn-Spins um 120° in der Probenebenen (in-plane) entsteht eine magnetische (9 × 2) Einheitszelle, deren Periode durch neue DFT-Rechnungen best{\"a}tigt wird. Nach diesen Berechnungen handelt es sich um eine Spinspirale, die durch die Dzyaloshinskii-Moriya (DM-) Wechselwirkung bei einem Energiegewinn von 0,3 meV pro Mn-Atom gegen{\"u}ber den kollinearen FM Zustand stabilisiert wird. Diese wird {\"a}hnlich wie bei bereits publizierten Clustern und Adatomen auf Pt(111) durch die Rudermann-Kittel-Kasuya-Yosida (RKKY-) Wechselwirkung vermittelt und erkl{\"a}rt den experimentell gefundenen einheitlichen Drehsinn der Spiralen. Die RKKY-Wechselwirkung zeigt eine starke Abh{\"a}ngigkeit von der Fermi-Oberfl{\"a}che des Substrats. Im folgenden Kapitel werden deshalb mit TMO-Ketten auf Pt(001) die strukturellen und magnetischen Eigenschaften auf einem weiteren Substrat analysiert, wobei zum Zeitpunkt der Arbeit nur die Existenz der CoO2-Ketten aus der Literatur bekannt war. Vergleichbar mit Ir(001) besitzt auch Pt(001) eine rekonstruierte Oberfl{\"a}che, die sich aber stabil gegen{\"u}ber Oxidation zeigt. Dadurch muss die drittel ML des {\"U}bergangsmetalls direkt auf die Rekonstruktion aufgedampft werden. Das Wachstum des {\"U}bergangsmetalls ist dabei von der Temperatur des Substrats abh{\"a}ngig und beeinflusst das Ergebnis der nachfolgenden Oxidation. Diese erfolgt analog zum Wachstum der Ketten auf Ir(001) durch das Heizen der Probe in Sauerstoffatmosph{\"a}re und resultiert nur f{\"u}r das Aufdampfen des {\"U}bergangsmetalls auf kalte Pt(001) Oberfl{\"a}chen in Ketten mit der Periode von 3aPt. Auf diese Weise kann nicht nur die (3 × 1) Struktur der CoO2-Ketten best{\"a}tigt werden, sondern auch durch atomare Aufl{\"o}sung die Gruppe der TMO-Ketten um MnO2-Ketten auf Pt(001) erweitert werden. Im Gegensatz dazu sind die nicht magnetischen Messungen im Fall von Fe nicht eindeutig. Zwar liegen auch hier Ketten im Abstand des dreifachen Pt Gittervektors vor, trotzdem ist die (3 × 1) Struktur nicht nachweisbar. Dies liegt an einer Korrugation mit einer Periode von 2aPt entlang der Ketten, was ein Hinweis auf eine Peierls Instabilit{\"a}t sein kann. Entsprechend dem Vorgehen f{\"u}r Ir(001) werden f{\"u}r die TMO-Ketten auf Pt(001) SP-STM Messungen durchgef{\"u}hrt und die Vorhersage einer AFM-Kopplung f{\"u}r CoO2-Ketten {\"u}berpr{\"u}ft. Auch hier k{\"o}nnen, wie im Fall von CoO2-Ketten und im Widerspruch zur Vorhersage, f{\"u}r beide Polarisationsrichtungen der Spitze keine magnetischen Strukturen gefunden werden. Dar{\"u}ber hinaus verhalten sich die MnO2-Ketten auf Pt(001) mit ihrer chiralen magnetischen Struktur {\"a}hnlich zu denen auf Ir(001). Dies best{\"a}tigt die Annahme einer indirekten DM-Wechselwirkung, wobei durch die 72° Rotation der Mn-Spins eine l{\"a}ngere Periode der zykloidalen Spinspirale festgestellt wird. Die Erkl{\"a}rung daf{\"u}r liegt in der Abh{\"a}ngigkeit der RKKY-Wechselwirkung vom Fermi-Wellenvektor des Substrats, w{\"a}hrend sich die DM-Wechselwirkung beim {\"U}bergang von Ir zu Pt nur wenig {\"a}ndert.}, subject = {Rastertunnelmikroskopie}, language = {de} } @phdthesis{Wilfert2019, author = {Wilfert, Stefan}, title = {Rastertunnelmikroskopische und -spektroskopische Untersuchung von Supraleitern und topologischen Supraleitern}, doi = {10.25972/OPUS-18059}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-180597}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Quantencomputer k{\"o}nnen manche Probleme deutlich effizienter l{\"o}sen als klassische Rechner. Bisherige Umsetzungen leiden jedoch an einer zu geringen Dekoh{\"a}renzzeit, weshalb die Lebenszeit der Quantenzust{\"a}nde einen limitierenden Faktor darstellt. Topologisch gesch{\"u}tzte Anregungen, wie Majorana-Fermionen, k{\"o}nnten hingegen dieses Hindernis {\"u}berwinden. Diese lassen sich beispielsweise in topologischen Supraleitern realisieren. Bis zum jetzigen Zeitpunkt existieren nur wenige Materialien, die dieses Ph{\"a}nomen aufweisen. Daher ist das Verst{\"a}ndnis der elektronischen Eigenschaften f{\"u}r solche Verbindungen von großer Bedeutung. In dieser Dissertation wird die Koexistenz von Supraleitung an der Probenoberfl{\"a}che und topologischem Oberfl{\"a}chenzustand (engl. topological surface state, TSS) auf potentiellen topologischen Supraleitern {\"u}berpr{\"u}ft. Diese beiden Bedingungen sind essentiell zur Ausbildung von topologischer Supraleitung in zeitumkehrgesch{\"u}tzten Systemen. Hierzu wird mittels Landaulevelspektroskopie und Quasiteilcheninterferenz das Vorhandensein des TSS am Ferminiveau auf Tl\$_{x}\$Bi\$_{2}\$Te\$_{3}\$ und Nb\$_{x}\$Bi\$_{2}\$Se\$_{3}\$ verifiziert, die mittels Transportmessungen als supraleitend identifiziert wurden. Anschließend folgen hochaufgel{\"o}ste Spektroskopien an der Fermienergie, um die supraleitenden Eigenschaften zu analysieren. Zur Interpretation der analysierten Eigenschaften wird zu Beginn der Ni-haltige Schwere-Fermion-Supraleiter TlNi\$_{2}\$Se\$_{2}\$ untersucht, der eine vergleichbare {\"U}bergangstemperatur besitzt. Anhand diesem werden die g{\"a}ngigen Messmethoden der Rastertunnelmikroskopie und -spektroskopie f{\"u}r supraleitende Proben vorgestellt und die Leistungsf{\"a}higkeit der Messapparatur demonstriert. Im Einklang mit der Literatur zeigt sich ein \$s\$-Wellencharakter des Paarungsmechanismus sowie die Formation eines f{\"u}r Typ~II-Supraleiter typischen Abrikosov-Gitters in schwachen externen Magnetfeldern. Im folgenden Teil werden die potentiellen topologischen Supraleiter Tl\$_{x}\$Bi\$_{2}\$Te\$_{3}\$ und Nb\$_{x}\$Bi\$_{2}\$Se\$_{3}\$ begutachtet, f{\"u}r die eindeutig ein TSS best{\"a}tigt wird. Allerdings weisen beide Materialien keine Oberfl{\"a}chensupraleitung auf, was vermutlich durch eine Entkopplung der Oberfl{\"a}che vom Volumen durch Bandverbiegung zu erkl{\"a}ren ist. Unbeabsichtigte Kollisionen der Spitze mit der Probe f{\"u}hren jedoch zu supraleitenden Spitzen, die wesentlich erh{\"o}hte Werte f{\"u}r die kritische Temperatur und das kritische Feld zeigen. Der letzte Abschnitt widmet sich dem supraleitenden Substrat Nb(110), f{\"u}r den der Reinigungsprozess erl{\"a}utert wird. Hierbei sind kurze Heizschritte bis nahe des Schmelzpunktes n{\"o}tig, um die bei Umgebungsbedingungen entstehende Sauerstoffrekonstruktion effektiv zu entfernen. Des Weiteren werden die elektronischen Eigenschaften untersucht, die eine Oberfl{\"a}chenresonanz zum Vorschein bringen. Hochaufgel{\"o}ste Messungen lassen eine durch die BCS-Theorie gut repr{\"a}sentierte Struktur der supraleitenden Energiel{\"u}cke erkennen. Magnetfeldabh{\"a}ngige Experimente offenbaren zudem eine mit der Kristallstruktur vereinbare Anisotropie des Paarungspotentials. Mit diesen Erkenntnissen kann Nb(110) zuk{\"u}nftig als Ausgang f{\"u}r das Wachstum von topologischen Supraleitern herangezogen werden.}, subject = {Supraleitung}, language = {de} } @phdthesis{Gross2019, author = {Groß, Heiko}, title = {Controlling Light-Matter Interaction between Localized Surface Plasmons and Quantum Emitters}, doi = {10.25972/OPUS-19209}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192097}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Metal nanostructures have been known for a long time to exhibit optical resonances via localized surface plasmons. The high electric fields in close proximity to the metal surface have prospects to dramatically change the dynamics of electronic transitions, such as an enhanced spontaneous decay rate of a single emitter. However, there have been two major issues which impede advances in the experimental realization of enhanced light-matter interaction. (i) The fabrication of high-quality resonant structures requires state-of-the-art patterning techniques in combination with superior materials. (ii) The tiny extension of the optical near-field requires precise control of the single emitter with respect to the nanostructure. This work demonstrates a solution to these problems by combining scanning probe and optical confocal microscopy. Here, a novel type of scanning probe is introduced which features a tip composed of the edge of a single crystalline gold sheet. The patterning via focused ion beam milling makes it possible to introduce a plasmonic nanoresonator directly at the apex of the tip. Numerical simulations demonstrate that the optical properties of this kind of scanning probe are ideal to analyze light-matter interaction. Detailed experimental studies investigate the coupling mechanism between a localized plasmon and single colloidal quantum dots by dynamically changing coupling strength via their spatial separation. The results have shown that weak interaction affects the shape of the fluorescence spectrum as well as the polarization. For the best probes it has been found that it is possible to reach the strong coupling regime at the single emitter level at room temperature. The resulting analysis of the experimental data and the proposed theoretical models has revealed the differences between the established far-field coupling and near-field coupling. It has been found that the broad bandwidth of plasmonic resonances are able to establish coherent coupling to multiple transitions simultaneously giving rise to an enhanced effective coupling strength. It has also been found that the current model to numerically calculate the effective mode volume is inaccurate in case of mesoscopic emitters and strong coupling. Finally, light-matter interaction is investigated by the means of a quantum-dot-decorated microtubule which is traversing a localized nearfield by gliding on kinesin proteins. This biological transport mechanism allows the parallel probing of a meta-surface with nm-precision. The results that have been put forward throughout this work have shed new light on the understanding of plasmonic light-matter interaction and might trigger ideas on how to more efficiently combine the power of localized electric fields and novel excitonic materials.}, subject = {Plasmon}, language = {en} } @phdthesis{Aulbach2018, author = {Aulbach, Julian}, title = {Gold-Induced Atomic Wires on Terraced Silicon Surfaces: Formation and Interactions of Silicon Spin Chains}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169347}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Atomic nanowires formed by self-assembled growth on semiconducting surfaces represent a feasible physical realization of quasi-1D electron systems and can be used to study fascinating 1D quantum phenomena. The system in the focus of this thesis, Si(553)-Au, is generated by Au adsorption onto a stepped silicon surface. It features two different chain types, interspersed with each other: A Au chain on the terrace, and a honeycomb chain of graphitic silicon located at the step edge. The silicon atoms at the exposed edges of the latter are predicted to be spin-polarized and charge-ordered [1], leading to an ordered array of local magnetic moments referred to as ``spin chains''. The present thesis puts this spin chain proposal to an experimental test. A detailed scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) scrutiny reveals a distinct unoccupied density of states (DOS) feature localized at every third Si step-edge atom, which aligns perfectly with the density functional theory (DFT) prediction. This finding provides strong evidence for the formation of spin chains at the Si(553)-Au step edges, and simultaneously rules out the interpretation of previous studies which attributed the x3 step-edge superstructure to a Peierls instability. To study the formation of spin chains in further detail, an additional member of the so-called Si(hhk)-Au family -- Si(775)-Au -- is analyzed. Based on DFT modeling (performed by S.C. Erwin, Naval Research Laboratory, USA) and detailed STM and STS experiments, a new structure model for this surface is developed, and the absence of spin chains at the Si(775)-Au step edges is demonstrated. The different step-edge charge distributions of all known Si(hhk)-Au surfaces are traced back to an electron transfer between the terrace and the step edge. Accordingly, an unintentional structure defect should create a localized spin at the Si(775)-Au step edge. This prediction is verified experimentally, and suggest that surface chemistry can be used to create and destroy Si spin chains. Having clarified why spin chains form on some Si(hhk)-Au surfaces but not on others, various interaction effects of the Si(553)-Au spin chains are inspected. A collaborative analysis by SPA-LEED (M. Horn-von Hoegen group, University of Duisburg-Essen, Germany), DFT (S.C. Erwin), and STM reveals strong lateral coupling between adjacent spin chains, bearing interesting implications for their magnetic ordering. The centered geometry uncovered leads to magnetic frustration, and may stabilize a 2D quantum spin liquid. Moreover, a complex interplay between neighboring Au and Si chains is detected. Specifically, the interaction is found effectively ``one-way'', i.e., the Si step edges respond to the Au chains but not vice versa. This unidirectional effect breaks the parity of the Si chains, and creates two different configurations of step edges with opposite directionality. In addition to the static properties of the Si(553)-Au surface mentioned above, the occurrence of solitons in both wire types is witnessed in real space by means of high-resolution STM imaging. The solitons are found to interact with one another such that both move in a coupled fashion along the chains. Likewise, STM experiments as a function of the tunneling current suggest an excitation of solitons along the step edge by the STM tunneling tip. Solitons are also found to play an essential role in the temperature-dependent behavior of the Si(553)-Au step edges. It is an accepted fact that the distinct x3 superstructure of the Si(553)-Au step edges vanishes upon heating to room temperature. As a first step in exploring this transition in detail over a large temperature range, a previously undetected, occupied electronic state associated with the localized step-edge spins is identified by means of angle-resolved photoemission spectroscopy (ARPES). A tracking of this state as a function of temperature reveals an order-disorder-type transition. Complementary STM experiments attribute the origin of this transition to local, thermally activated spin site hops, which correspond to soliton-anitsoliton pairs. Finally, a manipulation of the Si(553)-Au atomic wire array is achieved by the stepwise adsorption of potassium atoms. This does not only increase the filling of the Au-induced surface bands culminating in a metal-insulator transition (MIT), but also modifies the Si step-edge charge distribution, as indicated by STM and ARPES experiments. [1] S. C. Erwin and F. Himpsel, Intrinsic magnetism at silicon surfaces, Nat. Commun. 1, 58 (2010).}, subject = {Rastertunnelmikroskopie}, language = {en} } @phdthesis{Pakkayil2017, author = {Pakkayil, Shijin Babu}, title = {Towards ferromagnet/superconductor junctions on graphene}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153863}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {This thesis reports a successful fabrication and characterisation of ferromagnetic/superconductor junction (F/S) on graphene. The thesis preposes a fabrication method to produce F/S junctions on graphene which make use of ALD grown Al2O3 as the tunnel barrier for the ferromagnetic contacts. Measurements done on F/G/S/G/F suggests that by injecting spin polarised current into the superconductor, a spin imbalance is created in the quasiparticle density of states of the superconductor which then diffuses through the graphene channel. The observed characteristic curves are similar to the ones which are already reported on metallic ferromagnet/superconductor junctions where the spin imbalance is created using Zeeman splitting. Further measurements also show that the curves loose their characteristic shapes when the temperature is increased above the critical temperature (Tc) or when the external magnetic field is higher then the critical field (Hc) of the superconducting contact. But to prove conclusively and doubtlessly the existence of spin imbalance in ferromagnet/superconductor junctions on graphene, more devices have to be made and characterised preferably in a dilution refrigerator.}, subject = {Graphen}, language = {en} } @phdthesis{Kemmer2016, author = {Kemmer, Jeannette}, title = {Strukturelle und elektronische Eigenschaften metallischer Oberfl{\"a}chen unter dem Einfluss von Korrelationseffekten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-142475}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Die vorliegende Arbeit untersucht mit Rastertunnelmikroskopie (RTM) und -spektroskopie (RTS) die Korrelation von strukturellen, elektronischen und magnetischen Eigenschaften auf metallischen Oberflächen. Zuerst wird der spin-aufgespaltene Oberflächenzustand des Ni(111) analysiert. Anschließend geht der Fokus {\"u}ber auf d{\"u}nne Eisenfilme, die auf Rh(001) gewachsen wurden. Zuletzt wird die CePt\$_5\$/Pt(111)-Oberflächenlegierung untersucht. Nickel ist ein bekannter Ferromagnet und die (111)-Oberfläche war in der Vergangenheit schon mehrfach das Objekt theoretischer und experimenteller Studien. Trotz intensiver Bem{\"u}hungen wurden inkonsistente Ergebnisse veröffentlicht und ein klares, konsistentes Bild ist noch nicht vorhanden. Aus diesem Grund wird die Ni(111)-Oberfläche mittels RTM und RTS erforscht, die den Zugang sowohl zu besetzten als auch unbesetzten Zuständen ermöglicht. Mit der Methode der Quasiteilcheninterferenz wird eine detailierte Beschreibung der Banddispersion erhalten. Die Austauschaufspaltung zwischen Minoritäts- und Majoritätsoberflächenzustands wird zu ∆E\$_{ex}\$ = (100 ± 8) meV ermittelt. Der Ansatzpunkt des Majoritätsbandes liegt bei E - E\$_F\$ = -(160 ± 8)meV und die effektive Masse beträgt m^* = +(0,14 ± 0,04)me. Des Weiteren liegt der Ansatzpunkt der Oberflächenresonanz der Majoritätladungsträger energetisch bei E-E\$_F\$ = -(235±5)meV mit einer effektiven Masse von m^* = +(0,36±0,05)m\$_e\$. Um unmissverständlich den dominierenden Spin-Kanal in der RTS zu identifizieren, wurden hexagonale Quantentröge durch reaktives Ionenätzen hergestellt und mit der Hilfe eines eindimensionalen Quantentrogmodells interpretiert. Die sechs Kanten eines Hexagons erscheinen unterschiedlich. Atomar aufgelöste Messungen zeigen, dass gegen{\"u}berliegende Kanten nicht nur eine unterschiedliche Struktur haben sondern auch unterschiedliche spektroskopische Eigenschaften, die durch einen alternierend auftauchenden oder abwesenden spektroskopischen Peak charakterisiert sind. Magnetische Messungen ergeben allerdings keine endg{\"u}ltigen Ergebnisse bez{\"u}glich des Ursprungs des Beobachtungen. Das zweite experimentelle Kapitel dreht sich um d{\"u}nne Eisenfilme, die auf eine saubere Rh(001)-Oberfläche aufgebracht und diese dann mit RTM, RTS und spin-polarisierter (SP- )RTM untersucht werden. Eine nahezu defektfreie Rh(001)-Oberfläche ist notwendig, um ein Wachstum der Eisenfilme mit wenigen Defekten zu erhalten. Dies ist relevant, um das magnetische Signal korrekt interpretieren zu können und den möglichen Einfluss von Adsorbaten auszuschließen. Die erste atomare Lage Fe ordnet sich antiferromagnetisch in einer c(2 × 2)-Struktur an mit der leichten Magnetisierungsachse senkrecht zur Probenoberfläche. Die zweite und dritte Lage verhält sich ferromagnetisch mit immer kleiner werdenden Domänen f{\"u}r steigende Bedeckung. Ab 3,5 atomaren Lagen kommt es vermutlich zu einer Änderung der leichten Magnetisierungsrichtung von vertikal zu horizontal zur Probenebene. Dies wird durch kleiner werdende Domänengrößen und den gleichzeitig breiter werdenden Domänenwänden signalisiert. Temperaturabhängige spin-polarisierter RTM erlaubt es die Curietemperatur der zweiten Lage auf 80 K zu schätzen. Zusätzlich wurde bei dieser Bedeckung eine periodische Modulation der lokalen Zustandsdichte gemessen, die mit steigender Periodizität auch auf der dritten und vierten Lage erscheint. Temperatur- und spannungsabhängige Messungen unterst{\"u}tzen eine Interpretation der Daten auf der Grundlage einer Ladungsdichtewelle. Ich zeige, dass die beiden f{\"u}r gewöhnlich konkurrierende Ordnungen (Ladungs- und magnetische Ordnung) koexistieren und sich gegenseitig beeinflussen, was theoretische Rechnungen, die in Zusammenarbeit mit F. P. Toldin und F. Assaad durchgef{\"u}hrt wurden, bestätigen können. Im letzten Kapitel wurde die Oberflächenlegierung CePt\$_5\$/Pt(111) analysiert. Diese System bildet laut einer k{\"u}rzlich erschienenen Veröffentlichung ein schweres Fermionengitter. Von der sauberen Pt(111)-Oberfläche ausgehend wurde die Oberflächenlegierung CePt\$_5\$/Pt(111) hergestellt. Die Dicke der Legierung (t in u.c.) lässt sich durch die aufgedampfte Menge an Cer variieren und die erzeugte Oberfläche wurde mit RTM und RTS f{\"u}r verschiedene Dicken unter- sucht. RTM-Bilder und LEED (engl.: low energy electron diffraction)-Daten zeigen konsistente Ergebnisse, die in Zusammenarbeit mit C. Praetorius analysiert wurden. F{\"u}r Bedeckungen unter einer atomaren Lage Cer konnte keine geordnete Struktur mit dem RTM beobachtet werden. F{\"u}r 2 u.c. wurde eine (2 × 2)-Rekonstruktion an der Oberfläche gemessen und f{\"u}r 3 u.c. CePt\$_5\$ wurde eine (3√3×3√3)R30◦-Rekonstruktion beobachtet. Der Übergang von 3 u.c. CePt5 zu 5 u.c. CePt\$_5\$ wurde untersucht. Mit Hilfe eines Strukturmodells schließe ich, dass es weder zu einer Rotation des atomaren Gitters noch zu einer Rotation des Übergitters kommt. Ab einer Bedeckung von 6 u.c. CePt5 erscheint eine weitere Komponente der CePt\$_5\$-Oberflächenlegierung, die keine Rekonstruktion mehr besitzt. Das atomare Gitter verläuft wieder entlang der kris- tallographischen Richtungen des Pt(111)-Kristalls und ist somit nicht mehr um 30^° gedreht. F{\"u}r alle Bedeckungen wurden Spektroskopiekurven aufgenommen, die keinen Hinweis auf ein kohärentes schweres Fermionensystem geben. Eine Erklärung hierf{\"u}r kommt aus einer LEED-IV Studie, die besagt, dass jede gemessene Oberfläche mit einer Pt(111)-Schicht terminiert ist. Das RTM ist sensitiv f{\"u}r die oberste Schicht und somit wäre der Effekt eines kohärenten schweren Fermionensystems nicht unbedingt messbar.}, subject = {Rastertunnelmikroskopie}, language = {de} } @phdthesis{Herrmann2016, author = {Herrmann, Oliver}, title = {Graphene-based single-electron and hybrid devices, their lithography, and their transport properties}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146924}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {This work explores three different aspects of graphene, a single-layer of carbon atoms arranged in a hexagonal lattice, with regards to its usage in future electronic devices; for instance in the context of quantum information processing. For a long time graphene was believed to be thermodynamically unstable. The discovery of this strictly two-dimensional material completed the family of carbon based structures, which had already been subject of intensive research with focus on zero-dimensional fullerenes and one-dimensional carbon nanotubes. Within only a few years of its discovery, the field of graphene related research has grown into one of today's most diverse and prolific areas in condensed matter physics, highlighted by the award of the 2010 Nobel Prize in Physics to A.K. Geim and K. Noveselov for "their groundbreaking experiments regarding the two-dimensional material graphene". From the point of view of an experimental physicist interested in the electronic properties of a material system, the most intriguing characteristic of graphene is found in the Dirac-like nature of its charge carriers, a peculiar fact that distinguishes graphene from all other known standard semiconductors. The dynamics of charge carriers close to zero energy are described by a linear energy dispersion relation, as opposed to a parabolic one, which can be understood as a result of the underlying lattice symmetry causing them to behave like massless relativistic particles. This fundamentally different behavior can be expected to lead to the observation of completely new phenomena or the occurrence of deviations in well-known effects. Following a brief introduction of the material system in chapter 2, we present our work studying the effect of induced superconductivity in mesoscopic graphene Josephson junctions by proximity to superconducting contacts in chapter 3. We explore the use of Nb as the superconducting material driven by the lack of high critical temperature and high critical magnetic field superconductor technology in graphene devices at that time. Characterization of sputter-deposited Nb films yield a critical transition temperature of \(T_{C}\sim 8{\rm \,mK}\). A prerequisite for successful device operation is a high interface quality between graphene and the superconductor. In this context we identify the use of an Ti as interfacial layer and incorporate its use by default in our lithography process. Overall we are able to increase the interface transparency to values as high as \(85\\%\). With the prospect of interesting effects in the ballistic regime we try to enhance the electronic quality of our Josephson junction devices by substrate engineering, yet with limited success. We achieve moderate charge carrier mobilities of up to \(7000{\rm \,cm^2/Vs}\) on a graphene/Boron-nitride heterostructure (fabrication details are covered in chapter 5) putting the junction in the diffusive regime (\(L_{device}