@phdthesis{Ji2022, author = {Ji, Changhe}, title = {The role of 7SK noncoding RNA in development and function of motoneurons}, doi = {10.25972/OPUS-22463}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224638}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {In mammals, a major fraction of the genome is transcribed as non-coding RNAs. An increasing amount of evidence has accumulated showing that non-coding RNAs play important roles both for normal cell function and in disease processes such as cancer or neurodegeneration. Interpreting the functions of non-coding RNAs and the molecular mechanisms through which they act is one of the most important challenges facing RNA biology today. In my Ph.D. thesis, I have been investigating the role of 7SK, one of the most abundant non-coding RNAs, in the development and function of motoneurons. 7SK is a highly structured 331 nt RNA transcribed by RNA polymerase III. It forms four stem-loop (SL) structures that serve as binding sites for different proteins. Larp7 binds to SL4 and protects the 3' end from exonucleolytic degradation. SL1 serves as a binding site for HEXIM1, which recruits the pTEFb complex composed of CDK9 and cyclin T1. pTEFb has a stimulatory role for transcription and is regulated through sequestration by 7SK. More recently, a number of heterogeneous nuclear ribonucleoproteins (hnRNPs) have been identified as 7SK interactors. One of these is hnRNP R, which has been shown to have a role in motoneuron development by regulating axon growth. Taken together, 7SK's function involves interactions with RNA binding proteins, and different RNA binding proteins interact with different regions of 7SK, such that 7SK can be considered as a hub for recruitment and release of different proteins. The questions I have addressed during my Ph.D. are as follows: 1) which region of 7SK interacts with hnRNP R, a main interactor of 7SK? 2) What effects occur in motoneurons after the protein binding sites of 7SK are abolished? 3) Are there additional 7SK binding proteins that regulate the functions of the 7SK RNP? Using in vitro and in vivo experiments, I found that hnRNP R binds both the SL1 and SL3 region of 7SK, and also that pTEFb cannot be recruited after deleting the SL1 region but is able to bind to a 7SK mutant with deletion of SL3. In order to answer the question of how the 7SK mutations affect axon outgrowth and elongation in mouse primary motoneurons, we proceeded to conduct rescue experiments in motoneurons by using lentiviral vectors. The constructs were designed to express 7SK deletion mutants under the mouse U6 promoter and at the same time to drive expression of a 7SK shRNA from an H1 promoter for the depletion of endogenous 7SK. Using this system we found that 7SK mutants harboring deletions of either SL1 or SL3 could not rescue the axon growth defect of 7SK-depleted motoneurons suggesting that 7SK/hnRNP R complexes are integral for this process. In order to identify novel 7SK binding proteins and investigate their functions, I proceeded to conduct pull-down experiments by using a biotinylated RNA antisense oligonucleotide that targets the U17-C33 region of 7SK thereby purifying endogenous 7SK complexes. Following mass spectrometry of purified 7SK complexes, we identified a number of novel 7SK interactors. Among these is the Smn complex. Deficiency of the Smn complex causes the motoneuron disease spinal muscular atrophy (SMA) characterized by loss of lower motoneurons in the spinal cord. Smn has previously been shown to interact with hnRNP R. Accordingly, we found Smn as part of 7SK/hnRNP R complexes. These proteomics data suggest that 7SK potentially plays important roles in different signaling pathways in addition to transcription.}, subject = {Spliceosome}, language = {en} } @phdthesis{Schmitt2017, author = {Schmitt, Dominique}, title = {Initial characterization of mouse Syap1 in the nervous system: Search for interaction partners, effects of gene knockdown and knockout, and tissue distribution with focus on the adult brain}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147319}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {The synapse-associated protein of 47 kDa (Sap47) in Drosophila melanogaster is the founding member of a phylogenetically conserved protein family of hitherto unknown molecular function. Sap47 is localized throughout the entire neuropil of adult and larval brains and closely associated with glutamatergic presynaptic vesicles of larval motoneurons. Flies lacking the protein are viable and fertile and do not exhibit gross structural or marked behavioral deficiencies indicating that Sap47 is dispensable for basic synaptic function, or that its function is compensated by other related proteins. Syap1 - the mammalian homologue of Sap47 - was reported to play an essential role in Akt1 phosphorylation in various non-neuronal cells by promoting the association of mTORC2 with Akt1 which is critical for the downstream signaling cascade for adipogenesis. The function of Syap1 in the vertebrate nervous system, however, is unknown so far. The present study provides a first description of the subcellular localization of mouse Syap1 in cultured motoneurons as well as in selected structures of the adult mouse nervous system and reports initial functional experiments. Preceding all descriptive experiments, commercially available Syap1 antibodies were tested for their specificity and suitability for this study. One antibody raised against the human protein was found to recognize specifically both the human and murine Syap1 protein, providing an indispensable tool for biochemical, immunocytochemical and immunohistochemical studies. In the course of this work, a Syap1 knockout mouse was established and investigated. These mice are viable and fertile and do not show obvious changes in morphology or phenotype. As observed for Sap47 in flies, Syap1 is widely distributed in the synaptic neuropil, particularly in regions rich in glutamatergic synapses but it was also detected at perinuclear Golgi-associated sites in certain groups of neuronal somata. In motoneurons the protein is especially observed in similar perinuclear structures, partially overlapping with Golgi markers and in axons, dendrites and axonal growth cones. Biochemical and immunohistochemical analyses showed widespread Syap1 expression in the central nervous system with regionally distinct distribution patterns in cerebellum, hippocampus or olfactory bulb. Besides its expression in neurons, Syap1 is also detected in non-neuronal tissue e.g. liver, kidney and muscle tissue. In contrast, non-neuronal cells in the brain lack the typical perinuclear accumulation. First functional studies with cultured primary motoneurons on developmental, structural and functional aspects reveal no influence of Syap1 depletion on survival and morphological features such as axon length or dendritic length. Contrary to expectations, in neuronal tissues or cultured motoneurons a reduction of Akt phosphorylation at Ser473 or Thr308 was not detected after Syap1 knockdown or knockout.}, subject = {Synapse}, language = {en} } @phdthesis{Moradi2017, author = {Moradi, Mehri}, title = {Differential roles of α-, β- and γ-actin isoforms in regulation of cytoskeletal dynamics and stability during axon elongation and collateral branch formation in motoneurons}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147453}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {In highly polarized cells like neurons, cytoskeleton dynamics play a crucial role in establishing neuronal connections during development and are required for adult plasticity. Actin turnover is particularly important for neurite growth, axon path finding, branching and synaptogenesis. Motoneurons establish several thousand branches that innervate neuromuscular synapses (NMJs). Axonal branching and terminal arborization are fundamental events during the establishment of synapses in motor endplates. Branching process is triggered by the assembly of actin filaments along the axon shaft giving rise to filopodia formation. The unique contribution of the three actin isoforms, α-, β- and γ-actin, in filopodia stability and dynamics during this process is not well characterized. Here, we performed high resolution in situ hybridization and qRT-PCR and showed that in primary mouse motoneurons α-, β- and γ-actin isoforms are expressed and their transcripts are translocated into axons. Using FRAP experiments, we showed that transcripts for α-, β- and γ-actin become locally translated in axonal growth cones and translation hot spots of the axonal branch points. Using live cell imaging, we showed that shRNA depletion of α-actin reduces dynamics of axonal filopodia which correlates with reduced number of collateral branches and impairs axon elongation. Depletion of β-actin correlates with reduced dynamics of growth cone filopoida, disturbs axon elongation and impairs presynaptic differentiation. Also, depletion of γ-actin impairs axonal growth and decreases axonal filopodia dynamics. These findings implicate that actin isoforms accomplish unique functions during development of motor axons. Depletions of β- and γ-actin lead to compensatory upregulation of other two isoforms. Consistent with this, total actin levels remain unaltered and F-actin polymerization capacity is preserved. After the knockdown of either α- or γ-actin, the levels of β-actin increase in the G-actin pool indicating that polymerization and stability of β-actin filaments depend on α- or γ-actin. This study provides evidence both for unique and overlapping function of actin isoforms in motoneuron growth and differentiation. In the soma of developing motoneurons, actin isoforms act redundantly and thus could compensate for each other's loss. In the axon, α-, β- and γ-actin accomplish specific functions, i.e. β-actin regulates axon elongation and plasticity and α- and γ-actin regulate axonal branching. Furthermore, we show that both axonal transport and local translation of α-, β- and γ-actin isoforms are impaired in Smn knockout motoneurons, indicating a role for Smn protein in RNA granule assembly and local translation of these actin isoforms in primary mouse motoneurons.}, subject = {Motoneuron}, language = {en} } @phdthesis{Balk2020, author = {Balk, Stefanie Margarete}, title = {Der Einfluss des Kalziumkanalagonisten R-Roscovitine auf die zellul{\"a}re Differenzierung von Motoneuronen eines Mausmodells f{\"u}r Spinale Muskelatrophie Typ 1 (SMA)}, doi = {10.25972/OPUS-18986}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189861}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Die spinale Muskelatrophie (SMA) ist eine monogenetische Erkrankung, bei der es durch den Verlust des SMN Proteins zur Degeneration der α-Motoneurone im R{\"u}ckenmark kommt. Abh{\"a}ngig vom Schweregrad zeigen die Patienten bereits innerhalb der ersten Lebensmonate ausgepr{\"a}gte L{\"a}hmungen der Skelettmuskulatur und eine Zwerchfellparese einhergehend mit einer reduzierten Lebenserwartung. Mithilfe von Mausmodellen f{\"u}r die SMA konnte gezeigt werden, dass der Motoneuronenverlust bei Smn-defizienten M{\"a}usen mit St{\"o}rungen der Neurotransmission an der motorischen Endplatte und mit Differenzierungsst{\"o}rungen der Motoneurone einhergeht. Die Differenzierungs-st{\"o}rungen prim{\"a}rer Smn-defizienter Motoneurone sind eng gekoppelt mit einer verminderten Clusterbildung spannungsabh{\"a}ngiger Kalziumkan{\"a}le im distalen axonalen Bereich. Dies wiederum f{\"u}hrt zu einer verminderten Frequenz spontaner Kalziumeinstr{\"o}me am Axonterminus und hat eine ver{\"a}nderte axonale Elongation zur Folge. Es wurden folgende Aspekte in Bezug auf die Verst{\"a}rkung und die Induktion spontaner Kalziumeinstr{\"o}me in Mausmodellen f{\"u}r spinale Muskelatrophien in dieser Arbeit adressiert: 1) Lassen sich spontane Kalziumeinstr{\"o}me in Smn-defizienten Motoneuronen durch die externe Applikation von Kalziumkanalagonisten verst{\"a}rken? 2) Sind spontane Kalziumeinstr{\"o}me in prim{\"a}ren Motoneuronen durch den Brain-derived-neurotrophic-factor (BDNF) induzierbar? 3) Zeigen prim{\"a}re Motoneurone eines Mausmodells f{\"u}r spinale Muskelatrophie mit Ateminsuffizienz Typ 1 (SMARD1) ebenfalls ver{\"a}nderte Kalziumtransienten? Die Ergebnisse meiner Arbeit zeigen, dass durch den Kalziumkanalagonisten R-Roscovitine die Frequenz der spontanen Kalziumeinstr{\"o}me im distalen Axon von Smn-defizienten Motoneuronen signifikant erh{\"o}ht wird. Dies hat wiederum einen regulierenden Effekt auf die Differenzierung der SMA Motoneurone zur Folge. Smn-defiziente Motoneurone zeigen somit keine Unterschiede mehr in Bezug auf Axonl{\"a}ngen und Wachstumskegelfl{\"a}chen im Vergleich zu Kontrollzellen. F{\"u}r R- 10 Roscovitine ist neben der agonistischen Wirkung am Kalziumkanal auch ein inhibitorischer Effekt auf die Cyclin-abh{\"a}ngige Kinase 5 beschrieben. Es konnte jedoch gezeigt werden, dass die erh{\"o}hten Kalziumtransienten unter der Behandlung mit R-Roscovitine durch eine direkte Bindung an die Cav2 Kalziumkan{\"a}le verursacht werden und nicht durch eine Cdk5 Blockade. Daf{\"u}r spricht die schnelle und reversible Wirkung von R-Roscovitine, sowie die Aufhebung des R-Roscovitines Effekts bei gleichzeitiger Gabe des Cav2.2 Antagonisten ω-Conotoxin MVIIC. Der zweite Aspekt dieser Arbeit behandelt den Einfluss der neurotrophen Faktoren BDNF, CNTF und GDNF auf die Kalziumtransienten am Wachstumskegel wildtypischer Motoneurone. Der Vergleich der neurotrophen Faktoren zeigt, dass nur BDNF eine induzierende Wirkung auf spontane Kalziumtransienten am Wachstumskegel hat. Der letzte Abschnitt dieser Arbeit besch{\"a}ftigt sich mit den Kalziumtransienten bei Motoneuronen aus dem Nmd2J (SMARD1) Mausmodell. Die SMARD1 gilt als eigenst{\"a}ndige Form der spinalen Muskelatrophien mit unterschiedlicher Genetik und unterschiedlichen klinischen Merkmalen. Die Motoneurone weisen in Bezug auf die Kalziumtransienten keine Unterschiede zwischen Wildtyp und Nmd2J Mutante auf. Es ergibt sich somit kein Hinweis darauf, dass die Degeneration der Motoneurone bei der SMARD1 von einer St{\"o}rung der Kalziumhom{\"o}ostase im distalen axonalen Bereich ausgeht.}, subject = {Spinal muscular atrophy (DLC)}, language = {de} } @phdthesis{Drexl2018, author = {Drexl, Hans Henning}, title = {Der Einfluss von R-Roscovitine und Valproat auf das Wachstums- und pr{\"a}synaptische Differenzierungsverhalten SMN-defizienter Motoneurone}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171696}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Die spinale Muskelatrophie ist eine monogenetische Erkrankung, die bereits im Kindesalter aufgrund von Motoneurondegeneration zu Muskelatrophie f{\"u}hrt und nicht selten einen t{\"o}dlichen Verlauf nimmt. Ursache der Erkrankung ist ein Mangel an SMN-Protein. Der hierf{\"u}r verantwortliche Verlust des SMN1-Gens kann durch das SMN2-Gen aufgrund eines gest{\"o}rten Spleißprozesses am Exon 7 nicht kompensiert werden. Neben Aufgaben in der RNA-Prozessierung wird das SMN-Protein f{\"u}r den axonalen Transport von Ribonucleinpartikeln in Motoneuronen ben{\"o}tigt, was bei der SMA zu pathologischem Wachstum, Differenzierung und Funktion der Motoraxone f{\"u}hrt. Im Rahmen dieser Arbeit wurden kultivierte Motoneurone aus einem Mausmodell f{\"u}r die SMA Typ I (Genotyp Smn-/-;SMN2) mit zwei unterschiedlichen Substanzen behandelt und deren Wirkungen auf das pr{\"a}synaptische Differenzierungsverhalten der Motoneurone verglichen: R-Roscovitine, ein Agonist/Modulator spannungsabh{\"a}ngiger N-Typ- und P/Q-Typ-Kalziumkan{\"a}le, welcher zudem eine CDK-inhibierende Wirkung besitzt, sowie Valproat, ein HDAC-Inhibitor, der eine stimulierende Wirkung auf die SMN-Transkription hat. Es zeigte sich, dass R-Roscovitine in der Lage ist, das pathologische Wachstums- und pr{\"a}synaptische Differenzierungsverhalten der Smn-defizienten Motoneurone zu normalisieren, ohne hierbei Einfluss auf die erniedrigte Menge an Smn-Protein zu nehmen. Die Behandlung mit Valproat beeinflusst hingegen weder die Menge an Smn-Protein, noch die pathologische Differenzierung der Wachstumskegel Smn-defizienter Motoneurone. Erkl{\"a}ren lassen sich diese Effekte in erster Linie durch den Agonismus an spannungsabh{\"a}ngigen Kalziumkan{\"a}len durch R-Roscovitine. Durch vermehrten Kalziumeinstrom kommt es zur Normalisierung von Struktur und Funktion der Wachstumskegel. Ein CDK-vermittelter Effekt scheint unwahrscheinlich. Obgleich die genauen Vorg{\"a}nge noch nicht verstanden sind, zeigen diese Ergebnisse, dass sich Smn-defiziente Motoneurone normal entwickeln k{\"o}nnen, wenn die hierf{\"u}r erforderlichen kalziumabh{\"a}ngigen pr{\"a}synaptischen Differenzierungssignale korrekt ausgel{\"o}st werden. Bei weiterer Erforschung sind Therapeutika denkbar, die in Zukunft die {\"u}berwiegend genetisch orientierten Therapieans{\"a}tze zur Hochregulation der SMN-Expression bei SMA-Patienten {\"u}ber einen von der Genetik unabh{\"a}ngigen Wirkmechanismus unterst{\"u}tzen k{\"o}nnen.}, subject = {Spinale Muskelatrophie}, language = {de} } @phdthesis{Frank2015, author = {Frank, Nicolas Clemens}, title = {Lokale axonale Wirkungen der CNTF-STAT3 Signalkaskade in Motoneuronen der pmn Maus - einem Mausmodel f{\"u}r die Amyotrophe Lateralsklerose}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121065}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {1. Zusammenfassung W{\"a}hrend der Embryogenese und nach Verletzungen von Nerven regulieren neurotrophe Faktoren Signalwege f{\"u}r Apoptose, Differenzierung, Wachstum und Regeneration von Neuronen. In vivo Experimente an neugeborenen Nagern haben gezeigt, dass der Verlust von Motoneuronen nach peripherer Nervenl{\"a}sion durch die Behandlung mit GDNF, BDNF, und CNTF reduziert werden kann In der pmn-Mausmutante, einem Modell f{\"u}r die Amyotrophe Lateralsklerose, f{\"u}hrt die Gabe von CNTF, nicht aber von GDNF zu einem verz{\"o}gerten Krankheitsbeginn und einem verlangsamten Fortschreiten der Motoneuronendegeneration. Ausl{\"o}ser der Motoneuronendegeneration in der pmn-Maus ist eine Mutation im Tubulin spezifischen Chaperon E (Tbce) Gen, das f{\"u}r eines von f{\"u}nf Tubulin spezifischen Chaperonen (TBCA-TBCE) kodiert und an der Bildung von -Tubulinheterodimeren beteiligt ist. Diese Arbeit sollte dazu beitragen, die CNTF-induzierten Signalwege zu entschl{\"u}sseln, die sich lindernd auf den progredienten Verlauf der Motoneuronendegeneration in der pmn-Maus auswirken. Prim{\"a}re pmn mutierte Motoneurone zeigen ein reduziertes Axonwachstum und eine erh{\"o}hte Anzahl axonaler Schwellungen mit einer anomalen H{\"a}ufung von Mitochondrien - ein fr{\"u}hes Erkennungsmerkmal bei ALS-Patienten. Die Applikation von CNTF nicht aber von BDNF oder GDNF, kann in vitro die beobachteten Wachstumsdefekte und das bidirektionale axonale Transportdefizit in pmn mutierten Motoneurone verhindern. Aus {\"a}lteren Untersuchungen war bekannt, dass CNTF {\"u}ber den dreiteiligen transmembranen Rezeptorkomplex, bestehend aus CNTFR, LIFR und gp130, Januskinasen aktiviert, die STAT3 an Tyrosin 705 phosphorylieren (pSTAT3Y705). Ich konnte beobachten, dass axonales fluoreszenzmarkiertes pSTAT3Y705 nach CNTF-Gabe nicht retrograd in den Nukleus transportiert wird. Stattdessen f{\"u}hrt die CNTF-induzierte Phosphorylierung von STAT3 an Tyrosin 705 zu einer transkriptionsunabh{\"a}ngigen lokalen Reaktion im Axon. Diese pSTAT3Y705 abh{\"a}ngige Reaktion ist notwendig und ausreichend, um das reduzierte Axonwachstum pmn mutierter Motoneurone zu beheben. Wie die Kombination einer CNTF Behandlung mit dem shRNA vermittelten knock-down von Stathmin in pmn mutierten Motoneuronen zeigt, zielt die CNTF-STAT3 Signalkaskade auf die Stabilisierung axonaler Mikrotubuli ab und wirkt sich positiv auf die anterograde und retrograde Mobilit{\"a}t von axonalen Mitochondrien aus. Interessanter Weise konnte ich außerdem feststellen, dass eine akute Gabe von CNTF das mitochondriale Membranpotential in Axonen prim{\"a}rer pmn mutierter und wildtypischer Motoneurone erh{\"o}ht und einen Anstieg von ATP ausl{\"o}st. Meine Beobachtungen legen nahe, dass CNTF unerwarteter Weise auch eine transiente Phosphorylierung an STAT3 Serin 727 (pSTAT3S727) ausl{\"o}st, die zur anschließenden Translokation von pSTAT3S727 in Mitochondrien f{\"u}hrt. Diese Ergebnisse zeigen, dass STAT3 mehrere lokale Ziele im Axon besitzt, n{\"a}mlich axonale Mikrotubuli und Mitochondrien.}, subject = {Motoneuron}, language = {de} } @phdthesis{Saal2017, author = {Saal, Lena}, title = {Whole transcriptome profiling of compartmentalized motoneurons}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140006}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Spinal muscular atrophy and amyotrophic lateral sclerosis are the two most common devastating motoneuron diseases. The mechanisms leading to motoneuron degeneration are not resolved so far, although different hypotheses have been built on existing data. One possible mechanism is disturbed axonal transport of RNAs in the affected motoneurons. The underlying question of this study was therefore to characterize changes in transcript levels of distinct RNAs in cell culture models of spinal muscular atrophy and amyotrophic lateral sclerosis, especially in the axonal compartment of primary motoneurons. To investigate this in detail we first established compartmentalized cultures of Primary mouse motoneurons. Subsequently, total RNA of both compartments was extracted separately and either linearly amplified and subjected to microarray profiling or whole transcriptome amplification followed by RNA-Sequencing was performed. To make the whole transcriptome amplification method suitable for compartmentalized cultures, we adapted a double-random priming strategy. First, we applied this method for initial optimization onto serial dilutions of spinal cord RNA and later on to the compartmentalized motoneurons. Analysis of the data obtained from wildtype cultures already revealed interesting results. First, the RNA composition of axons turned out to be highly similar to the somatodendritic compartment. Second, axons seem to be particularly enriched for transcripts related to protein synthesis and energy production. In a next step we repeated the experiments by using knockdown cultures. The proteins depleted hereby are Smn, Tdp-43 and hnRNP R. Another experiment was performed by knocking down the non-coding RNA 7SK, the main interacting RNA of hnRNP R. Depletion of Smn led to a vast number of deregulated transcripts in the axonal and somatodendritic compartment. Transcripts downregulated in the axons upon Smn depletion were especially enriched for GOterms related to RNA processing and encode proteins located in neuron projections including axons and growth cones. Strinkingly, among the upregulated transcripts in the somatodendritic compartment we mainly found MHC class I transcripts suggesting a potential neuroprotective role. In contrast, although knockdown of Tdp-43 also revealed a large number of downregulated transcripts in the axonal compartment, these transcripts were mainly associated with functions in transcriptional regulation and RNA splicing. For the hnRNP R knockdown our results were again different. Here, we observed downregulated transcripts in the axonal compartment mainly associated with regulation of synaptic transmission and nerve impulses. Interestingly, a comparison between deregulated transcripts in the axonal compartment of both hnRNP R and 7SK knockdown presented a significant overlap of several transcripts suggesting some common mechanism for both knockdowns. Thus, our data indicate that a loss of disease-associated proteins involved in axonal RNA transport causes distinct transcriptome alterations in motor axons.}, subject = {Axon}, language = {en} } @phdthesis{Ghanawi2022, author = {Ghanawi, Hanaa}, title = {Loss of full-length hnRNP R isoform impairs DNA damage response in motoneurons by inhibiting Yb1 recruitment to Chromatin}, doi = {10.25972/OPUS-25849}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258492}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Motoneurons are highly compartmentalized cells with very long extensions that separate their nerve terminals from cell bodies. To maintain their extensive morphological complexity and protect their cellular integrity from neurotoxic stresses, neurons rely on the functions of RNA-binding proteins. One such protein is hnRNP R, a multifunctional protein with a plethora of roles related to RNA metabolism that comes into play in the nervous system. hnRNP R is localized mainly in the nucleus but also exists in the cytoplasm and axons of motoneurons. Increasing in vitro evidence indicates a potential function of hnRNP R in the development and maintenance of motoneurons by regulating axon growth and axonal RNA transport. Additionally, hnRNP R interacts with several proteins involved in motoneuron diseases. Hnrnpr pre-mRNA undergoes alternative splicing to produce transcripts encoding two protein isoforms: a full-length protein (hnRNP R-FL) and a shorter form lacking the N-terminal acidic domain (hnRNP R-ΔN). While the neuronal defects produced by total hnRNP R depletion have been investigated before, the contribution of individual isoforms towards such functions has remained mostly unknown. In this study, we showed that while both isoforms are expressed across multiple tissues, the full-length isoform is particularly abundant in the nervous system. We generated a mouse model for selective knockout of the full-length hnRNP R isoform (Hnrnprtm1a/tm1a) and found that the hnRNP R-∆N isoform remains expressed in these mice and is upregulated in a compensatory post-transcriptional process. We found that the truncated isoform is sufficient to support subcellular RNA transport related to axon growth in primary motoneurons. However, Hnrnprtm1a/tm1a mice show defects in DNA damage repair after exposure to γ-irradiation and etoposide. Knock down of both hnRNP R isoforms showed a similar extent of DNA damage as for motoneurons depleted of just full-length hnRNP R. Rescue experiments showed that expression of full-length hnRNP R but not of hnRNP R-ΔN can restore DNA damage repair when endogenous hnRNP R is depleted. By performing subcellular fractionation, we found that hnRNP R associates with chromatin independently from its association with pre-mRNA. Interestingly, we show that hnRNP R interacts with phosphorylated histone H2AX (γ-H2AX), following DNA damage. Proteomics analysis identifies the multifunctional protein Y-box binding protein 1 (Yb1) as one of the top interacting partners of hnRNP R. Similar to loss of full-length hnRNP R, DNA damage repair was impaired upon knockdown of Yb1 in motoneurons. Finally, we show that following exposure to γ-irradiation, Yb1 is recruited to the chromatin where it interacts with γ-H2AX, a mechanism that is dependent on the full-length hnRNP R. Taken together, this study describes a novel function of the full-length isoform of hnRNP R in maintaining the genomic integrity of motoneurons and provides new mechanistic insights into its function in DNA damage response.}, language = {en} } @phdthesis{Deng2023, author = {Deng, Chunchu}, title = {Dynamic remodeling of endoplasmic reticulum and ribosomes in axon terminals of wildtype and Spinal Muscular Atrophy motoneurons}, doi = {10.25972/OPUS-26495}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-264954}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {In highly polarized neurons, endoplasmic reticulum (ER) forms a dynamic and continuous network in axons that plays important roles in lipid synthesis, Ca2+ homeostasis and the maintenance of synapses. However, the mechanisms underlying the regulation of axonal ER dynamics and its function in regulation of local translation still remain elusive. In the course of my thesis, I investigated the fast dynamic movements of ER and ribosomes in the growth cone of wildtype motoneurons as well as motoneurons from a mouse model of Spinal Muscular Atrophy (SMA), in response to Brain-derived neurotrophic factor (BDNF) stimulation. Live cell imaging data show that ER extends into axonal growth cone filopodia along actin filaments and disruption of actin cytoskeleton by cytochalasin D treatment impairs the dynamic movement of ER in the axonal filopodia. In contrast to filopodia, ER movements in the growth cone core seem to depend on coordinated actions of the actin and microtubule cytoskeleton. Myosin VI is especially required for ER movements into filopodia and drebrin A mediates actin/microtubule coordinated ER dynamics. Furthermore, we found that BDNF/TrkB signaling induces assembly of 80S ribosomes in growth cones on a time scale of seconds. Activated ribosomes relocate to the presynaptic ER and undergo local translation. These findings describe the dynamic interaction between ER and ribosomes during local translation and identify a novel potential function for the presynaptic ER in intra-axonal synthesis of transmembrane proteins such as the α-1β subunit of N-type Ca2+ channels in motoneurons. In addition, we demonstrate that in Smn-deficient motoneurons, ER dynamic movements are impaired in axonal growth cones that seems to be due to impaired actin cytoskeleton. Interestingly, ribosomes fail to undergo rapid structural changes in Smn-deficient growth cones and do not associate to ER in response to BDNF. Thus, aberrant ER dynamics and ribosome response to extracellular stimuli could affect axonal growth and presynaptic function and maintenance, thereby contributing to the pathology of SMA.}, subject = {Motoneuron}, language = {en} } @phdthesis{Mueller2023, author = {M{\"u}ller, Erich-Engelbert}, title = {Der Einfluss des Ciliary Neurotrophic Factor (CNTF) auf die mikroskopische Anatomie des Sehnervs und der Retina im Mausmodell}, doi = {10.25972/OPUS-33010}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-330108}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Der Einfluss des Ciliary Neurotrophic Factor (CNTF) auf die mikroskopische Anatomie des Sehnervs und der Retina wurde im Mausmodell untersucht. Unter Verwendung von Immunhistochemie, konfokaler Lasermikroskopie und Elektronenmikroskopie wurde untersucht, inwieweit eine CNTF-Defizienz zu degenerativen Ver{\"a}nderungen in Sehnerv und Retina von insbesondere adulten M{\"a}usen f{\"u}hrt. Hinsichtlich der verschiedenen untersuchten Parameter, einschließlich der Myelinisierung des Sehnervs und der retinalen Schichtung, konnten keine signifikanten Unterschiede zwischen CNTF-defizienten und Wild-Typ-M{\"a}usen festgestellt werden.}, subject = {Sehnerv}, language = {de} }