@phdthesis{MuellerHuebner2020, author = {M{\"u}ller-H{\"u}bner, Laura}, title = {The role of nuclear architecture in the context of antigenic variation in Trypanosoma brucei}, doi = {10.25972/OPUS-18707}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187074}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Antigenic variation of surface proteins is a commonly used strategy among pathogens to evade the host immune response [63]. The mechanism underlying antigenic variation relies on monoallelic exclusion of a single gene from a hypervariable multigene family combined with repeated, systematic changes in antigen expression. In many systems, these gene families are arranged in subtelomeric contingency loci that are subject to both transcriptional repression and enhanced mutagenesis and recombination [16]. Eviction of a selected gene from a repressed antigen repertoire can be achieved e.g. by recombination into a dedicated, transcriptionally permissive site or by local epigenetic alterations in chromatin composition of the selected gene. Both processes are ultimately affected by genome architecture. Architectural proteins controlling antigenic variation have, however, remained elusive in any pathogen. The unicellular protozoan parasite Trypanosoma brucei evades the host immune response by periodically changing expression of a single variant surface glycoprotein (VSG) from a repertoire of ~3000 VSG genes - the largest mutually exclusively expressed gene family described today. To activate a selected VSG gene, it needs to be located in a dedicated expression site that becomes subject to relocation into a distinct, transcriptionally active subnuclear compartment, the expression site body (ESB). Whereas this emphasizes the importance of nuclear architecture in regulating antigen expression in T. brucei, the mechanisms underlying spatial positioning of DNA in T. brucei are not well understood. In this study I applied genome-wide chromosome conformation capture (Hi-C) to obtain a comprehensive picture of the T. brucei genome in three dimensions, both in procyclic and bloodstream form parasites. Hi-C revealed a highly structured nucleus with megabase chromosomes occupying distinct chromosome territories. Further, specific trans interactions between chromosomes, among which are clusters of centromeres, rRNA genes and procyclins became apparent. With respect to antigenic variation, Hi-C revealed a striking compaction of the subtelomeric VSG gene repertoire and a strong clustering of transcriptionally repressed VSG-containing expression sites. Further, Hi-C analyses confirmed the spatial separation of the actively transcribed from the silenced expression sites in three dimensions. I further sought to characterize architectural proteins mediating nuclear architecture in T. brucei. Whereas CTCF is absent in non-metazoans, we found cohesin to be expressed throughout the cell cycle, emphasizing a function beyond sister chromatid cohesion in S-phase. By Chromatin-Immunoprecipitation with sequencing (ChIPseq), I found cohesin enrichment to coincide with the presence of histone H3 vari- ant (H3.V) and H4 variant (H4.V). Most importantly, cohesin and the histone variants were enriched towards the VSG gene at silent and active expression sites. While the deletion of H3.V led to increased clustering of expression sites in three dimensions and increased chromatin accessibility at expression site promoters, the additional deletion of H4.V increased chromatin accessibility at expression sits even further. RNAseq showed that mutually exclusive VSG expression was lost in H3.V and H4.V single and double deletion mutants. Immunofluorescence imaging of surface VSGs, flow cytometry and single-cell RNAseq revealed a progressive loss of VSG-2 expression, indicative of an increase in VSG switching rate in the H3.V/H4.V double deletion mutants. Using long-read sequencing technology, we found that VSG switching occurred via recombination and concluded, that the concomitant increase in spatial proximity and accessibility among expression sites facilitated the recombination event. I therefore identified the histone variants H3.V and H4.V to act at the interface of global nuclear architecture and chromatin accessibility and to represent a link between genome architecture and antigenic variation.}, subject = {Trypanosoma brucei brucei}, language = {en} } @phdthesis{VasquezOspina2016, author = {Vasquez Ospina, Juan Jose}, title = {Development of tools for the study of gene regulation in Trypanosoma brucei}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133996}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {The protozoan parasite Trypanosoma brucei is the causal agent of sleeping sickness and besides its epidemiological importance it has been used as model organism for the study of many aspects of cellular and molecular biology especially the post-transcriptional control of gene expression. Several studies in the last 30 years have shown the importance of mRNA processing and stability for gene regulation. In T. brucei genes are unusually arranged in polycistronic transcription units (PTUs) and a coupled process of trans-splicing and polyadenylation produces the mature mRNAs. Both processes, mRNA processing and stability, cannot completely explain the control of gene expression in the different life cycle stages analyzed in T. brucei so far. In recent years, the relevance of expression regulation at the level of translation has become evident in other eukaryotes. Therefore, in the first part of my thesis I studied the impact of translational regulation by means of a genome-wide ribosome profiling approach. My data suggest that translational efficiencies vary between life cycle stages of the parasite as well as between genes within one life cycle stage. Furthermore, using ribosome profiling I was able to identify many new putative un-annotated coding sequences and to evaluate the coding potential of upstream open reading frames (uORF). Comparing my results with previously published proteomic and RNA interference (RNAi) target sequencing (RIT-seq) datasets allowed me to validate some of the new coding sequences and to evaluate their relevance for the fitness of the parasite. In the second part of my thesis I used the transcriptomic and translatomic profiles obtained from the ribosome profiling analysis for the identification of putative non-coding RNAs (ncRNAs). These results led to the analysis of the coding potential in the regions upstream and downstream of the expressed variant surface glycoprotein (VSG), which is outlined in the third part of the results section. The region upstream of the VSG, the co-transposed region (CTR), has been implicated in an increase of the in situ switching rate upon its deletion. The ribosome profiling results indicated moderate transcription but not translation in this region. These results raised the possibility that the CTR may be transcribed into ncRNA. Therefore, in the third part of my thesis, I performed a primary characterization of the CTR-derived transcripts based on northern blotting and RACE. The results suggested the presence of a unique transcript species of about 1,200 nucleotides (nt) and polyadenylated at the 3'-end of the sequence. The deletion of the CTR sequence promoting and increase of the in situ switching rates was performed around 20 years ago by means of inserting reporter genes. With the recent development of endonuclease-based tools for genome editing, it is now possible to delete sequences in a marker-free way. In the fourth part of my thesis, I show the results on the implementation of the highly efficient genome-editing CRISPR-Cas9 system in T. brucei using episomes. As a proof of principle, I inserted the sequence coding for the enhanced green fluorescent protein (eGFP) at the end of the SCD6 coding sequence (CDS). Fluorescent cells were observed as early as two days after transfection. Therefore, after the successful set up of the CRISPR-Cas9 system it will be possible to modify genomic regions with more relevance for the biology of the parasite, such as the substitution of codons present in gene tandem arrays. The implementation of ribosome profiling in T. brucei opens the opportunity for the study of translational regulation in a genome-wide scale, the re-annotation of the currently available genome, the search for new putative coding sequences, the detection of putative ncRNAs, the evaluation of the coding potential in uORFs and the role of unstranslated regions (UTRs) in the regulation of translation. In turn, the implementation of the CRISPR-Cas9 system offers the possibility to manipulate the genome of the parasite at a nucleotide resolution and without the need of including resistant makers. The CRISPR-Cas9 system is a powerful tool for editing ncRNAs, UTRs, multicopy gene families and CDSs keeping their endogenous UTRs. Moreover, the system can be used for the modification of both alleles after just one round of transfection and of codons coding for amino acids carrying post-translational modifications (PTMs) among other possibilities.    }, subject = {Trypanosoma brucei}, language = {en} } @phdthesis{Kraus2021, author = {Kraus, Amelie Johanna}, title = {H2A.Z - a molecular guardian of RNA polymerase II transcription in African trypanosomes}, doi = {10.25972/OPUS-25056}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250568}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {In eukaryotes, the enormously long DNA molecules need to be packaged together with histone proteins into nucleosomes and further into compact chromatin structures to fit it into the nucleus. This nuclear organisation interferes with all phases of transcription that require the polymerase to bind to DNA. During transcription - the process in which the hereditary information stored in DNA is transferred to many transportable RNA molecules - nucleosomes form a physical obstacle for polymerase progression. Thus, transcription is usually accompanied by processes mediating nucleosome destabilisation, including post-translational histone modifications (PTMs) or exchange of canonical histones by their variant forms. To the best of our knowledge, acetylation of histones has the highest capability to induce chromatin opening. The lysine modification can destabilise histone-DNA interactions within a nucleosome and can serve as a binding site for various chromatin remodelers that can modify the nucleosome composition. For example, H4 acetylation can impede chromatin folding and can stimulate the exchange of canonical H2A histone by its variant form H2A.Z at transcription start sites (TSSs) in many eukaryotes, including humans. As histone H4, H2A.Z can be post-translationally acetylated and as acetylated H4, acetylated H2A.Z is enriched at TSSs suggested to be critical for transcription. However, thus far, it has been difficult to study the cause and consequence of H2A.Z acetylation. Even though, genome-wide chromatin profiling studies such as ChIP-seq have already revealed the genomic localisation of many histone PTMs and variant proteins, they can only be used to study individual chromatin marks and not to identify all factors important for establishing a distinct chromatin structure. This would require a comprehensive understanding of all marks associated to a specific genomic locus. However, thus far, such analyses of locus-specific chromatin have only been successful for repetitive regions, such as telomeres. In my doctoral thesis, I used the unicellular parasite Trypanosoma brucei as a model system for chromatin biology and took advantage of its chromatin landscape with TSSs comprising already 7\% of the total T. brucei genome (humans: 0.00000156\%). Atypical for a eukaryote, the protein-coding genes are arranged in long polycistronic transcription units (PTUs). Each PTU is controlled by its own ~10 kb-wide TSS, that lies upstream of the PTU. As observed in other eukaryotes, TSSs are enriched with nucleosomes containing acetylated histones and the histone variant H2A.Z. This is why I used T. brucei to particularly investigate the TSS-specific chromatin structures and to identify factors involved in H2A.Z deposition and transcription regulation in eukaryotes. To this end, I established an approach for locus-specific chromatin isolation that would allow me to identify the TSSs- and non-TSS-specific chromatin marks. Later, combining the approach with a method for quantifying lysine-specific histone acetylation levels, I found H2A.Z and H4 acetylation enriched in TSSs-nucleosomes and mediated by the histone acetyltransferases HAT1 and HAT2. Depletion of HAT2 reduced the levels of TSS-specific H4 acetylation, affected targeted H2A.Z deposition and shifted the sites of transcription initiation. Whereas HAT1 depletion had only a minor effect on H2A.Z deposition, it had a strong effect on H2A.Z acetylation and transcription levels. My findings demonstrate a clear link between histone acetylation, H2A.Z deposition and transcription initiation in the early diverged unicellular parasite T. brucei, which was thus far not possible to determine in other eukaryotes. Overall, my study highlights the usefulness of T. brucei as a model system for studying chromatin biology. My findings allow the conclusion that H2A.Z regardless of its modification state defines sites of transcription initiation, whereas H2A.Z acetylation is essential co-factor for transcription initiation. Altogether, my data suggest that TSS-specific chromatin establishment is one of the earliest developed mechanisms to control transcription initiation in eukaryotes.}, subject = {Chromatin}, language = {en} } @phdthesis{delOlmoToledo2019, author = {del Olmo Toledo, Valentina}, title = {Evolution of DNA binding preferences in a family of eukaryotic transcription regulators}, doi = {10.25972/OPUS-18789}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187890}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Regulation of gene expression by the control of transcription is essential for any cell to adapt to the environment and survive. Transcription regulators, i.e. sequence-specific DNA binding proteins that regulate gene expression, are central elements within the gene networks of most organisms. Transcription regulators are grouped into distinct families based on structural features that determine, to a large extent, the DNA sequence(s) that they can recognise and bind. Less is known, however, about how the DNA binding preferences can diversify within transcription regulator families during evolutionary timescales, and how such diversification can affect the biology of the organism. In this dissertation I study the SREBP (sterol regulatory element binding protein) family of transcriptional regulators in yeasts, and in Candida albicans in particular, as an experimental system to address these questions. The SREBPs are conserved from fungi to humans and represent a subgroup of basic helix-loop-helix DNA binding proteins. Early chromatin immunoprecipitation experiments with SREBPs from humans and yeasts showed that these proteins bound in vivo to the canonical DNA sequence, termed E-box, most basic helix-loop-helix proteins bind to. By contrast, most recent analysis carried out with less-studied fungal SREBPs revealed a non-canonical DNA motif to be the most overrepresented sequence in the bound regions. This study aims to establish the intrinsic DNA binding preferences of key branches of this family and to determine how the divergence in DNA binding affinities originated. To this end, I combined phylogenetic and ancestral reconstruction with extensive biochemical characterisation of key SREBP proteins. The results indicated that while the most-studied SREBPs (in mammals) indeed show preference for the E-box, a second branch of the family preferentially binds the non-E-box, and a third one is able to bind both sequences with similar affinity. The preference for one or the other DNA sequence is an intrinsic property of each protein because their purified DNA binding domain was sufficient to recapitulate their in vivo binding preference. The ancestor that gave rise to these two different types of SREBPs (the branch that binds E-box and the one that binds non-E-box DNA) appears to be a protein with a broader DNA binding capability that had a slight preference for the non-canonical motif. Thus, the results imply these two branches originated by either enhancing the original ancestral preference for non-E-box or tilting it towards the E-box DNA and flipping the preference for this sequence. The main function associated with members of the SREBP family in most eukaryotes is the control of lipid biosynthesis. I have further studied the function of these proteins in the lineage that encompasses the human associated yeast C. albicans. Strikingly, the three SREBPs present in the fungus' genome contribute to the colonisation of the mammalian gut by regulating cellular processes unrelated to lipid metabolism. Here I describe that two of the three C. albicans SREBPs form a regulatory cascade that regulates morphology and cell wall modifications under anaerobic conditions, whereas the third SREBP has been shown to be involved in the regulation of glycolysis genes. Therefore, I posit that the described diversification in DNA binding specificity in these proteins and the concomitant expansion of targets of regulation were key in enabling this fungal lineage to associate with animals.}, subject = {Candida albicans}, language = {en} } @phdthesis{Wedel2018, author = {Wedel, Carolin}, title = {The impact of DNA sequence and chromatin on transcription in \(Trypanosoma\) \(brucei\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173438}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {For cellular viability, transcription is a fundamental process. Hereby, the DNA plays the most elemental and highly versatile role. It has long been known that promoters contain conserved and often well-defined motifs, which dictate the site of transcription initiation by providing binding sites for regulatory proteins. However, research within the last decade revealed that it is promoters lacking conserved promoter motifs and transcribing constitutively expressed genes that constitute the majority of promoters in eukaryotes. While the process of transcription initiation is well studied, whether defined DNA sequence motifs are required for the transcription of constitutively expressed genes in eukaryotes remains unknown. In the highly divergent protozoan parasite Trypanosoma brucei, most of the proteincoding genes are organized in large polycistronic transcription units. The genes within one polycistronic transcription unit are generally unrelated and transcribed by a common transcription start site for which no RNA polymerase II promoter motifs have been identified so far. Thus, it is assumed that transcription initiation is not regulated but how transcription is initiated in T. brucei is not known. This study aimed to investigate the requirement of DNA sequence motifs and chromatin structures for transcription initiation in an organism lacking transcriptional regulation. To this end, I performed a systematic analysis to investigate the dependence of transcription initiation on the DNA sequence. I was able to identify GT-rich promoter elements required for directional transcription initiation and targeted deposition of the histone variant H2A.Z, a conserved component during transcription initiation. Furthermore, nucleosome positioning data in this work provide evidence that sites of transcription initiation are rather characterized by broad regions of open and more accessible chromatin than narrow nucleosome depleted regions as it is the case in other eukaryotes. These findings highlight the importance of chromatin during transcription initiation. Polycistronic RNA in T. brucei is separated by adding an independently transcribed miniexon during trans-splicing. The data in this work suggest that nucleosome occupancy plays an important role during RNA maturation by slowing down the progressing polymerase and thereby facilitating the choice of the proper splice site during trans-splicing. Overall, this work investigated the role of the DNA sequence during transcription initiation and nucleosome positioning in a highly divergent eukaryote. Furthermore, the findings shed light on the conservation of the requirement of DNA motifs during transcription initiation and the regulatory potential of chromatin during RNA maturation. The findings improve the understanding of gene expression regulation in T. brucei, a eukaryotic parasite lacking transcriptional Regulation.}, subject = {Transkription}, language = {en} } @phdthesis{Wagner2021, author = {Wagner, Rabea Marie}, title = {The Bacterial Exo- and Endo-Cytoskeleton Spatially Confines Functional Membrane Microdomain Dynamics in \(Bacillus\) \(subtilis\)}, doi = {10.25972/OPUS-21745}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-217458}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Cellular membranes form a boundary to shield the inside of a cell from the outside. This is of special importance for bacteria, unicellular organisms whose membranes are in direct contact with the environment. The membrane needs to allow the reception of information about beneficial and harmful environmental conditions for the cell to evoke an appropriate response. Information gathering is mediated by proteins that need to be correctly organized in the membrane to be able to transmit information. Several principles of membrane organization are known that show a heterogeneous distribution of membrane lipids and proteins. One of them is functional membrane microdomains (FMM) which are platforms with a distinct lipid and protein composition. FMM move within the membrane and their integrity is important for several cellular processes like signal transduction, membrane trafficking and cellular differentiation. FMM harbor the marker proteins flotillins which are scaffolding proteins that act as chaperones in tethering protein cargo to FMM. This enhances the efficiency of cargo protein oligomerization or complex formation which in turn is important for their functionality. The bacterium Bacillus subtilis contains two flotillin proteins, FloA and FloT. They form different FMM assemblies which are structurally similar, but differ in the protein cargo and thus in the specific function. In this work, the mobility of FloA and FloT assemblies in the membrane was dissected using live-cell fluorescence microscopy techniques coupled to genetic, biochemical and molecular biological methods. A characteristic mobility pattern was observed which revealed that the mobility of both flotillins was spatially restricted. Restrictions were bigger for FloT resulting in a decreased diffusion coefficient compared to FloA. Flotillin mobility depends on the interplay of several factors. Firstly, the intrinsic properties of flotillins determine the binding of different protein interaction partners. These proteins directly affect the mobility of flotillins. Additionally, binding of interaction partners determines the assembly size of FloA and FloT. This indirectly affects the mobility, as the endo-cytoskeleton spatially restricts flotillin mobility in a size-dependent manner. Furthermore, the extracellular cell wall plays a dual role in flotillin mobility: its synthesis stimulates flotillin mobility, while at the same time its presence restricts flotillin mobility. As the intracellular flotillins do not have spatial access to the exo-cytoskeleton, this connection is likely mediated indirectly by their cell wall-associated protein interaction partners. Together the exo- and the endo-cytoskeleton restrict the mobility of FloA and FloT. Similar structural restrictions of flotillin mobility have been reported for plant cells as well, where the actin cytoskeleton and the cell wall restrict flotillin mobility. These similarities between eukaryotic and prokaryotic cells indicate that the restriction of flotillin mobility might be a conserved mechanism.}, subject = {Heubacillus}, language = {en} } @phdthesis{Weisert2024, author = {Weisert, Nadine}, title = {Characterization of telomere-associated proteins in \(Trypanosoma\) \(brucei\)}, doi = {10.25972/OPUS-35273}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-352732}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The unicellular pathogen Trypanosoma brucei is the causative agent of African trypanosomiasis, an endemic disease prevalent in sub-Saharan Africa. Trypanosoma brucei alternates between a mammalian host and the tsetse fly vector. The extracellular parasite survives in the mammalian bloodstream by periodically exchanging their ˈvariant surface glycoproteinˈ (VSG) coat to evade the host immune response. This antigenic variation is achieved through monoallelic expression of one VSG variant from subtelomeric ˈbloodstream form expression sitesˈ (BES) at a given timepoint. During the differentiation from the bloodstream form (BSF) to the procyclic form (PCF) in the tsetse fly midgut, the stage specific surface protein is transcriptionally silenced and replaced by procyclins. Due to their subtelomeric localization on the chromosomes, VSG transcription and silencing is partly regulated by homologues of the mammalian telomere complex such as TbTRF, TbTIF2 and TbRAP1 as well as by ˈtelomere-associated proteinsˈ (TelAPs) like TelAP1. To gain more insights into transcription regulation of VSG genes, the identification and characterization of other TelAPs is critical and has not yet been achieved. In a previous study, two biochemical approaches were used to identify other novel TelAPs. By using ˈco-immunoprecipitationˈ (co-IP) to enrich possible interaction partners of TbTRF and by affinity chromatography using telomeric repeat oligonucleotides, a listing of TelAP candidates has been conducted. With this approach TelAP1 was identified as a novel component of the telomere complex, involved in the kinetics of transcriptional BES silencing during BSF to PCF differentiation. To gain further insights into the telomere complex composition, other previously enriched proteins were characterized through a screening process using RNA interference to deplete potential candidates. VSG expression profile changes and overall proteomic changes after depletion were analyzed by mass spectrometry. With this method, one can gain insights into the functions of the proteins and their involvement in VSG expression site regulation. To validate the interaction of proteins enriched by co-IP with TbTRF and TelAP1 and to identify novel interaction proteins, I performed reciprocal affinity purifications of the four most promising candidates (TelAP2, TelAP3, PPL2 and PolIE) and additionally confirmed colocalization of two candidates with TbTRF via immunofluorescence (TelAP2, TelAP3). TelAP3 colocalizes with TbTRF and potentially interacts with TbTRF, TbTIF2, TelAP1 and TelAP2, as well as with two translesion polymerases PPL2 and PolIE in BSF. PPL2 and PolIE seem to be in close contact to each other at the telomeric ends and fulfill different roles as only PolIE is involved in VSG regulation while PPL2 is not. TelAP2 was previously characterized to be associated with telomeres by partially colocalizing with TbTRF and cells show a VSG derepression phenotype when the protein was depleted. Here I show that TelAP2 interacts with the telomere-binding proteins TbTRF and TbTIF2 as well as with the telomere-associated protein TelAP1 in BSF and that TelAP2 depletion results in a loss of TelAP1 colocalization with TbTRF in BSF. In conclusion, this study demonstrates that characterizing potential TelAPs is effective in gaining insights into the telomeric complex's composition and its role in VSG regulation in Trypanosoma brucei. Understanding these interactions could potentially lead to new therapeutic targets for combatting African trypanosomiasis.}, subject = {Telomer }, language = {en} }