@phdthesis{Lehenberger2022, author = {Lehenberger, Maximilian}, title = {Ecology and Evolution of symbiotic microbial communities in fungus farming ambrosia beetles}, publisher = {Fungal Ecology, Frontiers in Microbiology, Deutsche Gesellschaft f{\"u}r allgemeine und angewandte Entomologie}, doi = {10.25972/OPUS-24154}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241546}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Within my PhD project I gained several novel insights into the poorly investigated symbiotic world of fungus farming ambrosia beetles and their bark beetle ancestors, where I especially focused on physiological interactions and capabilities of associated fungal symbionts. Here, (i) I could confirm the association of mutualistic Phialophoropsis fungi with the ambrosia beetle genus Trypodendron and found hints for a possible new Phialophoropsis species in T. signatum and T. domesticum. Moreover, I could show that mutualistic fungi of Trypodendron ambrosia beetles are able to decompose major woody polysaccharides such as cellulose and xylan. Additionally, (ii) I provided the first images using micro-computed tomography (µCT) of the formerly unknown structure of the mycetangium of Trypodendron leave. (iii) I could confirm a general tolerance towards ethanol in mutualistic ambrosia beetle fungi, while antagonistic fungi as well as most examined fungal bark beetle associates (e.g. possibly tree-defense detoxifying species) were highly sensitive to even low concentrations of ethanol. Further, (iv) I found that natural galleries of ambrosia beetles are highly enriched with several biologically important elements (such as N, P, S, K, Mg) compared to the surrounding woody tissue and suggest that mutualistic fungi are translocating and concentrating elements from the immediate surrounding xylem to the beetles galleries. Furthermore, (v) I could show that various fungi associated with bark and ambrosia beetles (mutualists, possibly beneficial symbionts) are emitting several volatile organic compounds mostly within aliphatic and aromatic alcohols and esters, while non-mutualistic and free living species were generally emitting a lower number and amount of volatiles. Finally, especially bark and ambrosia beetle fungi were found to incorporate several amino acids, from which some are especially important for the production of certain volatile organic compounds. Amino acid content also indicated a higher nutritional value for certain species. Here, I propose that especially volatile organic compounds are widespread key players in maintaining various symbioses between fungi and beetles, as already proven by a recent study on the bark beetle Ips typographus (as well as for some other bark beetle-fungus symbioses, see summary in Kandasamy et al. 2016) and also suggested for ambrosia beetles.}, language = {en} } @phdthesis{Diehl2024, author = {Diehl, Janina Marie Christin}, title = {Ecology and evolution of symbiont management in ambrosia beetles}, doi = {10.25972/OPUS-32121}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-321213}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The relationship between a farmer and their cultivated crops in agriculture is multifaceted, with pathogens affecting both the farmer and crop, and weeds that take advantage of resources provided by farmers. For my doctoral thesis, I aimed to gain a comprehensive understanding of the ecology and symbiosis of fungus farming ambrosia beetles. Through my research, I discovered that the microbial composition of fungus gardens, particularly the mutualists, is significantly influenced by the presence of both adults and larvae. The recognition of both beneficial and harmful symbionts is crucial for the success of ambrosia beetles, who respond differently depending on their life stage and the microbial species they encounter, which can contribute to the division of labour among family groups. The presence of antagonists and pathogens in the fungus garden depends on habitat and substrate quality, and beetle response to their introduction results in behavioural and developmental changes. Individual and social immunity measures, as well as changes in bacterial and fungal communities, were detected as a result of pathogen introduction. Additionally, the ability of ambrosia beetles to establish two nutritional fungal species depends on several factors. These insects must strike a balance between their essential functions and adapt to the constantly changing ecological and social conditions, which demonstrates their adaptive flexibility. However, interpreting data from laboratory studies should be approached with caution, as the natural environment allows for more flexibility and the potential for other beneficial symbionts to become more prominent if required. To aid in my research, I designed primers that use the 'fungal large subunit' (LSU) as genetic marker to identify and differentiate mutualistic and antagonistic fungi in X. saxesenii. The primers were able to distinguish closely related species of the Ophiostomataceae and other fungal symbionts. This allowed me to associate the abundance of key fungal taxa with factors such as the presence of beetles, the nest's age and condition, and the various developmental stages present. My primers are a valuable tool for understanding fungal communities, including their composition and the identification of previously unknown functional symbionts. However, some aspects should be approached with caution due to the exclusion of non-amplified taxa in the relative fungal community compositions.}, subject = {{\"O}kologie}, language = {en} }