@phdthesis{Surrey2020, author = {Surrey, Verena}, title = {Identification of affected cellular targets, mechanisms and signaling pathways in a mouse model for spinal muscular atrophy with respiratory distress type 1 (SMARD1)}, doi = {10.25972/OPUS-17638}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176386}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a fatal monogenic motoneuron disease in children with unknown etiology caused by mutations in the immunoglobulin μ-binding protein 2 (IGHMBP2) gene coding for DNA/RNA ATPase/helicase. Despite detailed knowledge of the underlying genetic changes, the cellular mechanisms leading to this disease are not well understood. In the Nmd2J ("neuromuscular disorder") mouse, the mouse model for the juvenile form of SMARD1 patients, in which similar pathological features as diaphragmatic paralysis and skeletal muscle atrophy are observed. Ex vivo studies in Nmd2J mice showed that loss of the motor axon precedes atrophy of the gastrocnemius muscle and does not correlate with neurotransmission defects in the motor endplate. The already described independent myogenic anomalies in the diaphragm and heart of the Nmd2J mouse raised the question whether spinal motoneuron degeneration develops cell autonomously. Ighmbp2 is predominantly localized in the cytoplasm and seems to bind to ribosomes and polysomes, suggesting a role in mRNA metabolism. In this Ph.D. thesis, morphological and functional analyses of isolated Ighmbp2-deficient (Ighmbp2-def.) motoneurons were performed to answer the question whether the SMARD1 phenotype results from dysregulation of protein biosynthesis. Ighmbp2-deficient motoneurons show only negligible morphological alterations with respect to a slight increase in axonal branches. This observation is consistent with only minor changes of transcriptome based on RNA sequencing data from Ighmbp2-deficient motoneurons. Only the mRNA of fibroblast growth factor receptor 1 (Fgfr1) showed significant up-regulation in Ighmbp2-deficient motoneurons. Furthermore, no global aberrations at the translational level could be detected using pulsed SILAC (Stable Isotope Labeling by Amino acids in cell culture), AHA (L-azidohomoalanine) labeling and SUnSET (SUrface SEnsing of Translation) methods. However, a reduced β-actin protein level was observed at the growth cones of Ighmbp2-deficient motoneurons, which was accompanied with a reduced level of Imp1 protein, a known β-actin mRNA interactor. Live-cell imaging studies using fluorescence recovery after photobleaching (FRAP) showed translational down-regulation of eGFPmyr-β-actin 3'UTR mRNA in the growth cones and the cell bodies, although the amount of β-actin mRNA and the total protein amount in Ighmbp2-deficient motoneurons showed no aberrations. This compartment-specific reduction of β-actin protein occurred independently of a non-existent direct IGHMBPF2 binding to β-actin mRNA. Fgfr1, which was upregulated on the RNA level, did not show an increased protein amount in Ighmbp2-deficient motoneurons, whereas a reduced amount could be detected. Interestingly, a correlation could be found between the reduced amount of the Imp1 protein and the increased Fgfr1 mRNA, since the IMP1 protein binds the FGFR1 mRNA and thus could influence the transport and translation of FGFR1 mRNA. In summary, all data suggest that Ighmbp2 deficiency leads to a local but modest disturbance of protein biosynthesis, which might contribute to the motoneuron defects of SMARD1.}, subject = {Spinale Muskelatrophie}, language = {en} } @phdthesis{Hennlein2023, author = {Hennlein, Luisa}, title = {Plastin 3 rescues defective cell surface translocation and activation of TrkB in mouse models for spinal muscular atrophy}, publisher = {Journal of Cell Biology}, doi = {10.25972/OPUS-29879}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-298793}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Spinal muscular atrophy (SMA) is a genetic pediatric condition that affects lower motoneurons leading to their degeneration and muscle weakness. It is caused by homozygous loss or mutations in the Survival Motor Neuron 1 (SMN1) gene; however, the pathomechanism leading to motoneuron degeneration is not fully resolved. Cultured embryonic SMA motoneurons display axon elongation and differentiation defects accompanied by collapsed growth cones with a disturbed actin cytoskeleton. Intriguingly, motoneurons cultured from mice deficient for the Tropomyosin-kinase receptor B (TrkB), exhibit similar pathological features. Thus, the question arises whether SMA motoneurons suffer from defective Brain-derived neurotrophic factor (BDNF)/TrkB signaling and whether there is a link to the disturbed actin cytoskeleton. In the recent years, modifier genes such as Plastin 3 (PLS3) were shown to beneficially interfere with SMA pathology. Nevertheless, the mechanism of how the actin-bundler PLS3 counteracts SMN deficiency is not well understood. In this study, we investigated TrkB localization and its activation in cultured SMA motoneurons and neuromuscular junctions (NMJs). While TrkB levels are only mildly affected locally in axon terminals, BDNF-mediated TrkB phosphorylation was massively disturbed. The activity-dependent TrkB translocation to the cell surface and its activation via BDNF were shown to be Pls3-dependent processes, that can be abolished by knockdown of Pls3. In contrast, PLS3 overexpression in SMA motoneurons rescued the defects on morphological and functional level. In particular, the relocation of TrkB to the cell surface after BDNF-induced internalization is disturbed in SMA, which is based on an actin-dependent TrkB translocation defect from intracellular stores. Lastly, AAV9-mediated PLS3 overexpression in vivo in neonatal SMA mice provided further evidence for the capacity of PLS3 to modulate actin dynamics necessary for accurate BDNF/TrkB signaling. In conclusion, we provide a novel role for PLS3 in mediating proper alignment of transmembrane proteins as prerequisite for their appropriate functioning. Hence, PLS3 is required for a key process indispensable for the development and function of motoneurons even beyond the context of SMA.}, subject = {Spinale Muskelatrophie}, language = {en} }