@phdthesis{Kircher2020, author = {Kircher, Malte Tim}, title = {Neuronale Genotoxizit{\"a}t von Angiotensin II}, doi = {10.25972/OPUS-21427}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214273}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {In recent decades, the acceptance has steadily increased that oxidative stress plays an important role in the development of chronic diseases, malignant neoplasia and the acceleration of the aging process. As one of the most common chronic diseases, hypertension is often associated with a misregulated renin-angiotensin-aldosterone system that causes chronic oxidative stress. Hypertension is a risk factor for neurological diseases such as vascular dementia (VaD) and many neurological disorders, including VaD, have an ROS-associated or inflammatory component in their etiology. Our group has already demonstrated AT-II-induced genotoxicity in kidney and myocardial cells and tissues. The aim of this dissertation was to investigate a possible association between AT-II and neurodegeneration that is triggered by neuronal genotoxicity of AT-II. First, we showed in two neuronal cell lines that AT-II causes dose-dependent genome damage. Subsequent experiments could attribute this toxicity to NOX-produced superoxide generated after AT-II binding to the AT1R. In addition, AT-II-induced depletion of the most important intracellular antioxidant - glutathione - was demonstrated. In vivo, we were able to show that AT1aR knockout mice after AT-II treatment showed significantly more genome damage in the subfornic organ (SFO) than wild-type mice. The SFO is one of the few structures in the brain with an interrupted blood-brain barrier, which makes it accessible and particularly sensitive to circulating AT-II. In the recent literature, these genome damages were also observed in kidney and heart tissues and prove an additional genotoxicity of AT-II independent of AT1aR and consequently independent of blood pressure. In summary, this work shows that increased AT-II levels in neuronal cells cause genome damage due to NOX-produced superoxide. It is hoped that these results will one day help to decipher the complete development of VaD.}, subject = {Angiotensin II}, language = {de} } @phdthesis{Bachmann2023, author = {Bachmann, Linda}, title = {Evaluation der vaginalen Prednison-Applikation im Vergleich zur rektalen Verabreichung zur Pr{\"a}vention von Nebennierenkrisen bei Patientinnen mit chronischer Nebenniereninsuffizienz}, doi = {10.25972/OPUS-32138}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-321385}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Objective: Patients with adrenal insufficiency (AI) need to adapt their glucocorticoid replacement under stressful conditions to prevent adrenal crisis (AC). Prednisone (PN) suppositories are used for emergency treatment. Pharmacokinetics of 100 mg PN suppositories after vaginal or rectal administration was evaluated. Design: Single-center, open-label, sequence-randomized, cross-over, bioequivalence study. Methods: Twelve females with primary AI were included. Comparison of pharmacokinetics after vaginal and rectal administration of 100 mg PN suppositories. Main outcome measures: bioequivalence (Cmax: maximum plasma concentration of prednisolone; AUC0-360: area under the plasma concentration curve of prednisolone from administration to 360 min), adrenocorticotropin (ACTH) levels, safety and tolerability. Comparison of ACTH-suppressive effect with subcutaneous and intramuscular administration of 100 mg hydrocortisone. Results: Vaginal administration of PN suppositories was not bioequivalent to rectal administration: Cmax and AUC0-360 were significantly lower after vaginal compared to rectal administration: 22 ng/mL (109\%) vs 161 ng/mL (28\%), P < 0.001; 4390 ng/mL * min (116\%) vs 40,302 ng/mL * min (26\%), P < 0.001; (mean (coefficient of variation), respectively). A suppression of ACTH by >50\% of baseline values was observed 149 min (32\%) after rectal PN administration; after vaginal PN administration, the maximum decrease within 360 min was only 44\%. Adverse events were more frequent after vaginal administration and mainly attributable to the glucocorticoid deficit due to inadequate vaginal absorption. The ACTH-suppressive effect was more pronounced after parenteral hydrocortisone compared to rectal or vaginal PN. Conclusion: Vaginal administration of PN suppositories in the available form is not useful for prevention of AC. Pharmacokinetics after rectal use of PN show inferiority compared to available data on parenteral glucocorticoids. In adrenal emergencies, hydrocortisone injection should be the first choice.}, subject = {Nebenniere}, language = {de} }