@phdthesis{Maier2017, author = {Maier, Sebastian}, title = {Quantenpunktbasierte Einzelphotonenquellen und Licht-Materie-Schnittstellen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-152972}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Die Quanteninformationstechnologie ist ein Schwerpunkt intensiver weltweiter Forschungsarbeit, da sie L{\"o}sungen f{\"u}r aktuelle globale Probleme verspricht. So bietet die Quantenkommunikation (QKD, engl. quantum key distribution) absolut abh{\"o}rsichere Kommunikationsprotokolle und k{\"o}nnte, mit der Realisierung von Quantenrepeatern, auch {\"u}ber große Distanzen zum Einsatz kommen. Quantencomputer (engl. quantum computing) k{\"o}nnten von Nutzen sein, um sehr schwierige und komplexe mathematische Probleme schneller zu l{\"o}sen. Ein grundlegender kritischer Baustein der gesamten halbleiterbasierten Quanteninformationsverarbeitung (QIP, engl. quantum information processing) ist die Bereitstellung von Proben, die einerseits die geforderten physikalischen Eigenschaften aufweisen und andererseits den Anforderungen der komplexen Messtechnik gen{\"u}gen, um die Quanteneigenschaften nachzuweisen und technologisch nutzbar machen zu k{\"o}nnen. In halbleiterbasierten Ans{\"a}tzen haben sich Quantenpunkte als sehr vielversprechende Kandidaten f{\"u}r diese Experimente etabliert. Halbleiterquantenpunkte weisen große {\"A}hnlichkeiten zu einzelnen Atomen auf, die sich durch diskrete Energieniveaus und diskrete Spektrallinien im Emissionsspektrum manifestieren, und zeichnen sich {\"u}berdies als exzellente Emitter f{\"u}r einzelne und ununterscheidbare Photonen aus. Außerdem k{\"o}nnen mit Quantenpunkten zwei kritische Bausteine in der Quanteninformationstechnologie abgedeckt werden. So k{\"o}nnen station{\"a}re Quantenbits (Qubits) in Form von Elektronenspinzust{\"a}nden gespeichert werden und mittels Spin-Photon-Verschr{\"a}nkung weit entfernte station{\"a}re Qubits {\"u}ber fliegende photonische Qubits verschr{\"a}nkt werden. Die Herstellung und Charakterisierung von quantenpunktbasierten Halbleiterproben, die sich durch definierte Eigenschaften f{\"u}r Experimente in der QIP auszeichnen, steht im Mittelpunkt der vorliegenden Arbeit. Die Basis f{\"u}r das Probenwachstum bildet dabei das Materialsystem von selbstorganisierten In(Ga)As-Quantenpunkten auf GaAs-Substraten. Die Herstellung der Quantenpunktproben mittels Molekularstrahlepitaxie erm{\"o}glicht h{\"o}chste kristalline Qualit{\"a}ten und bietet die M{\"o}glichkeit, die Quantenemitter in photonische Resonatoren zu integrieren. Dadurch kann die Lichtauskoppeleffizienz stark erh{\"o}ht und die Emission durch Effekte der Licht-Materie-Wechselwirkung verst{\"a}rkt werden. Vor diesem Hintergrund wurden in der vorliegenden Arbeit verschiedene In(Ga)As-Quantenpunktproben mit definierten Anforderungen mittels Molekularstrahlepitaxie hergestellt und deren morphologische und optische Eigenschaften untersucht. F{\"u}r die Charakterisierung der Morphologie kamen Rasterelektronen- und Rasterkraftmikroskopie zum Einsatz. Die optischen Eigenschaften wurden mit Hilfe der Reflektions-, Photolumineszenz- und Resonanzfluoreszenz-Spektroskopie sowie Autokorrelationsmessungen zweiter Ordnung ermittelt. Der Experimentalteil der Arbeit ist in drei Kapitel unterteilt, deren Kerninhalte im Folgenden kurz wiedergegeben werden. Quasi-Planare Einzelphotonenquelle mit hoher Extraktionseffizienz: Planare quantenpunktbasierte Einzelphotonenquellen mit hoher Extraktionseffizienz sind f{\"u}r Experimente zur Spinmanipulation von herausragender Bedeutung. Elektronen- und Lochspins haben sich als gute Kandidaten erwiesen, um gezielt einzelne Elektronenspins zu initialisieren, manipulieren und zu messen. Ein einzelner Quantenpunkt muss einfach geladen sein, damit er im Voigt-Magnetfeld ein λ-System bilden kann, welches die grundlegende Konfiguration f{\"u}r Experimente dieser Art darstellt. Wichtig sind hier einerseits eine stabile Spinkonfiguration mit langer Koh{\"a}renzzeit und andererseits hohe Lichtauskoppeleffizienzen. Quantenpunkte in planaren Mikrokavit{\"a}ten weisen gr{\"o}ßere Werte f{\"u}r die Spindephasierungszeit auf als Mikro- und Nanot{\"u}rmchenresonatoren, dagegen ist bei planaren Proben die Lichtauskoppeleffizienz geringer. In diesem Kapitel wird eine quasi-planare quantenpunktbasierte Quelle f{\"u}r einzelne (g(2)(0)=0,023) und ununterscheidbare Photonen (g(2)indist (0)=0,17) mit hoher Reinheit vorgestellt. Die Quantenpunktemission weist eine sehr hohe Intensit{\"a}t und optische Qualit{\"a}t mit Halbwertsbreiten nahe der nat{\"u}rlichen Linienbreite auf. Die Auskoppeleffizienz wurde zu 42\% f{\"u}r reine Einzelphotonenemission bestimmt und {\"u}bersteigt damit die, f{\"u}r eine planare Resonatorstruktur erwartete, Extraktionseffizienz (33\%) deutlich. Als Grund hierf{\"u}r konnte die Kopplung der Photonenemission an Gallium-induzierte, Gauß-artige Defektstrukturen ausgemacht werden. Mithilfe morphologischer Untersuchungen und Simulationen wurde gezeigt, dass diese Defektkavit{\"a}ten einerseits als Nukleationszentren f{\"u}r das Quantenpunktwachstum dienen und andererseits die Extraktion des emittierten Lichts der darunterliegenden Quantenpunkte durch Lichtb{\"u}ndelung verbessern. In weiterf{\"u}hrenden Arbeiten konnte an dieser spezifischen Probe der fundamentale Effekt der Verschr{\"a}nkung von Elektronenspin und Photon nachgewiesen werden, der einen kritischen Baustein f{\"u}r halbleiterbasierte Quantenrepeater darstellt. Im Rahmen dieses Experiments war es m{\"o}glich, die komplette Tomographie eines verschr{\"a}nkten Spin-Photon-Paares an einer halbleiterbasierten Spin-Photon Schnittstelle zu messen. {\"U}berdies konnte Zweiphotoneninterferenz und Ununterscheidbarkeit von Photonen aus zwei r{\"a}umlich getrennten Quantenpunkten auf diesem Wafer gemessen werden, was ebenfalls einen kritischen Baustein f{\"u}r Quantenrepeater darstellt. Gekoppeltes Quantenfilm-Quantenpunkt System: Weitere Herausforderungen f{\"u}r optisch kontrollierte halbleiterbasierte Spin-Qubit-Systeme sind das schnelle und zerst{\"o}rungsfreie Auslesen der Spin-Information sowie die Implementierung eines skalierbaren Ein-Qubit- und Zwei-Qubit-Gatters. Ein k{\"u}rzlich ver{\"o}ffentlichtes theoretisches Konzept k{\"o}nnte hierzu einen eleganten Weg er{\"o}ffnen: Hierbei wird die spinabh{\"a}ngige Austauschwechselwirkung zwischen einem Elektron-Spin in einem Quantenpunkt und einem Exziton-Polariton-Gas, welches in einem nahegelegenen Quantenfilm eingebettet ist, ausgen{\"u}tzt. So k{\"o}nnte die Spin-Information zerst{\"o}rungsfrei ausgelesen werden und eine skalierbare Wechselwirkung zwischen zwei Qubits {\"u}ber gr{\"o}ßere Distanzen erm{\"o}glicht werden, da sich die Wellenfunktion von Exziton-Polaritonen, abh{\"a}ngig von der G{\"u}te des Mikroresonators, {\"u}ber mehrere μm ausdehnen kann. Dies und weitere m{\"o}gliche Anwendungen machen das gekoppelte Quantenfilm-Quantenpunkt System sehr interessant, weshalb eine grundlegende experimentelle Untersuchung dieses Systems w{\"u}nschenswert ist. In Zusammenarbeit mit der Arbeitsgruppe um Yoshihisa Yamamoto an der Universit{\"a}t Stanford, wurde hierzu ein konkretes Probendesign entwickelt und im Rahmen dieser Arbeit technologisch verwirklicht. Durch systematische epitaktische Optimierung ist es gelungen, ein gekoppeltes Quantenfilm-Quantenpunkt System erfolgreich in einen Mikroresonator zu implementierten. Das Exziton-Polariton-Gas konnte mittels eines Quantenfilms in starker Kopplung in einer Mikrokavit{\"a}t mit einer Rabi-Aufspaltung von VR=2,5 meV verwirklicht werden. Zudem konnten einfach geladene Quantenpunkte mit hoher optischer Qualit{\"a}t und klarem Einzelphotonencharakter (g(2)(0)=0,24) in unmittelbarer N{\"a}he zum Quantenfilm gemessen werden. Positionierte Quantenpunkte: F{\"u}r die Herstellung quantenpunktbasierter Einzelphotonenquellen mit hoher optischer Qualit{\"a}t ist eine skalierbare technologische Produktionsplattform w{\"u}nschenswert. Dazu m{\"u}ssen einzelne Quantenpunkte positionierbar und somit deterministisch und skalierbar in Bauteile integriert werden k{\"o}nnen. Basierend auf zweidimensionalen, regelm{\"a}ßig angeordneten und dadurch adressierbaren Quantenpunkten gibt es zudem ein Konzept, um ein skalierbares, optisch kontrolliertes Zwei-Qubit-Gatter zu realisieren. Das hier verfolgte Prinzip f{\"u}r die Positionierung von Quantenpunkten beruht auf der Verwendung von vorstrukturierten Substraten mit ge{\"a}tzten Nanol{\"o}chern, welche als Nukleationszentren f{\"u}r das Quantenpunktwachstum dienen. Durch eine optimierte Schichtstruktur und eine erh{\"o}hte Lichtauskopplung unter Verwendung eines dielektrischen Spiegels konnte erstmals Resonanzfluoreszenz an einem positionierten Quantenpunkt gemessen werden. In einem weiteren Optimierungsansatz konnte außerdem Emission von positionierten InGaAs Quantenpunkten auf GaAs Substrat bei 1,3 μm Telekommunikationswellenl{\"a}nge erreicht werden.}, subject = {Quantenpunkt}, language = {de} } @phdthesis{Schwarz2015, author = {Schwarz, Christoph Benjamin}, title = {Full vector-field control of femtosecond laser pulses with an improved optical design}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-142948}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The controlled shaping of ultrashort laser pulses is a powerful technology and applied in many laser laboratories today. Most of the used pulse shapers are only able to produce linearly polarized pulses shaped in amplitude and phase. Some devices are also capable of producing limited time-varying polarization profiles, but they are not able to control the amplitude. However, for some state-of-the-art non-linear time-resolved methods, such as polarization-enhanced two-dimensional spectroscopy, the possibility of controlling the amplitude and the polarization simultaneously is desirable. Over the last years, different concepts have been developed to overcome these restrictions and to manipulate the complete vector-field of an ultrashort laser pulse with independent control over all four degrees of freedom - phase, amplitude, orientation, and ellipticity. The aim of this work was to build such a vector-field shaper. While the basic concept used for our setup is based on previous designs reported in the literature, the goal was to develop an optimized optical design that minimizes artifacts, allowing for the generation of predefined polarization pulse sequences with the highest achievable accuracy. In Chapter 3, different approaches reported in the literature for extended and unrestricted vector-field control were examined and compared in detail. Based on this analysis, we decided to follow the approach of modulating the spectral phase and amplitude of two perpendicularly polarized pulses independently from each other in two arms of an interferometer and recombining them to a single laser pulse to gain control over the complete vector field. As described in Chapter 4, the setup consists of three functional groups: i) an optical component to generate and recombine the two polarized beams, ii) a 4f setup, and iii) a refracting telescope to direct the two beams under two different angles of incidence onto the grating of the 4f setup in a common-path geometry. This geometry was chosen to overcome potential phase instabilities of an interferometric vector-field shaper. Manipulating the two perpendicularly polarized pulses simultaneously within one 4f setup and using adjacent pixel groups of the same liquid-crystal spatial light modulator (LC SLM) for the two polarizations has the advantages that only a single dual-layer LC SLM is required and that a robust and compact setup was achieved. The shaping capabilities of the presented design were optimized by finding the best parameters for the setup through numerical calculations to adjust the frequency distributions for a broad spectrum of 740 - 880 nm. Instead of using a Wollaston prism as in previous designs, a thin-film polarizer (TFP) is utilized to generate and recombine the two orthogonally polarized beams. Artifacts such as angular dispersion and phase distortions along the beam profile which arise when a Wollaston prism is used were discussed. Furthermore, it was shown by ray-tracing simulations that in combination with a telescope and the 4f setup, a significant deformation of the beam profile would be present when using a Wollaston prism since a separation of the incoming and outgoing beam in height is needed. The ray-tracing simulations also showed that most optical aberrations of the setup are canceled out when the incoming and outgoing beams propagate in the exact same plane by inverting the beam paths. This was realized by employing a TFP in the so-called crossed-polarizer arrangement which has also the advantage that the polarization-dependent efficiencies of the TFP and the other optics are automatically compensated and that a high extinction ratio in the order of 15000:1 is reached. Chromatic aberrations are, however, not compensated by the crossed-polarizer arrangement. The ray-tracing simulations confirmed that these chromatic aberrations are mainly caused by the telescope and not by the cylindrical lens of the 4f setup. Nevertheless, in the experimentally used wavelength range of 780 - 816 nm, only minor distortions of the beam profile were observed, which were thus considered to be negligible in the presented setup. The software implementation of the pulse shaper was reviewed in Chapter 5 of this thesis. In order to perform various experiments, five different parameterizations, accounting for the extended shaping capabilities of a vector-field shaper, were developed. The Pixel Basis, the Spectral Basis, and the Spectral Taylor Basis can generally be used in combination with an optimization algorithm and are therefore well suited for quantum control experiments. For multidimensional spectroscopy, the Polarized Four-Pulse Basis was established. With this parameterization pulse sequences with up to four subpulses can be created. The polarization state of each subpulse can be specified and the relative intensity, phase, and temporal delay between consecutive subpulses can be controlled. In addition, different software programs were introduced in Chapter 5 which are required to perform the experiments conducted in this work. The experimental results were presented in Chapter 6. The frequency distribution across the LC SLM was measured proving that the optimal frequency distribution was realized experimentally. Furthermore, the excellent performance of the TFP was verified. In general, satellite pulses are emitted from the TFP due to multiple internal reflections. Various measurements demonstrated that these pulses are temporally separated by at least 4.05 ps from the main pulse and that they have vanishing intensity. The phase stability between the two arms of the presented common-path setup σ = 28.3 mrad (λ/222) over 60 minutes. To further improve this stability over very long measurement times, an on-the-fly phase reduction and stabilization (OPRAS) routine utilizing the pulse shaper itself was developed. This routine automatically produces a compressed pulse with a minimized relative phase between the two polarization components. A phase stability of σ = 31.9 mrad (λ/197) over nearly 24 hours was measured by employing OPRAS. Various pulse sequences exceeding the capabilities of conventional pulse shapers were generated and characterized. The experimental results proved that shaped pulses with arbitrary phase, amplitude, and polarization states can be created. In all cases very high agreement between the target parameters and the experimental data was achieved. For the future use of the setup also possible modifications were suggested. These are not strictly required, but all of them could further improve the performance and flexibility of the setup. Firstly, it was illustrated how a "dual-output" of the setup can be realized. With this modification it would be possible to use the main intensity of the shaped pulse for an experiment while using a small fraction to characterize the pulse or to perform OPRAS simultaneously. Secondly, the basic idea of replacing the telescope by focusing mirrors in order to eliminate the chromatic aberrations was presented. Regarding the different parameterizations for vector-field shaping, some modifications increasing the flexibility of the implemented bases and the realization of a von Neumann Basis for the presented setup were proposed. In future experiments, the vector-field shaper will be used in conjunction with a photoemission electron microscope (PEEM). This approach combines the temporal resolution provided by ultrashort laser pulses with the high spatial resolution gained by electron microscopy in order to perform two-dimensional spectroscopy and coherent control on nanostructures with polarization-shaped femtosecond laser pulses. In combination with other chiral-sensitive experimental setups implemented earlier in our group, the vector-field shaper opens up new perspectives for chiral femtochemistry and chiral control. The designed vector-field shaper meets all requirements to generate high-precision polarization-shaped multipulse sequences. These can be used to perform numerous polarization-sensitive experiments. Employing the OPRAS routine, a quasi-infinitely long phase stability is achieved and complex and elaborated long-term measurements can be carried out. The fact that OPRAS demands no additional hardware and that only a single dual-layer LC SLM and inexpensive optics are required allows the building of a vector-field shaper at comparatively low costs. We hope that with the detailed insights into the optical design process as well as into the software implementation given in this thesis, vector-field shaping will become a standard technique just as conventional pulse shaping in the upcoming years.}, subject = {Ultrakurzer Lichtimpuls}, language = {en} } @phdthesis{Knebl2019, author = {Knebl, Georg}, title = {Epitaktisches Wachstum und Transportuntersuchung topologisch isolierender Materialien: GaSb/InAs Doppelquantenfilme und Bi\(_2\)Se\(_3\) Nanostrukturen}, doi = {10.25972/OPUS-19147}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191471}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Topologische Isolatoren geh{\"o}ren zu einer Klasse von Materialien, an deren Realisation im Rahmen der zweiten quantenmechanischen Revolution gearbeitet wird. Einerseits sind zahlreiche Fragestellungen zu diesen Materialen und deren Nutzbarmachung noch nicht beantwortet, andererseits treiben vielversprechende Anwendungen im Feld der Quantencomputer und Spintronik die L{\"o}sung dieser Fragen voran. Topologische Rand- bzw. Oberfl{\"a}chenzust{\"a}nde wurden f{\"u}r unterschiedlichste Materialien und Strukturen theoretisch vorhergesagt, so auch f{\"u}r GaSb/InAs Doppelquantenfilme und Bi2Se3. Trotz intensiver Forschungsarbeiten und großer Fortschritte bed{\"u}rfen viele Prozesse v. a. im Bereich der Probenherstellung und Verarbeitung noch der Optimierung. Die vorliegende Arbeit pr{\"a}sentiert Ergebnisse zur Molekularstahlepitaxie, zur Probenfertigung sowie zu elektro-optisch modulierter Transportuntersuchung von GaSb/InAs Doppelquantenfilmen und der epitaktischen Fertigung von Bi2Se3 Nanostrukturen. Im ersten Teil dieser Arbeit werden die Parameter zur Molekularstrahlepitaxie sowie die Anpassung der Probenfertigung von GaSb/InAs Doppelquantenfilmen an material- und untersuchungsbedingte Notwendigkeiten beschrieben. Dieser verbesserte Prozess erm{\"o}glicht die Fertigung quantitativ vergleichbarer Probenserien. Anschließend werden Ergebnisse f{\"u}r Strukturen mit variabler InAs Schichtdicke unter elektrostatischer Kontrolle mit einem Frontgate pr{\"a}sentiert. Auch mit verbessertem Prozess zeigten sich Leckstr{\"o}me zum Substrat. Diese erschweren eine elektrostatische Kontrolle {\"u}ber Backgates. Die erstmals durch optische Anregung pr{\"a}sentierte Manipulation der Ladungstr{\"a}gerart sowie des Phasenzustandes in GaSb/InAs Doppelquantenfilmen bietet eine Alternative zu problembehafteten elektrostatisch betriebenen Gates. Im zweiten Teil wird die epitaktische Herstellung von Bi2Se3 Nanostrukturen gezeigt. Mit dem Ziel, Vorteile aus dem erh{\"o}hten Oberfl{\"a}che-zu-Volumen Verh{\"a}ltnis zu ziehen, wurden im Rahmen dieser Arbeit erstmals Bi2Se3 Nanodr{\"a}hte und -flocken mittels Molekularstrahlepitaxie f{\"u}r die Verwendung als topologischer Isolator hergestellt. Ein Quantensprung - Kapitel 1 f{\"u}hrt {\"u}ber die umgangssprachliche Wortbedeutung des Quantensprungs und des damit verbundenen Modells der Quantenmechanik in das Thema. Die Anwendung dieses Modells auf Quanten-Ensembles und dessen technische Realisation wird heute als erste Quantenmechanische Revolution bezeichnet und ist aus unserem Alltag nicht mehr wegzudenken. Im Rahmen der zweiten Quantenmechanischen Revolution soll nun die Anwendung auf einzelne Zust{\"a}nde realisiert und technisch nutzbar gemacht werden. Hierbei sind topologische Isolatoren ein vielversprechender Baustein. Es werden das Konzept des topologischen Isolators sowie die Eigenschaften der beiden in dieser Arbeit betrachteten Systeme beschrieben: GaSb/InAs Doppelquantenfilme und Bi2Se3 Nanostrukturen. GaSb/InAs Doppelquantenfilme Kapitel 2 beschreibt die notwendigen physikalischen und technischen Grundlagen. Ausgehend von der Entdeckung des Hall-Effekts 1879 werden die Quanten-Hall-Effekte eingef{\"u}hrt. Quanten-Spin-Hall-Isolatoren oder allgemeiner topologische Isolatoren sind Materialien mit einem isolierenden Inneren, weisen an der Oberfl{\"a}che aber topologisch gesch{\"u}tzte Zust{\"a}nde auf. Doppelquantenfilme aus GaSb/InAs, die in AlSb gebettet werden, weisen - abh{\"a}ngig vom Aufbau der Heterostruktur - eine typische invertierte Bandstruktur auf und sind ein vielversprechender Kandidat f{\"u}r die Nutzbarmachung der topologischen Isolatoren. GaSb, InAs und AlSb geh{\"o}ren zur 6,1 {\AA}ngstr{\"o}m-Familie, welche f{\"u}r ihre opto-elektronischen Eigenschaften bekannt ist und h{\"a}ufig verwendet wird. Die Eigenschaften sowie die technologischen Grundlagen der epitaktischen Fertigung von Heterostrukturen aus den Materialien der 6,1 {\AA}ngstr{\"o}m-Familie mittels Molekularstrahlepitaxie werden besprochen. Abschließend folgen die Charakterisierungs- und Messmethoden. Ein {\"U}berblick {\"u}ber die Literatur zu GaSb/InAs Doppelquantenfilmen in Bezug auf topologische Isolatoren rundet dieses Kapitel ab. Zu Beginn dieser Arbeit stellten Kurzschlusskan{\"a}le eine Herausforderung f{\"u}r die Detektion der topologischen Randkan{\"a}le dar. Kapitel 3 behandelt L{\"o}sungsans{\"a}tze hierf{\"u}r und beschreibt die Verbesserung der Herstellung von GaSb/InAs Doppelquantenfilm-Strukturen mit Blick auf die zuk{\"u}nftige Realisation topologischer Randkan{\"a}le. In Abschnitt 3.1 werden numerische Simulationen pr{\"a}sentiert, die sich mit der Inversion der elektronischen Niveaus in Abh{\"a}ngigkeit der GaSb und InAs Schichtdicken dGaSb und dInAs besch{\"a}ftigen. Ein geeigneter Schichtaufbau f{\"u}r Strukturen mit invertierter Bandordnung liegt im Parameterraum von 8 nm ≾ dInAs ≾ 12 nm und 8 nm ≾ dGaSb ≾ 10 nm. Abschnitt 3.2 beschreibt die epitaktische Herstellung von GaSb/InAs Doppelquantenfilmen mittels Molekularstrahlepitaxie. Die Fertigung eines GaSb Quasisubstrats auf ein GaAs Substrat wird pr{\"a}sentiert und anschließend der Wechsel auf native GaSb Substrate mit einer reduzierten Defektdichte sowie reproduzierbar hoher Probenqualit{\"a}t begr{\"u}ndet. Ein Wechseln von bin{\"a}rem AlSb auf gitterangepasstes AlAsSb erlaubt die Verwendung dickerer Barrieren. Versuche, eine hinl{\"a}ngliche Isolation des Backgates durch das Einbringen einer dickeren unteren Barriere zu erreichen, werden in diesem Abschnitt diskutiert. In Abschnitt 3.3 wird die Optimierung der Probenprozessierung gezeigt. Die Kombination zweier angepasster {\"A}tzprozesse - eines trockenchemischen und eines sukzessive folgenden nasschemischen Schrittes - liefert zusammen mit der Entfernung von Oberfl{\"a}chenoxiden reproduzierbar gute Ergebnisse. Ein materialselektiver {\"A}tzprozess mit darauffolgender direkter Kontaktierung des InAs Quantenfilmes liefert gute Kontaktwiderst{\"a}nde, ohne Kurzschlusskan{\"a}le zu erzeugen. Abschnitt 3.4 gibt einen kompakten {\"U}berblick, {\"u}ber den im weiteren Verlauf der Arbeit verwendeten „best practice" Prozess. Mit diesem verbesserten Prozess wurden Proben mit variabler InAs Schichtdicke gefertigt und bei 4,2 K auf ihre Transporteigenschaften hin untersucht. Dies ist in Kapitel 4 pr{\"a}sentiert und diskutiert. Abschnitt 4.1 beschreibt die Serie aus drei Proben mit GaSb/InAs Doppelquantenfilm in AlSb Matrix mit einer variablen InAs Schichtdicke. Die InAs Schichtdicke wurde {\"u}ber numerische Simulationen so gew{\"a}hlt, dass je eine Probe im trivialen Regime, eine im invertierten Regime und eine am {\"U}bergang liegt. Gezeigt werden in Kapitel 4.2 Magnetotransportmessungen f{\"u}r konstante Frontgatespannungen sowie Messungen mit konstantem Magnetfeld gegen die Frontgatespannung. Die Messungen best{\"a}tigen eine Fertigung quantitativ vergleichbarer Proben, zeigen aber auch, dass keine der Proben im topologischen Regime liegt. Hierf{\"u}r kommen mehrere Ursachen in Betracht: Eine {\"U}bersch{\"a}tzung der Hybridisierung durch die numerische Simulation, zu geringe InAs Schichtdicken in der Fertigung oder ein asymmetrisches Verschieben mit nur einem Gate (Kapitel 4.3). Zur Reduktion der Volumenleitf{\"a}higkeit wurden Al-haltigen Schichten am GaSb/InAs {\"U}bergang eingebracht. Die erwartete Widerstandssteigerung konnte in ersten Versuchen nicht gezeigt werde. Die in Kapitel 5 gezeigte optische Manipulation des dominanten Ladungstr{\"a}gertyps der InAs/GaSb-Doppelquantent{\"o}pfe gibt eine zus{\"a}tzliche Kontrollm{\"o}glichkeit im Phasendiagramm. Optische Anregung erm{\"o}glicht den Wechsel der Majorit{\"a}tsladungstr{\"a}ger von Elektronen zu L{\"o}chern. Dabei wird ein Regime durchlaufen, in dem beide Ladungstr{\"a}ger koexistieren. Dies weist stark auf eine Elektron-Loch-Hybridisierung mit nichttrivialer topologischer Phase hin. Dabei spielen zwei unterschiedliche physikalische Prozesse eine Rolle, die analog eines Frontgates bzw. eines Backgates wirken. Der Frontgate Effekt beruht auf der negativ persistenten Photoleitf{\"a}higkeit, der Backgate Effekt fußt auf der Akkumulation von Elektronen auf der Substratseite. Das hier gezeigte optisch kontrollierte Verschieben der Zust{\"a}nde belegt die Realisation von opto-elektronischem Schalten zwischen unterschiedlichen topologischen Phasen. Dies zeigt die M{\"o}glichkeit einer optischen Kontrolle des Phasendiagramms der topologischen Zust{\"a}nde in GaSb/InAs Doppelquantenfilmen. In Abschnitt 5.1 wird die optische Verstimmung von GaSb/InAs Quantenfilmen gezeigt und erkl{\"a}rt. Sie wird in Abh{\"a}ngigkeit von der Temperatur, der Anregungswellenl{\"a}nge sowie der Anregungsintensit{\"a}t untersucht. Kontrollversuche an Proben mit einem unterschiedlichen Strukturaufbau zeigen, dass das Vorhandensein eines {\"U}bergitters auf der Substratseite der Quantenfilmstruktur essentiell f{\"u}r die Entstehung der Backgate-Wirkung ist (Abschnitt 5.2). Abschließend werden in Abschnitt 5.3 die Erkenntnisse zur optischen Kontrolle zusammengefasst und deren M{\"o}glichkeiten, wie optisch definierte topologischen Phasen-Grenzfl{\"a}chen, diskutiert. Bi2Se3 Nanostrukturen Mit Blick auf die Vorteile eines erh{\"o}hten Oberfl{\"a}che-zu-Volumen Verh{\"a}ltnisses ist die Verwendung von Nanostrukturen f{\"u}r das Anwendungsgebiet der dreidimensionalen topologischen Isolatoren effizient. Mit dem Ziel, diesen Effekt f{\"u}r die Realisation des topologischen Isolators in Bi2Se3 auszunutzen, wurde im Rahmen dieser Arbeit erstmalig das Wachstum von Bi2Se3 Nanodr{\"a}hten und -flocken mit Molekularstrahlepitaxie realisiert. In Kapitel 6 werden technische und physikalische Grundlagen hierzu erl{\"a}utert (Abschnitt 6.1). Ausgehend von einer Einf{\"u}hrung in dreidimensionale topologische Isolatoren werden die Eigenschaften des topologischen Zustandes in Bi2Se3 gezeigt. Darauf folgen die Kristalleigenschaften von Bi2Se3 sowie die Erkl{\"a}rung des epitaktischen Wachstums von Nanostrukturen mit Molekularstrahlepitaxie. In Abschnitt 6.2 schließt sich die Beschreibung der epitaktischen Herstellung an. Die Kristallstruktur wurde mittels hochaufl{\"o}sender R{\"o}ntgendiffraktometrie und Transmissionselektronenmikroskopie als Bi2Se3 identifiziert. Rasterelektronenmikroskopie-Aufnahmen zeigen Nanodr{\"a}hte und Nanoflocken auf mit Gold vorbehandelten bzw. nicht mit Gold vorbehandelten Proben. Der Wachstumsmechanismus f{\"u}r Nanodr{\"a}hte kann nicht zweifelsfrei definiert werden. Das Fehlen von Goldtr{\"o}pfchen an der Drahtspitze legt einen wurzelbasierten Wachstumsmechanismus nahe (Abschnitt 6.3).}, language = {de} } @phdthesis{Klaas2019, author = {Klaas, Martin}, title = {Spektroskopische Untersuchungen an elektrisch und optisch erzeugten Exziton-Polariton-Kondensaten}, doi = {10.25972/OPUS-17689}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176897}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Eine technologisch besonders vielversprechende Art von Mikrokavit{\"a}ten besteht aus einem optisch aktiven Material zwischen zwei Spiegeln, wobei das Licht auf Gr{\"o}ße seiner Wellenl{\"a}nge eingesperrt wird. Mit diesem einfachen Konzept Licht auf Chipgr{\"o}ße einzufangen entstand die M{\"o}glichkeit neue Ph{\"a}nomene der Licht-Materie Wechselwirkung zu studieren. Der Oberfl{\"a}chenemitter (VCSEL), welcher sich das ver{\"a}nderte Strahlungsverhalten aufgrund der schwachen Kopplung und stimulierten Emission zu Nutze macht, ist bereits l{\"a}nger kommerziell sehr erfolgreich. Er umfasst ein erwartetes Marktvolumen von ca. 5.000 Millionen Euro bis 2024, welches sich auf verschiedenste Anwendungen im Bereich von Sensorik und Kommunikationstechnologie bezieht. Dauerhaft hohe Wachstumsraten von 15-20\% pro Jahr lassen auf weiteres langfristiges Potential von Mikrokavit{\"a}ten in der technologischen Gesellschaft der n{\"a}chsten Generation hoffen. Mit fortschreitender Entwicklung der Epitaxie-Verfahren gelang es Kavit{\"a}ten solcher Qualit{\"a}t herzustellen, dass zum ersten Mal das Regime der starken Kopplung erreicht wurde. Starke Kopplung bedeutet in diesem Fall die Bildung eines neuen Quasiteilchens zwischen Photon und Exziton, dem Exziton-Polariton (Polariton). Dieses Quasiteilchen zeigt eine Reihe interessanter Eigenschaften, welche sowohl aus der Perspektive der Technologie, als auch aus der Sicht von Grundlagenforschung interessant sind. Bei systemabh{\"a}ngigen Teilchendichten erlaubt das Polariton ebenfalls die Erzeugung von koh{\"a}rentem Licht {\"u}ber den Exziton-Polariton-Kondensatszustand (Kondensat), den Polariton-Laser. Die Eigenschaften des emittierten Lichtes {\"a}hneln denen eines VCSELs, allerdings bei einigen Gr{\"o}ßenordnungen geringerem Energieverbrauch, bzw. niedrigerer Laserschwelle, bei Wahl geeigneter Verstimmung von Exziton und Photon. Diese innovative Entwicklung kann daher unter anderem neue M{\"o}glichkeiten f{\"u}r besonders energiesparende Anwendungen in der Photonik er{\"o}ffnen. Die vorliegende Doktorarbeit soll zur Erweiterung des Forschungsstandes in diesem Gebiet zwischen Photonik und Festk{\"o}rperphysik beitragen und untersucht zum einen den anwendungsorientierten Teil des Feldes mit Studien zur elektrischen Injektion, beleuchtet aber auch den interessanten Phasen{\"u}bergang des Systems {\"u}ber seine Koh{\"a}renz- und Spineigenschaften. Es folgt eine knappe {\"u}berblicksartige Darstellung der Ergebnisse, die in dieser Arbeit genauer ausgearbeitet werden. Rauschanalyse und die optische Manipulation eines bistabilen elektrischen Polariton-Bauelements Aufbauend auf der Realisierung eines elektrischen Polariton-Lasers wurde in dieser Arbeit ein optisches Potential in das elektrisch betriebene Kondensat mit einem externen Laser induziert. Dieses optische Potential erm{\"o}glicht die Manipulation der makroskopischen Besetzung der Grundzustandswellenfunktion, welches sich als ver{\"a}ndertes Emissionsbild im Realraum darstellt. Der polaritonische Effekt wird {\"u}ber Verschiebung der Emissionslinie zu h{\"o}heren Energien durch Wechselwirkung des Exzitonanteils nachgewiesen. Diese experimentellen Beobachtungen konnten mit Hilfe eines Gross-Pitaevskii-Differentialgleichungsansatzes erl{\"a}utert und theoretisch nachgebildet werden. Weiterhin zeigt der elektrische Polariton-Laser eine Bistabilit{\"a}t in seiner Emissionskennlinie an der polaritonischen Kondensationsschwelle. Die Hysterese hat ihren physikalischen Ursprung in der Lebenszeitabh{\"a}ngigkeit der Ladungstr{\"a}ger von der Dichte des Ladungstr{\"a}gerreservoirs durch die progressive Abschirmung des inneren elektrischen Feldes. In dieser Arbeit wird zum tieferen Verst{\"a}ndnis der Hysterese ein elektrisches Rauschen {\"u}ber den Anregungsstrom gelegt. Dieses elektrische Rauschen befindet sich auf der Mikrosekunden-Zeitskala und beeinflusst die Emissionscharakteristik, welche durch die Lebensdauer der Polaritonen im ps-Bereich bestimmt wird. Mit steigendem Rauschen wird ein Zusammenfall der Hysterese beobachtet, bis die Emissionscharakteristik monostabil erscheint. Diese experimentellen Befunde werden mit einem gekoppelten Ratengleichungssystem sowie mit Hilfe einer Gauss-verteilten Zufallsvariable in der Anregung modelliert und erkl{\"a}rt. Die Hysterese erm{\"o}glicht außerdem den Nachweis eines optischen Schalteffekts {\"u}ber eine zus{\"a}tzliche Ladungstr{\"a}gerinjektion mit einem Laser weit {\"u}ber der Bandkante des Systems, um den positiven R{\"u}ckkopplungseffekt zu erzeugen. Im Bereich der Hysterese wird das System auf den unteren Zustand elektrisch angeregt und dann mit Hilfe eines nicht-resonanten Laserpulses in den Kondensatszustand gehoben. Polaritonfluss geleitet durch Kontrolle der lithographisch definierten Energielandschaft Polaritonen k{\"o}nnen durch den photonischen Anteil weiterhin in Wellenleiterstrukturen eingesperrt werden, worin sie bei der Kondensation gerichtet entlang des Kanals mit nahe Lichtgeschwindigkeit fließen. Dies geschieht mit der Besonderheit {\"u}ber ihren Exzitonanteil stark wechselwirken zu k{\"o}nnen. Die M{\"o}glichkeit durch Lithographie solche eindimensionalen Kan{\"a}le zu definieren, wurde bereits in verschiedenen Prototypen f{\"u}r Polaritonen benutzt und untersucht. In dieser Arbeit werden zwei verschiedene, neue Ans{\"a}tze zur Lenkung von gerichtetem Polaritonfluss vorgestellt: zum einen {\"u}ber die sogenannte Josephson-Kopplung zwischen zwei Wellenleitern, realisiert {\"u}ber halbge{\"a}tzte Spiegel und zum anderen {\"u}ber eine Mikroscheibe gekoppelt an zwei Wellenleiter. Der Begriff der Josephson-Kopplung ist hier angelehnt an den bekannten Effekt in Supraleitern, welcher ph{\"a}nomenologische {\"A}hnlichkeiten aufweist. Die Verwendung in der Polaritonik ist historisch gewachsen. Die Josephson-Kopplung erm{\"o}glicht die Beobachung von Oszillationen des Polariton-Kondensats zwischen den Wellenleitern, in Abh{\"a}ngigkeit der verbleibenden Anzahl Spiegelpaare zwischen den Strukturen, wodurch eine definierte Selektion des Auskopplungsarms erm{\"o}glicht wird. Die Mikroscheibe funktioniert {\"a}hnlich einer Resonanztunneldiode. Sie erm{\"o}glicht eine Energieselektion der transmittierten Moden durch die Diskretisierung der Zust{\"a}nde in den niederdimensionalen Strukturen. Es ergibt sich die Bedingung, dass nur energetisch gleiche Niveaus zwischen Struktur{\"u}berg{\"a}ngen koppeln k{\"o}nnen. Gleichzeitig erlaubt die Mikroscheibenanordnung eine Umkehrung der Flussrichtung. Koh{\"a}renzeigenschaften und die Photonenstatistik von Polariton-Kondensaten unter photonischen Einschlusspotentialen Die Koh{\"a}renzeigenschaften der Emission von Polariton-Kondensaten ist seit l{\"a}ngerem ein aktives Forschungsfeld. Die noch ausstehenden Fragen betreffen die Beobachtung hoher Abweichungen von traditionellen, auf Inversion basierenden Lasersystemen (z.B. VCSELs). Diese haben selbst bei schwellenlosen Lasern einen Wert der Autokorrelationsfunktion zweiter Ordnung von Eins. Polariton-Kondensate jedoch zeigen erh{\"o}hte Werte in der Autokorrelationsfunktion, welches auf einen Mischzustand zwischen koh{\"a}rentem und thermischem Licht hinweist. In dieser Arbeit wurde ein systematischer Weg untersucht, die Koh{\"a}renzeigenschaften des Polariton-Kondensats denen eines traditionellen Lasers anzun{\"a}hern. Dies geschieht {\"u}ber den lateralen photonischen Einschluss der Kondensate mittels lithographisch definierter Mikrot{\"u}rmchen mit verschiedenen Durchmessern. In Koh{\"a}renzmessungen wird der Einfluss dieser Ver{\"a}nderung der Energielandschaft der Polariton-Kondensate auf die Autokorrelationseigenschaften zweiter Ordnung untersucht. Es wird ein direkter Zusammenhang zwischen großem Einschlusspotential und guten Korrelationseigenschaften nachgewiesen. Der Effekt wird theoretisch {\"u}ber den ver{\"a}nderten Einfluss der Phononen auf das Polariton-Relaxationsverhalten erkl{\"a}rt. Durch die st{\"a}rkere Lokalisierung der Polaritonwellenfunktion in kleineren Mikrot{\"u}rmchen wird die Streuwahrscheinlichkeit erh{\"o}ht, was eine effizientere Relaxation in den Grundzustand erm{\"o}glicht. Dies verhindert zu starke Besetzungsfluktuationen der Grundmode in der Polariton-Lebenszeit, was bisher als Grund f{\"u}r die erh{\"o}hte Autokorrelation postuliert wurde. Weiterhin wird eine direkte Messung der Photonenstatistik eines Polaritonkondensats entlang steigender Polaritondichte im Schwellbereich vorgestellt. Die Photonenstatistik eines thermischen Emitters zeigt einen exponentiellen Verlauf, w{\"a}hrend ein reiner Laser Poisson-verteilt emittiert. Der Zwischenbereich, der f{\"u}r einen Laser am {\"U}bergang zwischen thermischer und koh{\"a}renter Lichtquelle vorhergesagt wird, kann durch eine {\"U}berlagerung der beiden Zust{\"a}nde beschrieben werden. {\"U}ber eine Anpassungsfunktion der gemessenen Verteilungsfunktionen kann der Phasen{\"u}bergang des Kondensats mit Hilfe dem Anteil der koh{\"a}renten Partikel im System verfolgt werden. Dadurch, dass der gemessene {\"U}bergang dem Paradigma der thermisch-koh{\"a}renten Zust{\"a}nde folgt, wurde nachgewiesen, dass bei r{\"o}tlicher Verstimmung die Interaktionen keinen signifikanten Anteil an der Ausbildung von Koh{\"a}renz im Polaritonsystem spielen. Polarisationskontrolle von Polariton-Kondensaten Die Polarisationseigenschaften des durch Polaritonenzerfall emittierten Lichts korrespondieren zum Spinzustand der Quasiteilchen. Unterhalb der Kondensationsschwelle ist diese Emission durch Spin-Relaxation der Ladungstr{\"a}ger unpolarisiert und oberhalb der Schwelle bildet sich unter bestimmten Voraussetzungen lineare Polarisation als Ordnungsparameter des Phasen{\"u}bergangs aus. Der Prozess der stimulierten Streuung kann die (zirkulare) Polarisation des Lasers auch bei Anregung auf h{\"o}heren Energien auf dem unteren Polaritonast erhalten. Dies resultiert aus sehr schneller Einnahme des Grundzustands, welche eine Spin-Relaxation verhindert. Bisher wurde, nach unserem Kenntnisstand, nur teilweise Erhaltung zirkularer Polarisation unter nicht-resonanter Anregung beobachtet. In dieser Arbeit wird vollst{\"a}ndige zirkulare Polarisationserhaltung, energetisch 130 meV vom Kondensatszustand entfernt angeregt, nachgewiesen. Diese Polarisationserhaltung setzt an der Kondensationsschwelle ein, was auf den Erhalt durch stimulierte Streuung hinweist. Unter dieser Voraussetzung der Spinerhaltung erzeugt die linear polarisierte Anregung (als {\"U}berlagerung zirkularem Lichts beider Orientierungen) elliptisch polarisiertes Licht. Dies geschieht, weil eine linear polarisierte Anregung durch Fokussierung eines Objektivs leicht elliptisch wird. Der Grad der Elliptizit{\"a}t wird sowohl durch die Verstimmung zwischen Photon und Exziton Mode beeinflusst, als auch durch die Dichte im System. Dies kann erkl{\"a}rt werden {\"u}ber das spezielle Verhalten der Relaxationsprozesse auf dem unteren Polaritonast, welche von der transversal-elektrischen und transversal-magnetischen (TE-TM) energetischen Aufspaltung abh{\"a}ngen. Weiterhin werden elliptische Mikrot{\"u}rmchen untersucht, um den Einfluss dieses asymmetrischen photonischen Einschlusses auf die Kondensatseigenschaften herauszuarbeiten. Die Ellipse zwingt das Kondensat zu einer linearen Polarisation, welche sich entlang der langen Achse des T{\"u}rmchens ausrichtet. In asymmetrischen Mikrot{\"u}rmchen ist die Grundmode aufgespalten in zwei linear polarisierte Moden entlang der beiden orthogonal zueinander liegenden Hauptachsen, wobei die l{\"a}ngere Achse das linear polarisierte Energieminimum des Systems bildet. Der Grad der linearen Polarisation nimmt mit geringerem Mikrot{\"u}rmchendurchmesser und gr{\"o}ßerer Ellipzit{\"a}t zu. Dies geschieht durch erh{\"o}hten energetischen Abstand der beiden Moden. Bei Ellipsen mit einem langen Hauptachsendurchmesser von 2 Mikrometer und einem Achsenverh{\"a}ltnis von 3:2 kann ein nahezu vollst{\"a}ndig linear polarisierter Zustand eines Polariton-Kondensats nachgewiesen werden. Damit wurde erforscht, dass auch unter nicht-resonanter Anregung Exziton-Polariton-Kondensate experimentell und theoretisch jeglichen Spinzustand unter entsprechenden Anregungsbedingungen annehmen k{\"o}nnen.}, subject = {Exziton-Polariton}, language = {de} } @phdthesis{Fischer2015, author = {Fischer, Julian}, title = {Koh{\"a}renz- und Magnetfeldmessungen an Polariton-Kondensaten unterschiedlicher r{\"a}umlicher Dimensionen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149488}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Die Bose-Einstein-Kondensation (BEK) und die damit verbundenen Effekte wie Superfluidit{\"a}t und Supraleitung sind faszinierende Resultate der Quantennatur von Bosonen. Nachdem die Bose-Einstein-Kondensation f{\"u}r Atom-Systeme nur bei Temperaturen nahe dem absoluten Nullpunkt realisierbar ist, was einen enormen technologischen Aufwand ben{\"o}tigt, wurden Bosonen mit wesentlich kleineren Massen zur Untersuchung der BEK gesucht. Hierf{\"u}r bieten sich Quasiteilchen in Festk{\"o}rpern wie Magnonen oder Exzitonen an, da deren effektive Massen sehr klein sind und die Kondensationstemperatur dementsprechend h{\"o}her ist als f{\"u}r ein atomares System. Ein weiteres Quasiteilchen ist das Exziton-Polariton als Resultat der starken Licht-Materie-Wechselwirkung in Halbleitermikrokavit{\"a}ten, welches sowohl Materie- als auch Photoneigenschaften hat und dessen Masse theoretisch eine BEK bis Raumtemperatur erlaubt. Ein weiterer Vorteil dieses System ist die einfache Erzeugung des Bose-Einstein-Kondensats in diesen Systemen durch elektrisches oder optisches Injizieren von Exzitonen in die Halbleiter-Quantenfilme der Struktur. Außerdem kann die Impulsraumverteilung dieser Quasiteilchen leicht durch einfache experimentelle Methoden mittels eines Fourierraumspektroskopie-Aufbaus bestimmt werden. Durch die winkelabh{\"a}ngige Messung der Emission kann direkt auf die Impulsverteilung der Exziton-Polaritonen in der Quantenfilmebene zur{\"u}ckgerechnet werden, die zur Identifikation der BEK hilfreich ist. Deshalb wird das Exziton-Polariton als ein Modellsystem f{\"u}r die Untersuchung von Bose-Einstein-Kondensation in Festk{\"o}rpern und den damit in Relation stehenden Effekten angesehen. In dieser Arbeit wird die Grundzustandskondensation von Exziton-Polaritonen in Halbleitermikrokavit{\"a}ten verschiedener Dimensionen realisiert und deren Emissionseigenschaften untersucht. Dabei wird vor allem die Wechselwirkung des Polariton-Kondensats mit der der unkondensierten Polaritonen bzw. der Quantenfilm-Exzitonen im externen Magnetfeld verglichen und ein Nachweis zum Erhalt der starken Kopplung {\"u}ber die Polariton-Kondensationsschwelle hinaus entwickelt. Außerdem werden die Koh{\"a}renzeigenschaften von null- und eindimensionalen Polariton-Kondensaten durch Bestimmung der Korrelationsfunktion erster beziehungsweise zweiter Ordnung analysiert. Als Materialsystem werden hierbei die III/V-Halbleiter gew{\"a}hlt und die Quantenfilme bestehen bei allen Messungen aus GaAs, die von einer AlAs Kavit{\"a}t umgeben sind. Eindimensionale Polariton-Kondensation - r{\"a}umliche Koh{\"a}renz der Polariton-Dr{\"a}hte Im ersten experimentellen Teil dieser Arbeit (Kapitel 1) wird die Kondensation der Polaritonen in eindimensionalen Dr{\"a}hten unter nicht-resonanter optischer Anregung untersucht. Dabei werden verschiedene Drahtl{\"a}ngen und -breiten verwendet, um den Einfluss des zus{\"a}tzlichen Einschlusses auf die Polariton-Dispersion bestimmen zu k{\"o}nnen. Ziel dieser Arbeit ist es, ein eindimensionales Bose-Einstein-Kondensat mit einer konstanten r{\"a}umlichen Koh{\"a}renz nach dem zentralen Abfall der g^(1)(r)-Funktion f{\"u}r große Abst{\"a}nde r in diesen Dr{\"a}hten zu realisieren (sogenannte langreichweitige Ordnung im System, ODLRO (Abk{\"u}rzung aus dem Englischen off-diagonal long-range order). Durch Analyse der Fernfeldemissionseigenschaften k{\"o}nnen mehrere Polariton-{\"A}ste, der eindimensionale Charakter und die Polariton-Kondensation in 1D-Systemen nachgewiesen werden. Daraufhin wird die r{\"a}umliche Koh{\"a}renzfunktion g^(1)(r) mithilfe eines hochpr{\"a}zisen Michelson-Interferometer, das im Rahmen dieser Arbeit aufgebaut wurde, bestimmt. Die g^(1)(r)-Funktion nimmt hierbei {\"u}ber große Abst{\"a}nde im Vergleich zur thermischen De-Broglie-Wellenl{\"a}nge einen konstanten Plateauwert an, der abh{\"a}ngig von der Anregungsleistung ist. Unterhalb der Polariton-Kondensationsschwelle (Schwellleistung P_S) ist kein Plateau sichtbar und die r{\"a}umliche Koh{\"a}renz ist nur im zentralen Bereich von unter |r| < 1 µm vorhanden. Mit ansteigender Anregungsleistung nimmt das zentrale Maximum in der Weite zu und es bildet sich das Plateau der g^(1)(r)-Funktion aus, das nur außerhalb des Drahtes auf Null abf{\"a}llt. Bei P=1,6P_S ist das Plateau maximal und betr{\"a}gt circa 0,15. Außerdem kann nachgewiesen werden, dass mit steigender Temperatur die Plateauh{\"o}he abnimmt und schließlich bei T=25K nicht mehr gemessen werden kann. Hierbei ist dann nur noch das zentrale Maximum der Koh{\"a}renzfunktion g^(1)(r) sichtbar. Weiterhin werden die Ergebnisse mit einer modernen mikroskopischen Theorie, die auf einem stochastischen Mastergleichungssystem basiert, verglichen, wodurch die experimentellen Daten reproduziert werden k{\"o}nnen. Im letzten Teil des Kapitels wird noch die Koh{\"a}renzfunktion g^(1)(r) im 1D-Fall mit der eines planaren Polariton-Kondensats verglichen (2D). Nulldimensionale Polariton-Kondensation - Kondensation und Magnetfeldwechselwirkung in einer Hybridkavit{\"a}t Im zweiten Teil der Arbeit wird die Polariton-Kondensation in einer neuartigen Hybridkavit{\"a}t untersucht. Der Aufbau des unteren Spiegels und der Kavit{\"a}t inklusive der 12 verwendeten Quantenfilme ist analog zu den gew{\"o}hnlichen Mikrokavit{\"a}ten auf Halbleiterbasis. Der obere Spiegel jedoch besteht aus einer Kombination von einem DBR (Abk{\"u}rzung aus dem Englischen distributed Bragg reflector) und einem Brechungsindexkontrast-Gitter mit einem Luft-Halbleiter{\"u}bergang (gr{\"o}ßt m{\"o}glichster Brechungsindexkontrast). Durch die quadratische Strukturgr{\"o}ße des Gitters (Seitenl{\"a}nge 5µm) sind die Polaritonen zus{\"a}tzlich zur Wachstumsrichtung noch in der Quantenfilmebene eingesperrt, so dass sie als nulldimensional angesehen werden k{\"o}nnen (Einschluss auf der ungef{\"a}hren Gr{\"o}ße der thermischen De-Broglie-Wellenl{\"a}nge). Um den Erhalt der starken Kopplung {\"u}ber die Kondensationsschwelle hinaus nachweisen zu k{\"o}nnen, wird ein Magnetfeld in Wachstumsrichtung angelegt und die diamagnetische Verschiebung des Quantenfilms mit der des 0D-Polariton-Kondensats verglichen. Hierdurch kann das Polariton-Kondensat von dem konventionellen Photonlasing in solchen Strukturen unterschieden werden. Weiterhin wird als letztes Unterscheidungsmerkmal zwischen Photonlasing und Polariton-Kondensation eine Messung der Autokorrelationsfunktion zweiter Ordnung g^(2)(t) durchgef{\"u}hrt. Dabei kann ein Wiederanstieg des g^(2)(t = 0)-Werts mit ansteigender Anregungsleistung nachgewiesen werden, nachdem an der Kondensationsschwelle der g^(2)(t = 0)-Wert auf 1 abgefallen ist, was auf eine zeitliche Koh{\"a}renzzunahme im System hinweist. Oberhalb der Polariton-Kondensationsschwelle P_S steigt der g^(2)(t = 0)-Wert wieder aufgrund zunehmender Dekoh{\"a}renzprozesse, verursacht durch die im System ansteigende Polariton-Polariton-Wechselwirkung, auf Werte gr{\"o}ßer als 1 an. F{\"u}r einen gew{\"o}hnlichen Photon-Laser (VCSEL, Abk{\"u}rzung aus dem Englischen vertical-cavity surface-emitting laser) im monomodigen Betrieb kann mit steigender Anregungsleistung kein Wiederanstieg des g^(2)(t = 0)-Werts gemessen werden. Somit stellt dies ein weiteres Unterscheidungsmerkmal zwischen Polariton-Kondensation und Photonlasing dar. Zweidimensionale Polariton-Kondensation - Wechselwirkung mit externem Magnetfeld Im letzten experimentellen Kapitel dieser Arbeit wird die Magnetfeldwechselwirkung der drei m{\"o}glichen Regime der Mikrokavit{\"a}tsemission einer planaren Struktur (zweidimensional) untersucht. Dazu werden zuerst durch eine Leistungsserie bei einer Verstimmung des Photons und des Quantenfilm-Exzitons von d =-6,5meV das lineare, polaritonische Regime, das Polariton-Kondensat und bei weiterer Erh{\"o}hung der Anregungsleistung das Photonlasing identifiziert. Diese drei unterschiedlichen Regime werden daraufhin im Magnetfeld von B=0T-5T auf ihre Zeeman-Aufspaltung und ihre diamagnetische Verschiebung untersucht und die Ergebnisse der Magnetfeldwechselwirkung werden anschließend miteinander verglichen. Im linearen Regime kann die Abh{\"a}ngigkeit der Zeeman-Aufspaltung und der diamagnetischen Verschiebung vom exzitonischen Anteils des Polaritons best{\"a}tigt werden. Oberhalb der Polariton-Kondensationsschwelle wird eine gr{\"o}ßere diamagnetische Verschiebung gemessen als f{\"u}r die gleiche Verstimmung im linearen Regime. Dieses Verhalten wird durch Abschirmungseffekte der Coulomb-Anziehung von Elektronen und L{\"o}chern erkl{\"a}rt, was in einer Erh{\"o}hung des Bohrradius der Exzitonen resultiert. Auch die Zeeman-Aufspaltung oberhalb der Polariton-Kondensationsschwelle zeigt ein vom unkondensierten Polariton abweichendes Verhalten, es kommt sogar zu einer Vorzeichenumkehr der Aufspaltung im Magnetfeld. Aufgrund der langen Spin-Relaxationszeiten von 300ps wird eine Theorie basierend auf der im thermischen Gleichgewichtsfall entwickelt, die nur ein partielles anstatt eines vollst{\"a}ndigen thermischen Gleichgewicht annimmt. So befinden sich die einzelnen Spin-Komponenten im Gleichgewicht, w{\"a}hrend zwischen den beiden Spin-Komponenten kein Gleichgewicht vorhanden ist. Dadurch kann die Vorzeichenumkehr als ein Zusammenspiel einer dichteabh{\"a}ngigen Blauverschiebung jeder einzelner Spin-Komponente und der Orientierung der Spins im Magnetfeld angesehen werden. F{\"u}r das Photonlasing kann keine Magnetfeldwechselwirkung festgestellt werden, wodurch verdeutlicht wird, dass die Messung der Zeeman-Aufspaltung beziehungsweise der diamagnetischen Verschiebung im Magnetfeld als ein eindeutiges Werkzeug zur Unterscheidung zwischen Polariton-Kondensation und Photonlasing verwendet werden kann.}, subject = {Exziton-Polariton}, language = {de} } @phdthesis{Schmitt2022, author = {Schmitt, Fabian Bernhard}, title = {Transport properties of the three-dimensional topological insulator mercury telluride}, doi = {10.25972/OPUS-29173}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-291731}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The subject of this thesis is the investigation of the transport properties of topological and massive surface states in the three-dimensional topological insulator Hg(Mn)Te. These surface states give rise to a variety of extraordinary transport phenomena, making this material system of great interest for research and technological applications. In this connection, many physical properties of the topological insulator Hg(Mn)Te still require in-depth exploration. The overall aim of this thesis is to analyze the quantum transport of HgTe-based devices ranging from hundreds of micrometers (macroscopic) down to a few micrometers in size (microscopic) in order to extend the overall understanding of surface states and the possibilities of their manipulation. In order to exploit the full potential of our high-quality heterostructures, it was necessary to revise and improve the existing lithographic fabrication process of macroscopic three-dimensional Hg(Mn)Te samples. A novel lithographic standard recipe for the fabrication of the HgTe-based macrostructures was developed. This recipe includes the use of an optimized Hall bar design and wet etching instead of etching with high-energy \(\mathrm{{Ar^{+}}}\)-ions, which can damage the samples. Further, a hafnium oxide insulator is applied replacing the SiO\(_{2}\)/Si\(_{3}\)N\(_{4}\) dielectric in order to reduce thermal load. Moreover, the devices are metallized under an alternating angle to avoid discontinuities of the metal layers over the mesa edges. It was revealed that the application of gate-dielectric and top-gate metals results in n-type doping of the devices. This phenomenon could be attributed to quasi-free electrons tunneling from the trap states, which form at the interface cap layer/insulator, through the cap into the active layer. This finding led to the development of a new procedure to characterize wafer materials. It was found that the optimized lithographic processing steps do not unintentionally react chemically with our heterostructures, thus avoiding a degradation of the quality of the Hg(Mn)Te layer. The implementation of new contact structures Ti/Au, In/Ti/Au, and Al/Ti/Au did not result in any improvement compared to the standard structure AuGe/Au. However, a novel sample recipe could be developed, resulting in an intermixing of the contact metals (AuGe and Au) and fingering of metal into the mesa. The extent of the quality of the ohmic contacts obtained through this process has yet to be fully established. This thesis further deals with the lithographic realization of three-dimensional HgTe-based microstructures measuring only a few micrometer in size. Thus, these structures are in the order of the mean free path and the spin relaxation length of topological surface state electrons. A lithographic process was developed enabling the fabrication of nearly any desired microscopic device structure. In this context, two techniques suitable for etching microscopic samples were realized, namely wet etching and the newly established inductively coupled plasma etching. While wet etching was found to preserve the crystal quality of the active layer best, inductively coupled plasma etching is characterized by high reproducibility and excellent structural fidelity. Hence, the etching technique employed depends on the envisaged type of experiment. Magneto-transport measurements were carried out on the macroscopic HgTe-based devices fabricated by means of improved lithographic processing with respect to the transport properties of topological and massive surface states. It was revealed that due to the low charge carrier density present in the leads to the ohmic contacts, these regions can exhibit an insulating behavior at high magnetic fields and extremely low temperatures. As soon as the filling factor of the lowest Landau levels dropped below a critical value (\(\nu_{\mathrm{{c}}}\approx0.8\)), the conductance of the leads decreased significantly. It was demonstrated that the carrier density in the leads can be increased by the growth of modulation doping layers, a back-gate-electrode, light-emitting diode illumination, and by the application of an overlapping top-gate layout. This overlapping top-gate and a back-gate made it possible to manipulate the carrier density of the surface states on both sides of the Hg(Mn)Te layer independently. With this setup, it was identified that topological and massive surface states contribute to transport simultaneously in 3D Hg(Mn)Te. A model could be developed allowing the charge carrier systems populated in the sample to be determined unambiguously. Based on this model, the process of the re-entrant quantum Hall effect observed for the first time in three-dimensional topological insulators could be explained by an interplay of n-type topological and p-type massive surface states. A well-pronounced \(\nu=-1\rightarrow\nu=-2\rightarrow\nu=-1\) sequence of quantum Hall plateaus was found in manganese-doped HgTe-based samples. It is postulated that this is the condensed-matter realization of the parity anomaly in three-dimensional topological insulators. The actual nature of this phenomenon can be the subject of further research. In addition, the measurements have shown that inter-scattering occurs between counter-propagating quantum Hall edge states. The good quantization of the Hall conductance despite this inter-scattering indicates that only the unpaired edge states determine the transport properties of the system as a whole. The underlying inter-scattering mechanism is the topic of a publication in preparation. Furthermore, three-dimensional HgTe-based microstructures shaped like the capital letter "H" were investigated regarding spin transport phenomena. The non-local voltage signals occurring in the measurements could be attributed to a current-induced spin polarization of the topological surface states due to electrons obeying spin-momentum locking. It was shown that the strength of this non-local signal is directly connected to the magnitude of the spin polarization and can be manipulated by the applied top-gate voltage. It was found that in these microstructures, the massive surface and bulk states, unlike the topological surface states, cannot contribute to this spin-associated phenomenon. On the contrary, it was demonstrated that the population of massive states results in a reduction of the spin polarization, either due to the possible inter-scattering of massive and topological surface states or due to the addition of an unpolarized electron background. The evidence of spin transport controllable by a top-gate-electrode makes the three-dimensional material system mercury telluride a promising candidate for further research in the field of spintronics.}, subject = {Topologischer Isolator}, language = {en} } @phdthesis{Zimmermann2018, author = {Zimmermann, Christian}, title = {Halbleiterlaser mit lateralem R{\"u}ckkopplungsgitter f{\"u}r metrologische Anwendungen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159618}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {In der vorliegenden Arbeit wurde angestrebt, die Eigenschaften komplexgekoppelter DFB-Laser bez{\"u}glich ihrer Nutzung f{\"u}r metrologische Untersuchungen zu analysieren und zu verbessern. Hierf{\"u}r wurden die r{\"a}umlichen Emissionseigenschaften der lateral komplexgekoppelten DFB-Laser in ausgiebigen Studien diskutiert. F{\"u}r kommerziell erh{\"a}ltliche Laser wurde daraufhin das Fernfeld sowohl in lateraler als auch vertikaler Richtung berechnet. Die entsprechenden Fernfeldmessungen konnten die Theorie best{\"a}tigen und wie erwartet, waren die Divergenzwinkel mit 52° FWHM in der Wachstumsrichtung und 12° FWHM in lateraler Richtung (vgl. Abb. 6.4 und 6.5) sehr unterschiedlich und zeugen von einer großen Differenz in den Fernfeldwinkeln. Mit {\"U}berlegungen zu dem optischen bzw. elektrischen Einschlusspotential im Hinblick auf die ver{\"a}nderte Fernfeldsituation wurde zun{\"a}chst die reine Halbleiterlaserschichtfolge optimiert. Der Divergenzwinkel in Wachstumsrichtung wurde um mehr als 50\% auf 25° FWHM gesenkt. Damit konnte die Asymmetrie des Fernfeldes um einen Faktor von mehr als 4 reduziert werden. Strahlg{\"u}teuntersuchungen zeigten ein nahezu beugungsbegrenztes Gaußsches Strahlprofil in der langsamen Achse mit einem M2-Wert von 1,13 (Abb. 6.3). Eine weitere Untersuchung betraf die Linienbreitenabh{\"a}ngigkeit solcher Laser von ihrer Ausgangsleistung, der Resonatorl{\"a}nge, der Facettenverg{\"u}tung und der Gitterkopplung. Die erste Beobachtung betraf die Verschm{\"a}lerung der Linienbreite mit ansteigender Ausgangsleistung bis hin zu einer erneuten Verbreiterung (Rebroadening) der Linienbreite (siehe Abb. 7.3). Der Einfluss auf die Linienbreite durch eine Ver{\"a}nderung der Resonatorl{\"a}nge ließ sich sehr gut mit der Theorie vergleichen und so erbrachte eine Verdopplung der Resonatorl{\"a}nge eine Verschm{\"a}lerung der Linienbreite um mehr als einen Faktor 3. Die Verl{\"a}ngerung der Kavit{\"a}t beg{\"u}nstigte den negativen Effekt des sog. Rebroadenings nicht, da bei der verwendeten Technologie der lateral komplexen Kopplung der Index-Beitrag an der R{\"u}ckkopplung sehr klein ist. Im Falle reiner Indexkopplung w{\"a}re dies durch die ver{\"a}nderte κ · L-Lage deutlich zu sp{\"u}ren. Ein weiterer, oben auch angesprochener Vorteil der komplexen Kopplung ist, dass die Facettenreflektivit{\"a}ten einen wesentlich kleineren Einfluss auf die DFB-Ausbeute und auf deren Eigenschaften haben als bei der reinen Indexkopplung. Dies l{\"a}sst sich ausnutzen, um die Photonenlebensdauer in der Kavit{\"a}t zu erh{\"o}hen ohne negativ die DFB-Ausbeute zu beeinflussen. In dieser Arbeit wurde bei verschiedenen L{\"a}ngen die reine gebrochene Facette mit einer verg{\"u}teten verglichen und der Einfluss auf die Linienbreite analysiert. Die Frontfacette wurde durch eine Passivierung bei ca. 30\% gehalten und die R{\"u}ckfacette durch einen doppelten Reflektor auf ca. 85\% gesetzt. Daraus resultierte eine Reduktion der Linienbreite um mehr als die H{\"a}lfte. Neben diesen Ergebnissen wurde auch der Einfluss der komplexen Kopplung untersucht. Da die durch das Gitter zus{\"a}tzlich eingebrachten Verluste zu einer Vergr{\"o}ßerung der Linienbreiten beitragen, wird bei einem gr{\"o}ßeren geometrischen Gitter{\"u}berlapp das Frequenzrauschen auch entsprechend steigen. Dies ließ sich auch im Experiment best{\"a}tigen. Zudem wurde eine L{\"a}ngenabh{\"a}ngigkeit dieses Effektes festgestellt. Die Reduzierung der Linienbreite bei l{\"a}ngeren Bauteilen ist deutlich ausgepr{\"a}gter als bei k{\"u}rzeren. So ist bei {\"a}hnlicher Verringerung des Gitter{\"u}berlappes bei einem 900 μm langen Bauteil eine Linienbreitenreduzierung um einen Faktor von „nur" 1,85 beobachtbar, aber bei der doppelten Kavit{\"a}tsl{\"a}nge ist dieser Faktor schon auf 3,60 angestiegen. Im Rahmen dieser Arbeit wurden DFB-Laser hergestellt, die eine Linienbreite von bis zu 198 kHz aufwiesen. Dies stellt f{\"u}r lateral komplexgekoppelte Laser einen absoluten Rekordwert dar. Im Vergleich zu Index-DFB-Lasern ist dieser Wert bzgl. der Linienbreite mit den aktuellsten Ergebnissen aus der Forschung zu vergleichen [CTR+11], bei welchen eine Linienbreite zu 200 kHz bestimmt wurde. In dem letzten Abschnitt dieser Arbeit wurde der Einfluss einer ver{\"a}nderten Phasenlage von Gitter und Facette untersucht. Dabei wurden spezielle Bauteile hergestellt (3-Segment-DFB-Laser) und verschiedene Gitterl{\"a}ngen untersucht. Die Phasenlage kann reversibel {\"u}ber den eingestellten Strom in den gitterfreien Segmenten geregelt werden. Wie vorhergesagt, best{\"a}tigen die Experimente, dass diese Phasenbeziehung einen signifikanten Einfluss auf die Ausgangsleistung, die Wellenl{\"a}nge mit ihrer zugeh{\"o}rigen Seitenmodenunterdr{\"u}ckung und auch auf die Linien-breite hat. Bei der Analyse der Linienbreite konnte eindeutig beobachtet werden, dass f{\"u}r die verschiedenen L{\"a}ngen die inverse Linienbreite sehr gut mit der relativen Seitenmodenunterdr{\"u}ckung gekoppelt ist. Dies stellt eine deutliche Erleichterung der zuk{\"u}nftigen Optimierung der komplexgekoppelten DFB-Laser dar, da eine Linienbreitenuntersuchung meist deutlich zeitaufwendiger ist als eine Analyse mit einem optischen Spektrometer.}, subject = {DFB-Laser}, language = {de} } @phdthesis{Gottscholl2022, author = {Gottscholl, Andreas Paul}, title = {Optical Accessible Spin Defects in Hexagonal Boron Nitride: Identification, Control and Application of the Negatively Charged Boron Vacancy VB-}, doi = {10.25972/OPUS-27432}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-274326}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {In this work, a bridge was built between the so-far separate fields of spin defects and 2D systems: for the first time, an optically addressable spin defect (VB-) in a van der Waals material (hexagonal boron nitride) was identified and exploited. The results of this thesis are divided into three topics as follows: 1.) Identification of VB-: In the scope of this chapter, the defect ,the negatively charged boron vacancy VB-, is identified and characterized. An initialization and readout of the spin state can be demonstrated optically at room temperature and its spin Hamiltonian contributions can be quantified. 2.) Coherent Control of VB-: A coherent control is required for the defect to be utilized for quantum applications, which}, subject = {Bornitrid}, language = {en} } @phdthesis{Betzold2022, author = {Betzold, Simon}, title = {Starke Licht-Materie-Wechselwirkung und Polaritonkondensation in hemisph{\"a}rischen Mikrokavit{\"a}ten mit eingebetteten organischen Halbleitern}, doi = {10.25972/OPUS-26665}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-266654}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Kavit{\"a}ts-Exziton-Polaritonen (Polaritonen) sind hybride Quasiteilchen, die sich aufgrund starker Kopplung von Halbleiter-Exzitonen mit Kavit{\"a}tsphotonen ausbilden. Diese Quasiteilchen weisen eine Reihe interessanter Eigenschaften auf, was sie einerseits f{\"u}r die Grundlagenforschung, andererseits auch f{\"u}r die Entwicklung neuartiger Bauteile sehr vielversprechend macht. Bei Erreichen einer ausreichend großen Teilchendichte geht das System in den Exziton-Polariton-Kondensationszustand {\"u}ber, was zur Emission von laserartigem Licht f{\"u}hrt. Organische Halbleiter als aktives Emittermaterial zeigen in diesem Kontext großes Potential, da deren Exzitonen neben großen Oszillatorst{\"a}rken auch hohe Bindungsenergien aufweisen. Deshalb ist es m{\"o}glich, unter Verwendung organischer Halbleiter selbst bei Umgebungsbedingungen {\"a}ußerst stabile Polaritonen zu erzeugen. Eine wichtige Voraussetzung zur Umsetzung von integrierten opto-elektronischen Bauteilen basierend auf Polaritonen ist der kontrollierte r{\"a}umliche Einschluss sowie die Realisierung von frei konfigurierbaren Potentiallandschaften. Diese Arbeit besch{\"a}ftigt sich mit der Entwicklung und der Untersuchung geeigneter Plattformen zur Erzeugung von Exziton-Polaritonen und Polaritonkondensaten in hemisph{\"a}rischen Mikrokavit{\"a}ten, in die organische Halbleiter eingebettet sind.}, subject = {Exziton-Polariton}, language = {de} } @phdthesis{Scheuermann2021, author = {Scheuermann, Julian}, title = {Interbandkaskadenlaser f{\"u}r Anwendungen in der Absorptionsspektroskopie}, doi = {10.25972/OPUS-25179}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-251797}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Das Ziel dieser Arbeit war die Entwicklung und Weiterentwicklung von Laserlichtquellen basierend auf der Interbandkaskadentechnologie in einem Wellenl{\"a}ngenbereich von ca. 3 bis 6 µm. Der Fokus lag dabei auf der Entwicklung von Kantenemitter-Halbleiterlasern, welche bei verschiedensten Emissionswellenl{\"a}ngen erfolgreich hergestellt werden konnten. Dabei wurde auf jeweilige Herausforderungen eingegangen, welche entweder durch die Herstellung selbst oder der anwendungstechnischen Zielsetzung bedingt war. Im Rahmen dieser Arbeit wurden verschiedene, spektral einzelmodige Halbleiterlaser im angesprochenen Wellenl{\"a}ngenbereich entwickelt und hergestellt. Basierend auf dem jeweiligen Epitaxiematerial und der angestrebten Emissionswellenl{\"a}nge wurden Simulationen der optischen Lasermode durchgef{\"u}hrt und die grundlegenden f{\"u}r die Herstellung notwendigen Parameter bestimmt und experimentell umgesetzt. Des Weiteren wurden die verwendeten Verfahren f{\"u}r den jeweiligen Herstellungsprozess angepasst und optimiert. Das umfasst die in den ersten Kapiteln beschriebenen Schritte wie optische Lithografie, Elektronenstrahllithografie, reaktives Trocken{\"a}tzen und verschiedene Arten der Materialdeposition. Mit einer Emissionswellenl{\"a}nge von 2,8 µm wurde beispielsweise der bislang kurzwelligste bei Raumtemperatur im Dauerstrichbetrieb betriebene einzelmodige Interbandkaskadenlaser hergestellt. Dessen Leistungsmerkmale sind mit Diodenlasern im entsprechenden Emissionsbereich vergleichbar. Somit erg{\"a}nzt die Interbandkaskadentechnologie bestehende Technologien nahtlos und es ist eine l{\"u}ckenlose Wellenl{\"a}ngenabdeckung bis in den mittleren Infrarotbereich m{\"o}glich. Je nach Herstellungsprozess wurde außerdem auf die verteilte R{\"u}ckkopplung eingegangen und die Leistungsf{\"a}higkeit des verwendeten Metallgitterkonzeptes anhand von Messungen an spektral einzelmodigen Bauteile aufgezeigt. Es wurden aber auch die je nach Zielsetzung unterschiedlichen Herausforderungen aufgezeigt und diskutiert. F{\"u}r eine Anwendung wurden spezielle Laserchips mit zwei einzelmodigen Emissionswellenl{\"a}ngen bei 3928 nm und 4009 nm entwickelt. Die beiden Wellenl{\"a}ngen sind f{\"u}r die Detektion von Schwefeldioxid und Schwefelwasserstoff geeignet, welche zur {\"U}berwachung und Optimierung der Schwefelgewinnung durch das Claus-Verfahren notwendig sind. Bei der Umsetzung wurden auf einzelnen Chips zwei Laseremitter in einem Abstand von 70 µm platziert und mit je einem Metallgitter versehen. Das verwendete Epitaxiematerial war so konzipiert, dass es optimal f{\"u}r beide Zielwellenl{\"a}ngen verwendet werden kann. Die geforderten Eigenschaften wurden erf{\"u}llt und die Bauteile konnten erfolgreich hergestellt werden. Die Emissionseigenschaften und das spektrale Verhalten wurde bei beiden Zielwellenl{\"a}ngen bestimmt. Einzeln betrachtet erf{\"u}llen beide Emitter die notwendigen Eigenschaften um f{\"u}r spektroskopische Anwendungen eingesetzt werden zu k{\"o}nnen. Erg{\"a}nzend wurde zum einen das Abstimmverhalten der Emissionswellenl{\"a}nge in Abh{\"a}ngigkeit der Modulationsfrequenz des Betriebsstromes untersucht und zus{\"a}tzlich die thermische Abh{\"a}ngigkeit der Betriebsparameter beider Kan{\"a}le zueinander bestimmt. Diese Abh{\"a}ngigkeit ist f{\"u}r eine simultane Messung mit beiden Kan{\"a}len notwendig. Das Konzept mit mehreren Stegwellenleitern pro Laserchip wurde in einem weiteren Fall noch st{\"a}rker ausgearbeitet. Denn je nach Komplexit{\"a}t eines Gasgemisches sind zur Bestimmung der einzelnen Komponenten mehr Messpunkte bzw. Wellenl{\"a}ngen notwendig. Im zweiten Fall ist die Analyse der Kohlenwasserstoffe Methan, Ethan, Propan, Butan, Iso-Butan, Pentan und Iso-Pentan von Interesse, welche als Hauptbestandteile von Erdgas z.B. in Erdgasaufbereitungsanlagen oder zur Bestimmung des Heizwertes analysiert werden m{\"u}ssen. Die genannten Kohlenwasserstoffe zeigen ein starkes Absorptionsverhalten im Wellenl{\"a}ngenbereich von 3,3 bis 3,5 µm. Auf dem entsprechend angepassten Interbandkaskadenmaterial wurden Bauteile mit neun Wellenleitern pro Laserchip hergestellt. Mithilfe der neun einzelmodigen Emissionskan{\"a}le konnte ein Bereich von bis zu 190 nm (21 meV, 167 cm-1) adressiert werden. Außerdem wurde der sich mit zunehmender Wellenl{\"a}nge {\"a}ndernde Schichtaufbau und dessen Einfluss auf die Bauteileigenschaften diskutiert. Die Leistungsdaten der langwelligsten Epitaxie waren im Vergleich deutlich schw{\"a}cher. Um diesen Nachteil zu kompensieren, wurde eine spezielle Wellenleitergeometrie mit doppeltem Steg genutzt. Die Eigenschaften des Konzeptes wurden zuerst mittels Simulation untersucht und ein entsprechendes Herstellungsverfahren entwickelt. Mit der Simulation als Grundlage wurden die verschiedenen Prozessparameter {\"u}ber mehrere Prozessl{\"a}ufe iterativ optimiert und somit die Performance der Laser verbessert. Auch mit diesem Verfahren konnte ausreichende Kopplung an das Metallgitter erzielt werden. Abschließend wurden mit diesem Herstellungsverfahren einzelmodige Laser im Wellenl{\"a}ngenbereich von 5,9 bis {\"u}ber 6 Mikrometern realisiert. Diese Laser emittierten im Dauerstrichbetrieb bei einer maximalen Betriebstemperatur von -2 °C. Insgesamt wurde anhand der im Rahmen dieser Arbeit entwickelten Bauteilen und de ren Charakterisierung gezeigt, dass diese die Anforderungen von TLAS Anwendungen erf{\"u}llen. Jedoch konnte nur auf einen Teil der M{\"o}glichkeiten eingegangen werden, den die Interbandkaskadentechnologie bietet, denn die angesprochenen Einsatzgebiete stellen nur einzelne grundlegende M{\"o}glichkeiten dieser Technologie mit Schwerpunkt auf laserbasierte Lichtquellen dar. Zusammenfassend kann allerdings gesagt werden, dass sich die Interbandkaskadentechnologie etabliert hat. Gerade durch die gezeigten Leistungsdaten bei den Wellenl{\"a}ngen um 2,9 µm, 3,4 µm und 4,0 µm im Dauerstrichbetrieb bei Raumtemperatur wird ersichtlich, dass im Bereich der Sensorik die ICL Technologie in Bezug auf niedriger Strom- bzw. Leistungsaufnahme quasi konkurrenzlos ist. Sicherlich werden die Anwendungsgebiete in Zukunft noch vielf{\"a}ltiger. Denn es sind auf jeden Fall weitere Fortschritte in Richtung h{\"o}herer Emissionswellenl{\"a}ngen, deutlich h{\"o}herer Betriebstemperaturen, verbreiterte Emissionsbereiche oder g{\"a}nzlich andere Bauteil Konzepte wie z.B. f{\"u}r Frequenzk{\"a}mme bzw. Terahertz Anwendungen zu erwarten. Diese Entwicklung betrifft nicht nur den Einsatz als Lichtquelle, denn auch Interbandkaskadendetektoren bzw. Solarzellen wurden schon realisiert und werden weiterentwickelt.}, subject = {Halbleiterlaser}, language = {de} } @phdthesis{Kudriashova2019, author = {Kudriashova, Liudmila}, title = {Photoluminescence Reveals Charge Carrier Recombination in Organic and Hybrid Semiconductors}, doi = {10.25972/OPUS-19343}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193437}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {In this work, we elucidated recombination kinetics in organic and hybrid semiconductors by steady-state and time-resolved PL spectroscopy. Using these simple and very flexible experimental techniques, we probed the infrared emission from recombining free charge carriers in metal-halide perovskites, as well as the deep blue luminescence from intramolecular charge-transfer states in novel OLED emitters. We showed that similar state diagrams and kinetic models accurately describe the dynamics of excited species in these very different material systems. In Chapters 4 and 5, we focused on lead iodide perovskites (MAPI and FAPI), whose comparatively developed deposition techniques suited the systematic material research. In MAPI, we harnessed the anomalous dependence of transient PL on the laser repetition rate in order to investigate the role of interfaces with the commonly used charge-selective layers: PC60BM, spiro-MeOTAD, and P3HT. The film was deposited on a large precut substrate and separated into several parts, which were then covered with the charge-selective layers. Thereby, the same bulk perovskite structure was maintained for all samples. Consequently, we were able to isolate interface-affected and bulk carrier recombination. The first one dominated the fast component of PL decay up to 300 ns, whereas the last was assigned to the remaining slow component. The laser repetition rate significantly prolonged PL decay in MAPI with additional interfaces while shortening the charge carrier lifetime in the pristine film. We qualitatively explained this effect by a kinetic model that included radiative electron-hole recombination and nonradiative trap-assisted recombination. All in all, we showed that the apparent PL lifetime in MAPI is to large extend defined by the laser repetition rate and by the adjacent interfaces. Further, we studied photon recycling in MAPI and FAPI. We monitored how the microscopic PL transforms while propagating through the thin perovskite film. The emission was recorded within 5orders of magnitude in intensity up to 70μm away from the excitation spot. The Beer-Lambert law previously failed to describe the complex interplay of the intrinsic PL spectrum and the additional red-shifted peak. Therefore, we developed a general numerical model that accounts for self-absorption and diffusion of the secondary charge carriers. A simulation based on this model showed excellent agreement with the experimental spatially resolved PL maps. The proposed model can be applied to any perovskite film, because it uses easily measurable intrinsic PL spectrum and macroscopic absorption coefficient as seeding parameters. In Chapter 6, we conducted an extensive photophysical study of a novel compact deep blue OLED emitter, SBABz4, containing spiro-biacridine and benzonitrile units. We also considered its single-donor monomer counterpart, DMABz4, in order to highlight the structure-property relationships. Both compounds exhibited thermally activated delayed fluorescence (TADF), which was independently proven by oxygen quenching and temperature-dependent transient PL measurements. The spiro-linkage in the double-donor core of SBABz4 rendered its luminescence pure blue compared to the blue-green emission from the single-donor DMABz4. Thus, the core-donor provided desirable color tuning in the deep blue region, as opposed to the common TADF molecular design with core-acceptor. Using PL lifetimes and efficiencies, we predicted EQEmax = 7.1\% for SBABz4-based OLED, whereas a real test device showed EQEmax = 6.8\%. Transient PL was recorded from the solutions and solid films in the unprecedentedly broad dynamic range covering up to 6orders of magnitude in time and 8orders of magnitude in intensity. The stretched exponent was shown to fit the transient PL in the films very well, whereas PL decay in dilute solution was found purely exponential. When the emitter was embedded in the host matrix that prevented aggregation, its TADF properties were superior in comparison with the pure SBABz4 film. Finally, using temperature-dependent transient PL data, we calculated the TADF activation energy of 70 meV. To sum up, this Thesis contributes to the two fascinating topics of the last decade's material research: perovskite absorbers for photovoltaics and TADF emitters for OLEDs. We were lucky to work with the emerging systems and tailor for them new models out of the well-known physical concepts. This was both exciting and challenging. In the end, science of novel materials is always a mess. We hope that we brought there a bit of clarity and light.}, subject = {Time-resolved photoluminescence}, language = {en} } @phdthesis{Brodbeck2020, author = {Brodbeck, Sebastian}, title = {Elektrische und magnetische Felder zur Untersuchung und Manipulation von Exziton-Polaritonen}, doi = {10.25972/OPUS-20739}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-207397}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Starke Licht-Materie-Wechselwirkung in Halbleiter-Mikroresonatoren f{\"u}hrt zur Ausbildung von Eigenmoden mit gemischtem Licht-Materie-Charakter, die als Polaritonen bezeichnet werden. Die besonderen Eigenschaften dieser bosonischen Quasiteilchen k{\"o}nnen zur Realisierung neuartiger Bauteile genutzt werden, wie etwa des Polariton-Lasers, der auf stimulierter Streuung beruht anstatt auf stimulierter Emission, durch die Photon-Lasing ausgel{\"o}st wird. Durch den direkten Zugang zu Polariton-Zust{\"a}nden in spektroskopischen Experimenten, sowie durch die M{\"o}glichkeit mit vielf{\"a}ltigen Mitteln nahezu beliebige Potentiallandschaften definieren zu k{\"o}nnen, er{\"o}ffnen sich zahlreiche weitere Anwendungsgebiete, etwa in der Quantensimulation bzw. -emulation. Mittels externer elektrischer und magnetischer Felder k{\"o}nnen Erkenntnisse {\"u}ber Polaritonen gewonnen werden, die in rein optischen Experimenten nicht zug{\"a}nglich sind. Durch die Felder, die nicht mit rein photonischen Moden wechselwirken, kann auf den Materie-Anteil der Hybridmoden zugegriffen werden. Weiterhin k{\"o}nnen die Felder zur in-situ Manipulation der Polariton-Energie genutzt werden, was f{\"u}r die Erzeugung dynamischer Potentiale relevant werden k{\"o}nnte. Der Fokus dieser Arbeit liegt daher auf der Betrachtung verschiedener Ph{\"a}nomene der Licht-Materie-Wechselwirkung unter dem Einfluss {\"a}ußerer Felder. Dazu wurden auf das jeweilige Experiment abgestimmte Strukturen und Bauteile hergestellt und in magneto-optischen oder elektro-optischen Messungen untersucht. Um elektrische Felder entlang der Wachstumsrichtung anlegen zu k{\"o}nnen, d.h. in vertikaler Geometrie, wurden dotierte Resonatoren verwendet, die mit elektrischen Kontakten auf der Probenoberfl{\"a}che und -r{\"u}ckseite versehen wurden. In diesen Bauteilen wurde die Energieverschiebung im elektrischen Feld untersucht, der sogenannte Stark-Effekt. Dieser im linearen Regime bereits mehrfach demonstrierte Effekt wurde systematisch auf den nichtlinearen Bereich des Polariton-Lasings erweitert. Dabei wurde besonderes Augenmerk auf die Probengeometrie und deren Einfluss auf die beobachteten Energieverschiebungen gelegt. Die Untersuchungen von Proben mit planarer, semi-planarer und Mikrot{\"u}rmchen-Geometrie zeigen, dass ein lateraler Einschluss der Ladungstr{\"a}ger, wie er im Mikrot{\"u}rmchen erzielt wird, zu einer Umkehrung der Energieverschiebung f{\"u}hrt. W{\"a}hrend in dieser Geometrie mit zunehmender Feldst{\"a}rke eine Blauverschiebung des unteren Polaritons gemessen wird, die durch Abschirmungseffekte erkl{\"a}rt werden kann, wird in planarer und semi-planarer Geometrie die erwartete Rotverschiebung beobachtet. In beiden F{\"a}llen k{\"o}nnen, je nach Verstimmung, Energieverschiebungen im Bereich von einigen hundert µeV gemessen werden. Die gemessenen Energieverschiebungen zeigen gute {\"U}bereinstimmung mit den Werten, die nach einem Modell gekoppelter Oszillatoren berechnet wurden. Weiterhin werden vergleichbare Energieverschiebungen unter- und oberhalb der Schwelle zum Polariton-Lasing beobachtet, sodass der Polariton-Stark-Effekt als eindeutiges Merkmal erachtet werden kann, anhand dessen optisch angeregte Polariton- und Photon-Laser eindeutig unterschieden werden k{\"o}nnen. Wird das elektrische Feld nicht entlang der Wachstumsrichtung angelegt, sondern senkrecht dazu in der Ebene der Quantenfilme, dann kommt es schon bei geringen Feldst{\"a}rken zur Feldionisation von Elektron-Loch-Paaren. Um diese Feldgeometrie zu realisieren, wurde ein Verfahren entwickelt, bei dem Kontakte direkt auf die durch einen {\"A}tzvorgang teilweise freigelegten Quantenfilme eines undotierten Mikroresonators aufgebracht werden. Durch das Anlegen einer Spannung zwischen den lateralen Kontakten kann die Polariton-Emission unterdr{\"u}ckt werden, wobei sich die Feldabh{\"a}ngigkeit der Polariton-Besetzung durch ein Modell gekoppelter Ratengleichungen reproduzieren l{\"a}sst. Die neuartige Kontaktierung erlaubt es weiterhin den Photostrom in den Quantenfilmen zu untersuchen, der proportional zur Dichte freier Ladungstr{\"a}ger ist. Dadurch l{\"a}sst sich zeigen, dass die zwei Schwellen mit nichtlinearem Anstieg der Emission, die in derartigen Proben h{\"a}ufig beobachtet werden, auf grunds{\"a}tzlich verschiedene Verst{\"a}rkungsmechanismen zur{\"u}ckgehen. An der zweiten Schwelle wird ein Abknicken des leistungsabh{\"a}ngigen Photostroms beobachtet, da dort freie Ladungstr{\"a}ger als Reservoir des Photon-Lasings dienen, deren Dichte an der Schwelle teilweise abgeklemmt wird. Die erste Schwelle hingegen, die dem Polariton-Lasing zugeordnet wird, hat keinen Einfluss auf den linear mit der Anregungsleistung ansteigenden Photostrom, da dort gebundene Elektron-Loch-Paare als Reservoir dienen. Mittels angepasster Ratengleichungsmodelle f{\"u}r Polariton- und Photon-Laser l{\"a}sst sich der ermittelte Verlauf der Ladungstr{\"a}gerdichte {\"u}ber den gesamten Leistungsbereich qualitativ reproduzieren. Abschließend wird durch ein magnetisches Feld der Einfluss der Licht-Materie-Wechselwirkung auf die Elektron-Loch-Bindung im Regime der sehr starken Kopplung beleuchtet. Durch die Messung der diamagnetischen Verschiebung wird der mittlere Elektron-Loch-Abstand von unterem und oberem Polariton f{\"u}r zwei Resonatoren mit unterschiedlich starker Licht-Materie-Wechselwirkung bestimmt. Bei geringer Kopplungsst{\"a}rke werden die Hybridmoden in guter N{\"a}herung als Linearkombinationen der ungekoppelten Licht- und Materie-Moden beschrieben. F{\"u}r den Resonator mit großer Kopplungsst{\"a}rke wird eine starke Asymmetrie zwischen unterem und oberem Polariton beobachtet. Die diamagnetische Verschiebung des oberen Polaritons steigt mit zunehmender Verstimmung auf bis etwa 2,1 meV an, was fast eine Gr{\"o}ßenordnung {\"u}ber der Verschiebung des unteren Polaritons (0,27 meV) bei derselben Verstimmung liegt und die Verschiebung des ungekoppelten Quantenfilms um mehr als den Faktor 2 {\"u}bersteigt. Das bedeutet, dass das untere Polariton durch eine Wellenfunktion beschrieben wird, dessen Materie-Anteil einen verringerten mittleren Elektron-Loch-Abstand aufweist. Im oberen Polariton ist dieser mittlere Radius deutlich gr{\"o}ßer als der eines Elektron-Loch-Paars im ungekoppelten Quantenfilm, was sich durch eine von Photonen vermittelte Wechselwirkung mit angeregten und Kontinuumszust{\"a}nden des Quantenfilms erkl{\"a}ren l{\"a}sst.}, subject = {Drei-F{\"u}nf-Halbleiter}, language = {de} } @phdthesis{Heinrich2022, author = {Heinrich, Robert}, title = {Multi-species gas detection based on an external-cavity quantum cascade laser spectrometer in the mid-infrared fingerprint region}, doi = {10.25972/OPUS-26864}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-268640}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Laser spectroscopic gas sensing has been applied for decades for several applications as atmospheric monitoring, industrial combustion gas analysis or fundamental research. The availability of new laser sources in the mid-infrared opens the spectral fingerprint range to the technology where multiple molecules possess their fundamental ro-vibrational absorption features that allow very sensitive detection and accurate discrimination of the species. The increasing maturity of quantum cascade lasers that cover this highly interesting spectral range motivated this research to gain fundamental knowledge about the spectra of hydrocarbon gases in pure composition and in complex mixtures as they occur in the petro-chemical industry. The long-term target of developing accurate and fast hydrocarbon gas analyzers, capable of real-time operation while enabling feedback-loops, would lead to a paradigm change in this industry. This thesis aims to contribute to a higher accuracy and more comprehensive understanding of the sensing of hydrocarbon gas mixtures. This includes the acquisition of yet unavailable high resolution and high accuracy reference spectra of the respective gases, the investigation of their spectral behavior in mixtures due to collisional broadening of their transitions and the verification of the feasibility to quantitatively discriminate the spectra when several overlapping species are simultaneously measured in gas mixtures. To achieve this knowledge a new laboratory environment was planned and built up to allow for the supply of the individual gases and their arbitrary mixing. The main element was the development of a broadly tunable external-cavity quantum cascade laser based spectrometer to record the required spectra. This also included the development of a new measurement method to obtain highly resolved and nearly gap-less spectral coverage as well as a sophisticated signal post-processing that was crucial to achieve the high accuracy of the measurements. The spectroscopic setup was used for a thorough investigation of the spectra of the first seven alkanes as of their mixtures. Measurements were realized that achieved a spectral resolution of 0.001 cm-1 in the range of 6-11 µm while ensuring an accuracy of 0.001 cm-1 of the spectra and attaining a transmission sensitivity of 2.5 x 10-4 for long-time averaging of the acquired spectra. These spectral measurements accomplish a quality that compares to state-of-the art spectral databases and revealed so far undocumented details of several of the investigated gases that have not been measured with this high resolution before at the chosen measurement conditions. The results demonstrate the first laser spectroscopic discrimination of a seven component gas mixture with absolute accuracies below 0.5 vol.\% in the mid-infrared provided that a sufficiently broad spectral range is covered in the measurements. Remaining challenges for obtaining improved spectral models of the gases and limitations of the measurement accuracy and technology are discussed.}, subject = {Quantenkaskadenlaser}, language = {en} } @phdthesis{Bunzmann2021, author = {Bunzmann, Nikolai Eberhard}, title = {Excited State Pathways in 3rd Generation Organic Light-Emitting Diodes}, doi = {10.25972/OPUS-22078}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-220786}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {This work revealed spin states that are involved in the light generation of organic light-emitting diodes (OLEDs) that are based on thermally activated delayed fluorescence (TADF). First, several donor:acceptor-based TADF systems forming exciplex states were investigated. Afterwards, a TADF emitter that shows intramolecular charge transfer states but also forms exciplex states with a proper donor molecule was studied. The primary experimental technique was electron paramagnetic resonance (EPR), in particular the advanced methods electroluminescence detected magnetic resonance (ELDMR), photoluminescence detected magnetic resonance (PLDMR) and electrically detected magnetic resonance (EDMR). Additional information was gathered from time-resolved and continuous wave photoluminescence measurements.}, subject = {Elektronenspinresonanz}, language = {en} } @phdthesis{Miller2024, author = {Miller, Kirill}, title = {Untersuchung von Nanostrukturen basierend auf LaAlO\(_3\)/SrTiO\(_3\) f{\"u}r Anwendungen in nicht von-Neumann-Rechnerarchitekturen}, doi = {10.25972/OPUS-35472}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-354724}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Die Dissertation besch{\"a}ftigt sich mit der Analyse von oxidischen Nanostrukturen. Die Grundlage der Bauelemente stellt dabei die LaAlO3/SrTiO3-Heterostruktur dar. Hierbei entsteht an der Grenzfl{\"a}che beider {\"U}bergangsmetalloxide ein quasi zweidimensionales Elektronengas, welches wiederum eine F{\"u}lle von beachtlichen Eigenschaften und Charakteristika zeigt. Mithilfe lithographischer Verfahren wurden zwei unterschiedliche Bauelemente verwirklicht. Dabei handelt es sich einerseits um einen planaren Nanodraht mit lateralen Gates, welcher auf der Probenoberfl{\"a}che prozessiert wurde und eine bemerkenswerte Trialit{\"a}t aufweist. Dieses Bauelement kann unter anderem als ein herk{\"o}mmlicher Feldeffekttransistor agieren, wobei der Ladungstransport durch die lateral angelegte Spannung manipuliert wird. Zus{\"a}tzlich konnten auch Speichereigenschaften beobachtet werden, sodass das gesamte Bauelement als ein sogenannter Memristor fungieren kann. In diesem Fall h{\"a}ngt der Ladungstransport von der Elektronenakkumulation auf den lateralen potentialfreien Gates ab. Die Memristanz des Nanodrahts l{\"a}sst sich unter anderem durch Lichtleistungen im Nanowattbereich und mithilfe von kurzen Spannungspulsen ver{\"a}ndern. Dar{\"u}ber hinaus kann die Elektronenakkumulation auch in Form einer memkapazitiven Charakteristik beobachtet werden. Neben dem Nanodraht wurde auch eine Kreuzstruktur, die eine erg{\"a}nzende ferromagnetischen Elektrode beinhaltet, realisiert. Mit diesem neuartigen Bauteil wird die Umwandlung zwischen Spin- und Ladungsstr{\"o}men innerhalb der nanoskaligen Struktur untersucht. Hierbei wird die starke Spin-Bahn-Kopplung im quasi zweidimensionalen Elektronengas ausgenutzt.}, subject = {Memristor}, language = {de} }