@phdthesis{Strohmeier2021, author = {Strohmeier, Michael}, title = {FARN - A Novel UAV Flight Controller for Highly Accurate and Reliable Navigation}, doi = {10.25972/OPUS-22313}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-223136}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {This thesis describes the functional principle of FARN, a novel flight controller for Unmanned Aerial Vehicles (UAVs) designed for mission scenarios that require highly accurate and reliable navigation. The required precision is achieved by combining low-cost inertial sensors and Ultra-Wide Band (UWB) radio ranging with raw and carrier phase observations from the Global Navigation Satellite System (GNSS). The flight controller is developed within the scope of this work regarding the mission requirements of two research projects, and successfully applied under real conditions. FARN includes a GNSS compass that allows a precise heading estimation even in environments where the conventional heading estimation based on a magnetic compass is not reliable. The GNSS compass combines the raw observations of two GNSS receivers with FARN's real-time capable attitude determination. Thus, especially the deployment of UAVs in Arctic environments within the project for ROBEX is possible despite the weak horizontal component of the Earth's magnetic field. Additionally, FARN allows centimeter-accurate relative positioning of multiple UAVs in real-time. This enables precise flight maneuvers within a swarm, but also the execution of cooperative tasks in which several UAVs have a common goal or are physically coupled. A drone defense system based on two cooperative drones that act in a coordinated manner and carry a commonly suspended net to capture a potentially dangerous drone in mid-air was developed in conjunction with the project MIDRAS. Within this thesis, both theoretical and practical aspects are covered regarding UAV development with an emphasis on the fields of signal processing, guidance and control, electrical engineering, robotics, computer science, and programming of embedded systems. Furthermore, this work aims to provide a condensed reference for further research in the field of UAVs. The work describes and models the utilized UAV platform, the propulsion system, the electronic design, and the utilized sensors. After establishing mathematical conventions for attitude representation, the actual core of the flight controller, namely the embedded ego-motion estimation and the principle control architecture are outlined. Subsequently, based on basic GNSS navigation algorithms, advanced carrier phase-based methods and their coupling to the ego-motion estimation framework are derived. Additionally, various implementation details and optimization steps of the system are described. The system is successfully deployed and tested within the two projects. After a critical examination and evaluation of the developed system, existing limitations and possible improvements are outlined.}, subject = {Drohne }, language = {en} }