@phdthesis{Klepsch2020, author = {Klepsch, Maximilian Andreas}, title = {Small RNA-binding complexes in Chlamydia trachomatis identified by Next-Generation Sequencing techniques}, doi = {10.25972/OPUS-19974}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-199741}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Chlamydia infect millions worldwide and cause infertility and blinding trachoma. Chlamydia trachomatis (C. trachomatis) is an obligate intracellular gram-negative pathogen with a significantly reduced genome. This bacterium shares a unique biphasic lifecycle in which it alternates between the infectious, metabolically inert elementary bodies (EB) and the non-infections, metabolically active replicative reticular bodies (RB). One of the challenges of working with Chlamydia is its difficult genetic accessibility. In the present work, the high-throughput method TagRNA-seq was used to differentially label transcriptional start sites (TSS) and processing sites (PSS) to gain new insights into the transcriptional landscape of C. trachomatis in a coverage that has never been achieved before. Altogether, 679 TSSs and 1067 PSSs were detected indicating its high transcriptional activity and the need for transcriptional regulation. Furthermore, the analysis of the data revealed potentially new non-coding ribonucleic acids (ncRNA) and a map of transcriptional processing events. Using the upstream sequences, the previously identified σ66 binding motif was detected. In addition, Grad-seq for C. trachomatis was established to obtain a global interactome of the RNAs and proteins of this intracellular organism. The Grad-Seq data suggest that many of the newly annotated RNAs from the TagRNA-seq approach are present in complexes. Although Chlamydia lack the known RNA-binding proteins (RBPs), e.g. Hfq and ProQ, observations in this work reveal the presence of a previously unknown RBP. Interestingly, in the gradient analysis it was found that the σ66 factor forms a complex with the RNA polymerase (RNAP). On the other hand, the σ28 factor is unbound. This is in line with results from previous studies showing that most of the genes are under control of σ66. The ncRNA IhtA is known to function via direct base pairing to its target RNA of HctB, and by doing so is influencing the chromatin condensation in Chlamydia. This study confirmed that lhtA is in no complex. On the other hand, the ncRNA ctrR0332 was found to interact with the SNF2 protein ctl0077, a putative helicase. Both molecules co-sedimented in the gradient and were intact after an aptamer-based RNA pull-down. The SWI2/SNF2 class of proteins are nucleosome remodeling complexes. The prokaryotic RapA from E. coli functions as transcription regulator by stimulating the RNAP recycling. This view might imply that the small ncRNA (sRNA) ctrR0332 is part of the global regulation network in C. trachomatis controlling the transition between EBs and RBs via interaction with the SNF2 protein ctl0077. The present work is the first study describing a global interactome of RNAs and proteins in C. trachomatis providing the basis for future interaction studies in the field of this pathogen.}, language = {en} } @phdthesis{Vollmuth2021, author = {Vollmuth, Nadine}, title = {Role of the proto-oncogene c-Myc in the development of Chlamydia trachomatis}, doi = {10.25972/OPUS-20365}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203655}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Chlamydia trachomatis, an obligate intracellular human pathogen, is the world's leading cause of infection related blindness and the most common, bacterial sexually transmitted disease. In order to establish an optimal replicative niche, the pathogen extensively interferes with the physiology of the host cell. Chlamydia switches in its complex developmental cycle between the infectious non-replicative elementary bodies (EBs) and the non-infectious replicative reticulate bodies (RBs). The transformation to RBs, shortly after entering a host cell, is a crucial process in infection to start chlamydial replication. Currently it is unknown how the transition from EBs to RBs is initiated. In this thesis, we could show that, in an axenic media approach, L glutamine uptake by the pathogen is crucial to initiate the EB to RB transition. L-glutamine is converted to amino acids which are used by the bacteria to synthesize peptidoglycan. Peptidoglycan inturn is believed to function in separating dividing Chlamydia. The glutamine metabolism is reprogrammed in infected cells in a c-Myc-dependent manner, in order to accomplish the increased requirement for L-glutamine. Upon a chlamydial infection, the proto-oncogene c-Myc gets upregulated to promote host cell glutaminolysis via glutaminase GLS1 and the L-glutamine transporter SLC1A5/ASCT2. Interference with this metabolic reprogramming leads to limited growth of C. trachomatis. Besides the active infection, Chlamydia can persist over a long period of time within the host cell whereby chronic and recurrent infections establish. C. trachomatis acquire a persistent state during an immune attack in response to elevated interferon-γ (IFN-γ) levels. It has been shown that IFN-γ activates the catabolic depletion of L-tryptophan via indoleamine 2,3-dioxygenase (IDO), resulting in the formation of non-infectious atypical chlamydial forms. In this thesis, we could show that IFN-γ depletes the key metabolic regulator c-Myc, which has been demonstrated to be a prerequisite for chlamydial development and growth, in a STAT1-dependent manner. Moreover, metabolic analyses revealed that the pathogen de routs the host cell TCA cycle to enrich pyrimidine biosynthesis. Supplementing pyrimidines or a-ketoglutarate helps the bacteria to partially overcome the persistent state. Together, the results indicate a central role of c-Myc induced host glutamine metabolism reprogramming and L-glutamine for the development of C. trachomatis, which may provide a basis for anti-infectious strategies. Furthermore, they challenge the longstanding hypothesis of L-tryptophan shortage as the sole reason for IFN-γ induced persistence and suggest a pivotal role of c-Myc in the control of the C. trachomatis dormancy.}, language = {en} } @phdthesis{Pahlavan2019, author = {Pahlavan, Pirasteh}, title = {Integrated Systems Biology Analysis; Exemplified on Potyvirus and Geminivirus interaction with \(Nicotiana\) \(benthamiana\)}, doi = {10.25972/OPUS-15341}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153412}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Viral infections induce a significant impact on various functional categories of biological processes in the host. The understanding of this complex modification of the infected host immune system requires a global and detailed overview on the infection process. Therefore it is essential to apply a powerful approach which identifies the involved components conferring the capacity to recognize and respond to specific pathogens, which in general are defeated in so-called compatible virus-plant infections. Comparative and integrated systems biology of plant-virus interaction progression may open a novel framework for a systemic picture on the modulation of plant immunity during different infections and understanding pathogenesis mechanisms. In this thesis these approaches were applied to study plant-virus infections during two main viral pathogens of cassava: Cassava brown streak virus and African cassava mosaic virus. Here, the infection process was reconstructed by a combination of omics data-based analyses and metabolic network modelling, to understand the major metabolic pathways and elements underlying viral infection responses in different time series, as well as the flux activity distribution to gain more insights into the metabolic flow and mechanism of regulation; this resulted in simultaneous investigations on a broad spectrum of changes in several levels including the gene expression, primary metabolites, and enzymatic flux associated with the characteristic disease development process induced in Nicotiana benthamiana plants due to infection with CBSV or ACMV. Firstly, the transcriptome dynamics of the infected plant was analysed by using mRNA-sequencing, in order to investigate the differential expression profile according the symptom developmental stage. The spreading pattern and different levels of biological functions of these genes were analysed associated with the infection stage and virus entity. A next step was the Real-Time expression modification of selected key pathway genes followed by their linear regression model. Subsequently, the functional loss of regulatory genes which trigger R-mediated resistance was observed. Substantial differences were observed between infected mutants/transgenic lines and wild-types and characterized in detail. In addition, we detected a massive localized accumulation of ROS and quantified the scavenging genes expression in the infected wild-type plants relative to mock infected controls. Moreover, we found coordinated regulated metabolites in response to viral infection measured by using LC-MS/MS and HPLC-UV-MS. This includes the profile of the phytohormones, carbohydrates, amino acids, and phenolics at different time points of infection with the RNA and DNA viruses. This was influenced by differentially regulated enzymatic activities along the salicylate, jasmonate, and chorismate biosynthesis, glycolysis, tricarboxylic acid cycle, and pentose phosphate pathways, as well as photosynthesis, photorespiration, transporting, amino acid and fatty acid biosynthesis. We calculated the flux redistribution considering a gradient of modulation for enzymes along different infection stages, ranging from pre-symptoms towards infection stability. Collectively, our reverse-engineering study consisting of the generation of experimental data and modelling supports the general insight with comparative and integrated systems biology into a model plant-virus interaction system. We refine the cross talk between transcriptome modification, metabolites modulation and enzymatic flux redistribution during compatible infection progression. The results highlight the global alteration in a susceptible host, correlation between symptoms severity and the alteration level. In addition we identify the detailed corresponding general and specific responses to RNA and DNA viruses at different stages of infection. To sum up, all the findings in this study strengthen the necessity of considering the timing of treatment, which greatly affects plant defence against viral infection, and might result in more efficient or combined targeting of a wider range of plant pathogens.}, language = {en} } @phdthesis{Bruttel2015, author = {Bruttel, Valentin Stefan}, title = {Soluble HLA-G binds to dendritic cells which likely suppresses anti-tumour immune responses in regional lymph nodes in ovarian carcinoma}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127252}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Zusammenfassung Einleitung HLA-G, ein nicht-klassisches HLA bzw. MHC Klasse Ib Molek{\"u}l, kann sowohl als membrangebundenes als auch als l{\"o}sliches Molek{\"u}l verschiedenste Immunzellpopulationen effektiv inhibieren. Unter physiologischen Bedingungen wird HLA-G vor allem in der Plazenta exprimiert, wo es dazu beitr{\"a}gt den semiallogenen Embryo vor einer Abstoßung durch das m{\"u}tterliche Immunsystem zu besch{\"u}tzen. Außerdem wird HLA-G in einer Vielzahl von Tumoren wie zum Beispiel in Ovarialkarzinomen {\"u}berexprimiert. Ziel dieser Arbeit war es besonders die Rolle von l{\"o}slichem HLA-G im Ovarialkarzinom und die Expression von HLA-G in verschiedenen Subtypen des Ovarialkarzinoms genauer zu untersuchen. Ergebnisse Anhand eines Tissue Microarrays wurde best{\"a}tigt dass HLA-G unter physiologischen Bedingungen nur in sehr wenigen Geweben wie Plazenta oder Testes exprimiert wird. Außerdem wurden erstmals auch im Nebennierenmark hohe Expressionslevel detektiert. Im Gegensatz zur physiologischen Expression wurde HLA-G in ser{\"o}sen, muzin{\"o}sen, endometrioiden und Klarzellkarzinomen und somit in Tumoren aller untersuchten Subtypen des Ovarialkarzinoms detektiert. Am h{\"a}ufigsten war HLA-G in hochgradigen ser{\"o}sen Karzinomen {\"u}berexprimiert. Hier konnte gezeigt werden dass auf Genexpressionslevel in Ovarialkarzinomen die Expression des immunsuppressiven HLA-G mit der Expression von klassischen MHC Molek{\"u}len wie HLA-A, -B oder -C hochsignifikant korreliert. Außerdem konnte in Aszitesproben von Patientinnen mit Ovarialkarzinomen hohe Konzentrationen von l{\"o}slichem HLA-G nachgewiesen werden. Auch auf metastasierten Tumorzellen in regionalen Lymphknoten war HLA-G nachweisbar. {\"U}berraschenderweise wurde aber besonders viel HLA-G auf Dendritischen Zellen in Lymphknoten detektiert. Da in Monozyten und Dendritischen Zellen von gesunden Spendern durch IL-4 oder IL-10 im Gegensatz zu Literatur keine Expression von HLA-G induzierbar war, untersuchten wir ob Dendritische Zellen l{\"o}sliches HLA-G binden. Es konnte gezeigt werden, dass besonders Dendritische Zellen die in Gegenwart von IL-4, IL-10 und GM-CSF aus Monozyten generiert wurden (DC-10) effektiv l{\"o}sliches HLA-G {\"u}ber ILT Rezeptoren binden. In Abh{\"a}ngigkeit von ihrer Beladung mit HLA-G hemmen auch fixierte DC-10 Zellen noch die Proliferation von zytotoxischen CD8+ T Zellen. Zudem wurden regulatorische T Zellen induziert. Schlussfolgerungen Besonders in den am h{\"a}ufigsten diagnostizierten hochgradigen ser{\"o}sen Ovarialkarzinomen ist HLA-G in den meisten F{\"a}llen {\"u}berexprimiert. Durch die Expression immunsuppressiver MHC Klasse Ib Molek{\"u}le wie HLA-G k{\"o}nnen wahrscheinlich auch Tumore wachsen, die noch klassische MHC Molek{\"u}le exprimieren und aufgrund ihrer Mutationslast eigentlich vom Immunsystem erkannt und eliminiert werden m{\"u}ssten. L{\"o}sliches HLA-G k{\"o}nnte zudem lokal Immunantworten gegen Tumorantigene unterdr{\"u}cken indem es an Dendritische Zellen in regionalen Lymphknoten bindet. Diese Zellen pr{\"a}sentieren nomalerweise zytotoxischen T Zellen Tumorantigene und spielen daher eine entscheidende Rolle in der Entstehung von protektiven Immunantworten. Mit l{\"o}slichem HLA-G beladene Dendritische Zellen hemmen jedoch die Proliferation von CD8+ T Zellen und induzieren regulatorische T Zellen. Dadurch k{\"o}nnten Ovarialkarzinome "aus der Ferne" auch in metastasenfreien Lymphknoten die Entstehung von gegen den Tumor gerichteten Immunantworten unterdr{\"u}cken. Dieser erstmals beschriebene Mechanismus k{\"o}nnte auch in anderen malignen Erkrankungen eine Rolle spielen, da l{\"o}sliches HLA-G in einer Vielzahl von Tumorindikationen nachgewiesen wurde.}, subject = {HLA-G}, language = {en} } @phdthesis{Yang2020, author = {Yang, Manli}, title = {\(Chlamydia\) \(trachomatis\) metabolism during infection and metatranscriptome analysis in \(Neisseria\) \(gonorrhoeae\) coinfected STD patients}, doi = {10.25972/OPUS-18499}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-184993}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Chlamydia trachomatis (Ct) is an obligate intracellular human pathogen. It causes blinding trachoma and sexually transmitted disease such as chlamydia, pelvic inflammatory disease and lymphogranuloma venereum. Ct has a unique biphasic development cycle and replicates in an intracellular vacuole called inclusion. Normally it has two forms: the infectious form, elementary body (EB); and the non-infectious form, reticulate body (RB). Ct is not easily amenable to genetic manipulation. Hence, to understand the infection process, it is crucial to study how the metabolic activity of Ct exactly evolves in the host cell and what roles of EB and RB play differentially in Ct metabolism during infection. In addition, Ct was found regularly coinfected with other pathogens in patients who got sexually transmitted diseases (STDs). A lack of powerful methods to culture Ct outside of the host cell makes the detailed molecular mechanisms of coinfection difficult to study. In this work, a genome-scale metabolic model with 321 metabolites and 277 reactions was first reconstructed by me to study Ct metabolic adaptation in the host cell during infection. This model was calculated to yield 84 extreme pathways, and metabolic flux strength was then modelled regarding 20hpi, 40hpi and later based on a published proteomics dataset. Activities of key enzymes involved in target pathways were further validated by RT-qPCR in both HeLa229 and HUVEC cell lines. This study suggests that Ct's major active pathways involve glycolysis, gluconeogenesis, glycerolphospholipid biosynthesis and pentose phosphate pathway, while Ct's incomplete tricarboxylic acid cycle and fatty acid biosynthesis are less active. EB is more activated in almost all these carbohydrate pathways than RB. Result suggests the survival of Ct generally requires a lot of acetyl-CoA from the host. Besides, both EB and RB can utilize folate biosynthesis to generate NAD(P)H but may use different pathways depending on the demands of ATP. When more ATP is available from both host cell and Ct itself, RB is more activated by utilizing energy providing chemicals generated by enzymes associated in the nucleic acid metabolism. The forming of folate also suggests large glutamate consumption, which is supposed to be converted from glutamine by the glutamine-fructose-6-phosphate transaminase (glmS) and CTP synthase (pyrG). Then, RNA sequencing (RNA-seq) data analysis was performed by me in a coinfection study. Metatranscriptome from patient RNA-seq data provides a realistic overview. Thirteen patient samples were collected and sequenced by our collaborators. Six male samples were obtained by urethral swab, and seven female samples were collected by cervicovaginal lavage. All the samples were Neisseria gonorrhoeae (GC) positive, and half of them had coinfection with Ct. HISAT2 and Stringtie were used for transcriptomic mapping and assembly respectively, and differential expression analysis by DESeq2, Ballgown and Cuffdiff2 are parallelly processed for comparison. Although the measured transcripts were not sufficient to assemble Ct's transcriptome, the differential expression of genes in both the host and GC were analyzed by comparing Ct positive group (Ct+) against Ct-uninfected group. The results show that in the Ct+ group, the host MHC class II immune response was highly induced. Ct infection is associated with the regulation of DNA methylation, DNA double-strand damage and ubiquitination. The analysis also shows Ct infection enhances host fatty acid beta oxidation, thereby inducing mROS, and the host responds to reduce ceramide production and glycolysis. The coinfection upregulates GC's own ion transporters and amino acid uptake, while it downregulates GC's restriction and modification systems. Meanwhile, GC has the nitrosative and oxidative stress response and also increases the ability for ferric uptake especially in the Ct+ group compared to Ct-uninfected group. In conclusion, methods in bioinformatics were used here in analyzing the metabolism of Ct itself, and the responses of the host and GC respectively in a coinfection study with and without Ct. These methods provide metabolic and metatranscriptomic details to study Ct metabolism during infection and Ct associated coinfection in the human microbiota.}, subject = {chlamydia trachomatis}, language = {en} } @phdthesis{Froehlich2018, author = {Fr{\"o}hlich, Monika Gabriele}, title = {Die Bedeutung von CD28 vermittelter Kostimulation f{\"u}r CD8 T-Zell-Ged{\"a}chtnisreaktionen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158791}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Immunologische Ged{\"a}chtnisreaktionen sind die Grundlage um wiederkehrende Erreger schnell und effizient zu bek{\"a}mpfen und um einen Impfschutz zu generieren. Das zellvermittelte Ged{\"a}chtnis wird unter anderem durch CD8 Ged{\"a}chtnis-T-Zellen aufgebaut, welche vor allem im Kontext von Immunreaktionen gegen intrazellul{\"a}rer Erreger vonn{\"o}ten sind, um bei Reinfektion mit den Erregerst{\"a}mmen einen schnellen Schutz zu gew{\"a}hrleisten. Ein detailliertes Wissen {\"u}ber die Generierung, Kontrolle und Reaktivierung der Ged{\"a}chtniszellen ist n{\"u}tzlich, um Ged{\"a}chtnisreaktionen verstehen und lenken zu k{\"o}nnen. Durch die Entdeckung des TZR und CD28 wurden Meilensteine f{\"u}r das Verst{\"a}ndnis der T-Zellaktivierung gelegt und die Grundlage geschaffen, CD8 Ged{\"a}chtnisreaktionen zu verstehen. Auch wenn f{\"u}r prim{\"a}re Immunreaktionen die „2-Signal-Theorie" lange als erwiesen gilt, so blieb die Rolle der Kostimulation f{\"u}r Ged{\"a}chtnisreaktionen lange umstritten. In dieser Arbeit wurden verschiedene methodische Herangehensweisen verwendet, mit denen durchgehend die Bedeutung von CD28 vermittelter Kostimulation f{\"u}r immunologische CD8 T-Zell-Ged{\"a}chtnisreaktionen nachgewiesen wurde. CD28 blockierende Antik{\"o}rper und CD28 induzierbar deletierbare Mauslinien wurden im Modellinfektionssystem mit Ovalbumin produzierenden Listeria monocytogenes zur Analyse der Prim{\"a}r- und Sekund{\"a}rantworten verwendet. Mit diesen Methoden konnte eine Beeintr{\"a}chtigung der Expansion von CD8 Ged{\"a}chtniszellen in Abwesenheit von CD28 bewiesen werden. Weiterhin werden Effektorfunktionen wie Degranulation und Produktion von IFN-γ w{\"a}hrend der Sekund{\"a}rinfektion in Abwesenheit von Kostimulation eingeschr{\"a}nkt. Mit Hilfe von Experimenten, bei denen CD28 suffizienten M{\"a}usen eine geringe Anzahl an naiven, antigenspezifischen, CD28 deletierbaren CD8 T-Zellen transferiert wurden, wurde die Bedeutung der Kostimulation f{\"u}r die Expansion von Ged{\"a}chtniszellen best{\"a}tigt, jedoch konnte {\"u}berraschenderweise auch ein Anstieg der Effektorfunktionen in Abwesenheit von CD28 sowohl w{\"a}hrend der Prim{\"a}r- als auch der Sekund{\"a}rantwort dokumentiert werden. Diese zur globalen Blockade bzw. Deletion widerspr{\"u}chlichen Ergebnisse lassen eine Beteiligung anderer CD28 abh{\"a}ngiger Zelltypen an der Induktion der Effektorfunktionen der CD8 T-Zellen plausibel erscheinen, wie zum Beispiel Einfl{\"u}sse von T-Helferzellen, welche die Effektorfunktionen positiv verst{\"a}rken, solange sie selbst Kostimulationssignale empfangen k{\"o}nnen. Weiterhin konnte gezeigt werden, dass sich Ged{\"a}chtniszellen an den CD28 defizienten Ph{\"a}notyp - eine CD28 intakte immunologische Umgebung vorausgesetzt - adaptieren k{\"o}nnen, wenn ausreichend Zeit nach Deletion und vor Sekund{\"a}rinfektion verstreichen konnte.}, subject = {Antigen CD28}, language = {de} } @phdthesis{Rydzek2019, author = {Rydzek, Julian}, title = {NF-κB/NFAT Reporter Cell Platform for Chimeric Antigen Receptor (CAR)-Library Screening}, doi = {10.25972/OPUS-17918}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179187}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Immunotherapy with engineered T cells expressing a tumor-specific chimeric antigen receptor (CAR) is under intense preclinical and clinical investigation. This involves a rapidly increasing portfolio of novel target antigens and CAR designs that need to be tested in time- and work-intensive screening campaigns in primary T cells. Therefore, we anticipated that a standardized screening platform, similar as in pharmaceutical small molecule and antibody discovery, would facilitate the analysis of CARs by pre-selecting lead candidates from a large pool of constructs that differ in their extracellular and intracellular modules. Because CARs integrate structural elements of the T cell receptor (TCR) complex and engage TCR-associated signaling molecules upon stimulation, we reasoned that the transcription factors nuclear factor-κB (NF-κB) and nuclear factor of activated T cells (NFAT) could serve as surrogate markers for primary T cell function. The nuclear translocation of both transcription factors in primary T cells, which we observed following CAR stimulation, supported our rationale to use NF-κB and NFAT as indicators of CAR-mediated activation in a screening platform. To enable standardized and convenient analyses, we have established a CAR-screening platform based on the human T cell lymphoma line Jurkat that has been modified to provide rapid detection of NF-κB and NFAT activation. For this purpose, Jurkat cells contained NF-κB and NFAT-inducible reporter genes that generate a duplex output of cyan fluorescent protein (CFP) and green fluorescent protein (GFP), respectively. Upon stimulation of NF-κB/NFAT reporter cells, the expression of both fluorophores could be readily quantified in high-throughput screening campaigns by flow cytometry. We modified the reporter cells with CD19-specific and ROR1-specific CARs, and we co-cultured them with antigen-positive stimulator cells to analyze NF-κB and NFAT activation. CAR-induced reporter signals could already be detected after 6 hours. The optimal readout window with high-level reporter activation was set to 24 hours, allowing the CAR-screening platform to deliver results in a rapid turnaround time. A reporter cell-screening campaign of a spacer library with CARs comprising a short, intermediate or long IgG4-Fc domain allowed distinguishing functional from non-functional constructs. Similarly, reporter cell-based analyses identified a ROR1-CAR with 4-1BB domain from a library with different intracellular signal modules due to its ability to confer high NF-κB activation, consistent with data from in vitro and in vivo studies with primary T cells. The results of both CAR screening campaigns were highly reproducible, and the time required for completing each testing campaign was substantially shorter with reporter cells (6 days) compared to primary T cells (21 days). We further challenged the reporter cells in a large-scale screening campaign with a ROR1 CAR library comprising mutations in the VH CDR3 sequence of the R11 scFv. This region is crucial for binding the R11 epitope of ROR1, and we anticipated that mutations here would cause a loss of specificity and affinity for most of the CAR variants. This provided the opportunity to determine whether the CAR screening platform was able to retrieve functional constructs from a large pool of CAR variants. Indeed, using a customized pre enrichment and screening strategy, the reporter cells identified a functional CAR variant that was present with a frequency of only 6 in 1.05x10^6. As our CAR-screening platform enabled the analysis of activating signal modules, it encouraged us to also evaluate inhibitory signal modules that change the CAR mode of action. Such an inhibitory CAR (iCAR) can be used in logic gates with an activating CAR to interfere with T cell stimulation. By selecting appropriate target antigens for iCAR and CAR, this novel application aims to improve the selectivity towards tumor cells, and it could readily be studied using our screening platform. Accordingly, we tested CD19-specific iCARs with inhibitory PD-1 signal module for their suppressive effect on reporter gene activation. In logic gates with CAR or TCR stimulation, a decrease of NF-κB and NFAT signals was only observed when activating and inhibitory receptors were forced into spatial proximity. These results were further verified by experiments with primary T cells. In conclusion, our reporter cell system is attractive as a platform technology because it is independent of testing in primary T cells, exportable between laboratories, and scalable to enable small- to large-scale screening campaigns of CAR libraries. The pre-selection of appropriate lead candidates with optimal extracellular and intracellular modules can reduce the number of CAR constructs to be investigated in further in vitro and in vivo studies with primary T cells. We are therefore confident that our CAR-screening platform based on NF-κB/NFAT reporter cells will be useful to accelerate translational research by facilitating the evaluation of CARs with novel design parameters.}, subject = {Antigenrezeptor}, language = {en} } @phdthesis{Yang2021, author = {Yang, Tao}, title = {Functional insights into the role of a bacterial virulence factor and a host factor in Neisseria gonorrhoeae infection}, doi = {10.25972/OPUS-20895}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208959}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Neisseria gonorrhoeae (GC) is a human specific pathogenic bacterium. Currently, N. gonorrhoeae developed resistance to virtually all the available antibiotics used for treatment. N. gonorrhoeae starts infection by colonizing the cell surface, followed by invasion of the host cell, intracellular persistence, transcytosis and exit into the subepithelial space. Subepithelial bacteria can reach the bloodstream and disseminate to other tissues causing systemic infections, which leads to serious conditions such as arthritis and pneumonia. A number of studies have well established the host-pathogen interactions during the initial adherence and invasion steps. However, the mechanism of intracellular survival and traversal is poorly understood so far. Hence, identification of novel bacterial virulence factors and host factors involved in the host-pathogen interaction is a crucial step in understanding disease development and uncovering novel therapeutic approaches. Besides, most of the previous studies about N. gonorrhoeae were performed in the conventional cell culture. Although they have provided insights into host-pathogen interactions, much information about the native infection microenvironment, such as cell polarization and barrier function, is still missing. This work focused on determining the function of novel bacterial virulence factor NGFG_01605 and host factor (FLCN) in gonococcal infection. NGFG_01605 was identified by Tn5 transposon library screening. It is a putative U32 protease. Unlike other proteins in this family, it is not secreted and has no ex vivo protease activity. NGFG_01605 knockout decreases gonococcal survival in the epithelial cell. 3D models based on T84 cell was developed for the bacterial transmigration assay. NGFG_01605 knockout does not affect gonococcal transmigration. The novel host factor FLCN was identified by shRNA library screening in search for factors that affected gonococcal adherence and/or internalization. We discovered that FLCN did not affect N. gonorrhoeae adherence and invasion but was essential for bacterial survival. Since programmed cell death is a host defence mechanism against intracellular pathogens, we further explored apoptosis and autophagy upon gonococcal infection and determined that FLCN did not affect apoptosis but inhibited autophagy. Moreover, we found that FLCN inhibited the expression of E-cadherin. Knockdown of E- cadherin decreased the autophagy flux and supported N. gonorrhoeae survival. Both non-polarized and polarized cells are present in the cervix, and additionally, E-cadherin represents different polarization properties on these different cells. Therefore, we established 3-D models to better understand the functions of FLCN. We discovered that FLCN was critical for N. gonorrhoeae survival in the 3-D environment as well, but not through inhibiting autophagy. Furthermore, FLCN inhibits the E-cadherin expression and disturbs its polarization in the 3-D models. Since N. gonorrhoeae can cross the epithelial cell barriers through both cell-cell junctions and transcellular migration, we further explored the roles FLCN and E-cadherin played in transmigration. FLCN delayed N. gonorrhoeae transmigration, whereas the knockdown of E-cadherin increased N. gonorrhoeae transmigration. In summary, we revealed roles of the NGFG_01605 and FLCN-E-cadherin axis play in N. gonorrhoeae infection, particularly in relation to intracellular survival and transmigration. This is also the first study that connects FLCN and human-specific pathogen infection.}, language = {en} } @phdthesis{Hagen2017, author = {Hagen, Franziska}, title = {Sphingolipids in gonococcal infection}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153852}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Neisseria gonorrhoeae, the causative agent of the sexually transmitted disease gonorrhea, has the potential to spread in the human host and cause a severe complication called disseminated gonococcal infection (DGI). The expression of the major outer membrane porin PorBIA is a characteristic of most gonococci associated with DGI. PorBIA binds to the scavenger receptor expressed on endothelial cells (SREC-I), which mediates the so-called low phosphate-dependent invasion (LPDI). This uptake mechanism enables N. gonorrhoeae to rapidly invade epithelial and endothelial cells in a phosphate-sensitive manner. We recently demonstrated that the neutral sphingomyelinase, which catalyses the hydrolysis of sphingomyelin to ceramide and phosphorylcholine, is required for the LPDI of gonococci in non-phagocytic cells. Neutral sphingomyelinase 2 (NSM2) plays a key role in the early PorBIA signaling by recruiting the PI3 kinase to caveolin. The following activation of the PI3 kinase-dependent downstream signaling leads to the engulfment of the bacteria. As a part of this work, I could confirm the involvement of the NSM2. The role of the enzyme was further elucidated by the generation of antibodies directed against NSM2 and the construction of an epithelium-based NSM2 knockout cell line using CRISPR/Cas9. The knockout of the NSM2 strongly inhibits the LPDI. The invasion could be, however, restored by the complementation of the knockout using an NSM2-GFP construct. However, the results could not be reproduced. In this work, I could show the involvement of further members of the sphingolipid pathway in the PorBIA-mediated invasion. Lipidome analysis revealed an increase of the bioactive molecules ceramide and sphingosine due to gonococcal infection. Both molecules do not only affect the host cell, but seem to influence the bacteria as well: while ceramide seems to be incorporated by the gonococci, sphingosine is toxic for the bacteria. Furthermore, the sphingosine kinase 2 (SPHK2) plays an important role in invasion, since the inhibition and knockdown of the enzyme revealed a negative effect on gonococcal invasion. To elucidate the role of the sphingosine kinases in invasion in more detail, an activity assay was established in this study. Additionally, the impact of the sphingosine-1-phosphate lyase (S1PL) on invasion was investigated. Inhibitor studies and infection experiments conducted with a CRISPR/Cas9 HeLa S1PL knockout cell line revealed a role of the enzyme not only in the PorBIA-mediated invasion, but also in the Opa50/HSPG-mediated gonococcal invasion. The signaling experiments allowed the categorization of the SPHK and S1PL activation in the context of infection. Like the NSM2, both enzymes play a role in the early PorBIA signaling events leading to the uptake of the bacteria. All those findings indicate an important role of sphingolipids in the invasion and survival of N. gonorrhoeae. In the last part of this work, the role of the NSM2 in the inhibition of apoptosis in neutrophils due to gonococcal infection was investigated. It could be demonstrated that the delayed onset of apoptosis is independent of neisserial porin and Opa proteins. Furthermore, the influence of neisserial peptidoglycan on PMN apoptosis was analysed using mutant strains, but no connection could be determined. Since the NSM2 is the most prominent sphingomyelinase in PMNs, fulfils manifold cell physiological functions and has already been connected to apoptosis, the impact of the enzyme on apoptosis inhibition due to gonococcal infection was investigated using inhibitors, with no positive results.}, subject = {gonococcal}, language = {en} } @phdthesis{Horn2019, author = {Horn, Jessica}, title = {Molecular and functional characterization of the long non-coding RNA SSR42 in \(Staphylococcus\) \(aureus\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175778}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Staphylococcus aureus asymptomatically colonizes the skin and anterior nares of 20-30\% of the healthy human population. As an opportunistic human pathogen it elicits a variety of infections ranging from skin and soft tissue infections to highly severe manifestations such as pneumonia, endocarditis and osteomyelitis. Due to the emergence of multi resistant strains, treatment of staphylococcal infections becomes more and more challenging and the WHO therefore classified S. aureus as a "superbug". The variety of diseases triggered by S. aureus is the result of a versatile expression of a large set of virulence factors. The most prominent virulence factor is the cytotoxic and haemolytic pore-forming α-toxin whose expression is mediated by a complex regulatory network involving two-component systems such as the agr quorum-sensing system, accessory transcriptional regulators and alternative sigma-factors. However, the intricate regulatory network is not yet understood in its entirety. Recently, a transposon mutation screen identified the AraC-family transcriptional regulator 'Repressor of surface proteins' (Rsp) to regulate haemolysis, cytotoxicity and the expression of various virulence associated factors. Deletion of rsp was accompanied by a complete loss of transcription of a 1232 nt long non-coding RNA, SSR42. This doctoral thesis focuses on the molecular and functional characterization of SSR42. By analysing the transcriptome and proteome of mutants in either SSR42 or both SSR42 and rsp, as well as by complementation of SSR42 in trans, the ncRNA was identified as the main effector of Rsp-mediated virulence. Mutants in SSR42 exhibited strong effects on transcriptional and translational level when compared to wild-type bacteria. These changes resulted in phenotypic alterations such as strongly reduced haemolytic activity and cytotoxicity towards epithelial cells as well as reduced virulence in a murine infection model. Deletion of SSR42 further promoted the formation of small colony variants (SCV) during long term infection of endothelial cells and demonstrated the importance of this molecule for intracellular bacteria. The impact of this ncRNA on staphylococcal haemolysis was revealed to be executed by modulation of sae mRNA stability and by applying mutational studies functional domains within SSR42 were identified. Moreover, various stressors modulated the transcription of SSR42 and antibiotic challenge resulted in SSR42-dependently increased haemolysis and cytotoxicity. Transcription of SSR42 itself was found under control of various important global regulators including AgrA, SaeS, CodY and σB, thereby illustrating a central position in S. aureus virulence gene regulation. The present study thus demonstrates SSR42 as a global virulence regulatory RNA which is important for haemolysis, disease progression and adaption of S. aureus to intracellular conditions via formation of SCVs.}, subject = {Staphylococcus aureus}, language = {en} } @phdthesis{Das2018, author = {Das, Sudip}, title = {Genome-wide identification of virulence-associated genes in Staphylococcus aureus using Transposon insertion-site deep sequencing}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143362}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Staphylococcus aureus asymptomatically colonises one third of the healthy human population, finding its niche in the nose and on skin. Apart from being a commensal, it is also an important opportunistic human pathogen capable of destructing tissue, invading host cells and killing them from within. This eventually contributes to severe hospital- and community-acquired infections. Methicillin-resistant Staphylococcus aureus (MRSA), resistant to commonly used antibiotics are protected when residing within the host cell. This doctoral thesis is focused on the investigation of staphylococcal factors governing intracellular virulence and subsequent host cell death. To initiate an unbiased approach to conduct this study, complex S. aureus mutant pools were generated using transposon insertional mutagenesis. Genome-wide infection screens were performed using these S. aureus transposon mutant pools in vitro and in vivo, followed by analysis using Transposon insertion site deep sequencing (Tn-seq) technology. Amongst several other factors, this study identified a novel regulatory system in S. aureus that controls pathogen-induced host cytotoxicity and intra-host survival. The primary components of this system are an AraC-family transcription regulator called Repressor of surface proteins (Rsp) and a virulence associated non-coding RNA, SSR42. Mutants within rsp exhibit enhanced intra-host survival in human epithelial cells and delayed host cytotoxicity. Global gene-expression profiling by RNA-seq demonstrated that Rsp controls the expression of SSR42, several cytotoxins and other bacterial factors directed against the host immune system. Rsp enhances S. aureus toxin response when triggered by hydrogen peroxide, an antimicrobial substance employed by neutrophils to destroy pathogens. Absence of rsp reduces S. aureus-induced neutrophil damage and early lethality during mouse pneumonia, but still permits blood stream infection. Intriguingly, S. aureus lacking rsp exhibited enhanced survival in human macrophages, which hints towards a Trojan horse-like phenomenon and could facilitate dissemination within the host. Hence, Rsp emerged as a global regulator of bacterial virulence, which has an impact on disease progression with prolonged intra-cellular survival, delayed-lethality but allows disseminated manifestation of disease. Moreover, this study exemplifies the use of genome-wide approaches as useful resources for identifying bacterial factors and deduction of its pathogenesis.}, subject = {Staphylococcus aureus}, language = {en} } @phdthesis{Blaettner2016, author = {Bl{\"a}ttner, Sebastian}, title = {The role of the non-ribosomal peptide synthetase AusAB and its product phevalin in intracellular virulence of Staphylococcus aureus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146662}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Staphylococcus aureus is a prevalent commensal bacterium which represents one of the leading causes in health care-associated bacterial infections worldwide and can cause a variety of different diseases ranging from simple abscesses to severe and life threatening infections including pneumonia, osteomyelitis and sepsis. In recent times multi-resistant strains have emerged, causing severe problems in nosocomial as well as community-acquired (CA) infection settings, especially in the United States (USA). Therefore S. aureus has been termed as a superbug by the WHO, underlining the severe health risk originating from it. Today, infections in the USA are dominated by S. aureus genotypes which are classified as USA300 and USA400, respectively. Strains of genotype USA300 are responsible for about 70\% of the CA infections. The molecular mechanisms which render S. aureus such an effective pathogen are still not understood in its entirety. For decades S. aureus was thought to be a strictly extracellular pathogen relying on pore-forming toxins like α-hemolysin to damage human cells and tissue. Only recently it has been shown that S. aureus can enter non-professional phagocytes, using adhesins like the fibronectin-binding proteins which mediate an endocytotic uptake into the host cells. The bacteria are consequently localized to endosomes, where the degradation of enclosed bacterial cells through phagosome maturation would eventually occur. S. aureus can avoid degradation, and translocate to the cellular cytoplasm, where it can replicate. The ability to cause this so-called phagosomal escape has mainly been attributed to a family of amphiphilic peptides called phenol soluble modulins (PSMs), but as studies have shown, they are not sufficient. In this work I used a transposon mutant library in combination with automated fluorescence microscopy to screen for genes involved in the phagosomal escape process and intracellular survival of S. aureus. I thereby identified a number of genes, including a non-ribosomal peptide synthetase (NRPS). The NRPS, encoded by the genes ausA and ausB, produces two types of small peptides, phevalin and tyrvalin. Mutations in the ausAB genes lead to a drastic decrease in phagosomal escape rates in epithelial cells, which were readily restored by genetic complementation in trans as well as by supplementation of synthetic phevalin. In leukocytes, phevalin interferes with calcium fluxes and activation of neutrophils and promotes cytotoxicity of intracellular bacteria in both, macrophages and neutrophils. Further ausAB is involved in survival and virulence of the bacterium during mouse lung pneumoniae. The here presented data demonstrates the contribution of the bacterial cyclic dipeptide phevalin to S. aureus virulence and suggests, that phevalin directly acts on a host cell target to promote cytotoxicity of intracellular bacteria.}, subject = {Staphylococcus aureus}, language = {en} } @phdthesis{Auer2021, author = {Auer, Daniela}, title = {Impact of the chlamydial deubiquitinase ChlaDUB1 on host cell defense}, doi = {10.25972/OPUS-17846}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178462}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The human pathogen Chlamydia trachomatis is the main cause of sexually transmitted infections worldwide. The obligate intracellular bacteria are the causative agent of several diseases that reach from conjunctivitis causing trachoma and blindness as well as salpingitis and urethritis which can lead to infertility if left untreated. In order to gain genetically engineered Chlamydia that inducible knock down specific gene expression, the CRISPRi system was established in C. trachomatis. In a proof of principle experiment it was shown that C. trachomatis pCRISPRi:gCdu1III target ChlaDUB1 expression and reduce the protein amount up to 50 \%. Knock-down of the DUB did not influence protein levels of anti-apoptotic Mcl-1 and did not make cells susceptible for apoptosis. However, reduced dCas9 protein size, bacterial growth impairment and off target effects interfering with the GFP signal, form obstacles in CRISPRi system in Chlamydia. For routinely use of the CRISPRi method in C. trachomatis further investigation is needed. Since the bacterial life cycle includes two morphological and functional distinct forms, it is essential for chlamydial spread to complete the development cycle and form infectious progeny. Therefore, Chlamydia has evolved strategies to evade the host immune system in order to stay undetected throughout the developmental cycle. The bacteria prevent host cell apoptosis via stabilization of anti-apoptotic proteins like Mcl-1, Survivin and HIF-1α and activate pro-survival pathways, inhibiting invasion of immune cells to the site of infection. The host cell itself can destroy intruders via cell specific defense systems that involve autophagy and recruitment of professional immune cells. In this thesis the role of the chlamydial deubiuqitinase ChlaDUB1 upon immune evasion was elucidated. With the mutant strain Ctr Tn-cdu1 that encodes for a truncated DUB due to transposon insertion, it was possible to identify ChlaDUB1 as a potent opponent of the autophagic system. Mutant inclusions were targeted by K48 and K63 chain ubiquitination. Subsequently the inclusion was recognized by autophagic receptors like p62, NBR1 and NDP52 that was reversed again by complementation with the active DUB. Xenophagy was promoted so far as LC3 positive phagosomes formed around the inclusion of Ctr Tn-cdu1, which did not fuse with the lysosome. The detected growth defect in human primary cells of Chlamydia missing the active DUB was not traced back to autophagy, but was due to impaired development and replication. It was possible to identify Ankib1, the E3 ligase, that ubiquitinates the chlamydial inclusion in a siRNA based screen. The activating enzyme Ube1 and the conjugating enzyme Ube2L3 are also essential in this process. Chlamydia have a reduced genome and depend on lipids and nutrients that are translocated from the host cell to the inclusion to proliferate. Recruitment of fragmented Golgi stacks to the inclusion surface was prevented when ChlaDUB1 was inactive, probably causing diminished bacterial growth. Additionally, the modification of the inclusion by Ankib1 and subsequent decoration by autophagic markers was not only present in human but also murine cells. Comparison of other Chlamydia strains and species revealed Ankib1 to be located at the proximity of the inclusion in C. trachomatis strains only but not in C. muridarum or C. pneumoniae, indicating that Ankib1 is specifically the E3 ligase of C. trachomatis. Moreover, the role of ChlaDUB1 in infected tissue was of interest, since ChlaDUB1 protein was also found in early EB stage and so might get in contact with invading immune cells after cell lysis. While bacteria spread and infect new host cells, Chlamydia can also infect immune cells. Infection of human neutrophils with Ctr Tn-cdu1 shows less bacterial survival and affirms the importance of the DUB for bacterial fitness in these cells.}, subject = {Chlamydia}, language = {en} } @phdthesis{Bucher2018, author = {Bucher, Hannes}, title = {Pre-clinical modeling of viral- and bacterial-induced exacerbations of chronic obstructive pulmonary disease}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144368}, school = {Universit{\"a}t W{\"u}rzburg}, pages = {XIII, 105}, year = {2018}, abstract = {Chronic Obstructive Pulmonary Disease (COPD) exacerbations are a considerable reason for increased morbidity and mortality in patients. Infections with influenza virus (H1N1), respiratory syncytial virus (RSV) or nontypeable Haemophilus influenzae (NTHi) are important triggers of exacerbations. To date, no treatments are available which can stop the progression of COPD. Novel approaches are urgently needed. Pre-clinical models of the disease are crucial for the development of novel therapeutic options. In order to establish pre-clinical models which mimic aspects of human COPD exacerbations, mice were exposed to cigarette smoke (CS) and additionally infected with H1N1, RSV and/or NTHi. Clinically relevant treatments such as the corticosteroids Fluticasone propionate and Dexamethasone, the phosphodiesterase-4 (PDE-4) inhibitor Roflumilast and the long-acting muscarinic receptor antagonist Tiotropium were tested in the established models. Furthermore, a novel treatment approach using antibodies (Abs) directed against IL-1α, IL-1β or IL-1R1 was examined in the established CS/H1N1 model. Levels of IFN-γ, IL-1β, IL-2, IL-6, KC, TNF-α, RANTES, IL-17, MCP-1, MIP 1α and MIP-1β were measured in lung homogenate. Numbers of total cells, neutrophils and macrophages were assessed in bronchoalveolar lavage (BAL) fluid. Hematoxylin- and eosin- (H\&E-) stained lung slices were analyzed to detect pathological changes. Quantitative polymerase-chain-reaction (qPCR) was used to investigate gene expression of ICAM-1 and MUC5 A/C. The viral/bacterial load was investigated in lung homogenate or BAL fluid. In addition to the in vivo studies, the effects of the above mentioned treatments were investigated in vitro in H1N1, RSV or NTHi-infected (primary) human bronchial epithelial cells using submerged or air-liquid-interface (ALI) cell culture systems. Four pre-clinical models (CS/H1N1, CS/RSV, CS/NTHi, CS/H1N1/NTHi) were established depicting clinically relevant aspects of COPD exacerbations such as increased inflammatory cells and cytokines in the airways and impaired lung function. In the CS/H1N1 model, Tiotropium improved lung function and was superior in reducing inflammation in comparison to Fluticasone or Roflumilast. Moreover, Fluticasone increased the loss of body-weight, levels of IL-6, KC and TNF-α and worsened lung function. In CS/RSV-exposed mice Tiotropium but not Fluticasone or Roflumilast treatment reduced neutrophil numbers and IL-6 and TNF α levels in the lung. The viral load of H1N1 and RSV was significantly elevated in CS/virus-exposed mice and NCI-H292 cells after Fluticasone and Dexamethasone treatment. The results from these studies demonstrate that Tiotropium has anti-inflammatory effects on CS/virus-induced inflammation and might help to explain the observed reduction of exacerbation rates in Tiotropium-treated COPD patients. Furthermore, the findings from this work indicate that treatment with Fluticasone or Dexamethasone might not be beneficial to reduce inflammation in the airways of COPD patients and supports clinical studies that link treatment with corticosteroids to an increased risk for pneumonia. Testing of anti-IL-1α, anti-IL-1β or anti-IL-1R1 Abs in the CS/H1N1 model suggests that, in line with clinical data, antagonization of IL-1β is not sufficient to reduce pulmonary inflammation and indicates a predominant role of IL-1α in CS/virus-induced airway inflammation. In line with the in vivo findings, anti-IL-1α but not anti-IL-1β Abs reduced levels of TNF-α and IL-6 in H1N1-infected primary human bronchial epithelial ALI cell culture. Blocking the IL-1R1 provided significant inhibitory effects on inflammatory cells in vivo but was inferior compared to inhibiting both its soluble ligands IL-1α and IL-1β. Concomitant usage of Abs against IL-1α/IL-1β revealed strong effects and reduced total cells, neutrophils and macrophages. Additionally, levels of KC, IL-6, TNF-α, MCP-1, MIP-1α and MIP-1β were significantly reduced and ICAM-1 mRNA expression was attenuated. These results suggest that combined inhibition of IL-1α/IL-1β might be beneficial to reduce inflammation and exacerbations in COPD patients. Moreover, combined targeting of both IL-1α/IL-1β might be more efficient compared to inhibition of the IL-1R1. As in the CS/virus models, corticosteroid treatment failed to reduce inflammatory cells in the CS/NTHi and CS/H1N1/NTHi models, increased the loss of body-weight and the bacterial load. Furthermore, Roflumilast administration had no significant effects on cell counts or cytokines. However, it improved compliance in the CS/NTHi model. Treatment with Azithromycin reduced the bacterial load in the CS/NTHi model and reduced numbers of total cells, neutrophils, macrophages and levels of KC and TNF-α in the CS/H1N1/NTHi model. In conclusion, the established CS/H1N1, CS/RSV, CS/NTHi, CS/H1N1/NTHi models depict clinically relevant aspects of human COPD exacerbations in mice and provide the opportunity to investigate underlying disease mechanisms and to test novel therapies.}, subject = {Obstruktive Ventilationsst{\"o}rung}, language = {en} } @phdthesis{MielichSuess2018, author = {Mielich-S{\"u}ß, Benjamin}, title = {Elucidating structural and functional aspects of prokaryotic membrane microdomains}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162037}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Bacterial functional membrane microdomains (FMMs) are membrane platforms that resemble lipid rafts of eukaryotic cells in certain functional and structural aspects. Lipid rafts are nanometer-sized, dynamic clusters of proteins and lipids in eukaryotic cell membranes that serve as signaling hubs and assembling platforms. Yet, studying these structures can often be hampered by the complexity of a eukaryotic cell. Thus, the analogous structures of prokaryotes are an attractive model to study molecular traits of this type of membrane organization. Similar to eukaryotic lipid rafts, the bacterial FMMs are comprised of polyisoprenoid lipids, scaffold proteins and a distinct set of membrane proteins, involved in signaling or secretion. Investigating bacterial FMMs not only contributes to the understanding of the physiological importance of FMMs in bacteria, but also helps to elucidate general principles of rafts beyond prokaryotes. In this work, a bacterial model organism was used to investigate effects of synthetic overproduction of the raft scaffolding proteins on bacterial physiology. This overexpression causes an unusual stabilization of the FMM-harbored protease FtsH and therefore the proteolytic targets of FtsH are not correctly regulated. Developmental defects and aberrances in shape are the consequence, which in turn negatively affects cell physiology. These findings may be adapted to better understand lipid raft processes in humans, where flotillin upregulation is detected along with development of neurological diseases. Moreover, it was aimed at understanding the FMM-proteome of the human pathogen Staphylococcus aureus. An in-depth quantitative mass-spectrometry analysis reveals adaption of the protein cargo during different conditions, while maintaining a distinct set of core FMM proteins. As a case study, the assembly of the type VII secretion system was shown to be dependent on FMM integrity and more specifically on the activity of the FMM-scaffold flotillin. This secretion system is important for the virulence of this pathogen and its secretion efficiency can be targeted by small molecules that inhibit flotillin activity. This opens new venues for non-conventional antimicrobial compounds to treat staphylococcal infections.}, subject = {Staphylococcus aureus}, language = {en} } @phdthesis{Grosz2015, author = {Grosz, Magdalena Urszula}, title = {Identification of phagosomal escape relevant factors in Staphylococcus aureus infection}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121981}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Staphylococcus aureus is a facultative Gram-positive human pathogen which can cause different severe infections. Staphylococci are phagocytosed by professional and non-professional phagocytes; they are strongly cytotoxic against eukaryotic cells and have been proposed to play a role in immune evasion by spreading within migrating phagocytes. This study investigated the post invasive events upon S. aureus infection. Strains which are able to escape the phagosome were identified and the responsible toxins were determined. Thereby innovative insights into host pathogen interaction were obtained. A novel class of small amphipathic peptides with strong surfactant-like properties, the phenol soluble modulins, particularly PSMα as well as the leukocidin LukAB, are involved in phagosomal escape of the clinical S. aureus strains LAC, MW2 and 6850 in non-professional and professional phagocytes. Whereas, PSMβ, δ-toxin, α-toxin, β-toxin or phosphatidyl inositol-dependent phospholipase C did not affect phagosomal escape. By blocking the bacterial DNA-dependent RNA polymerase with rifampicin phagosomal escape is determined to start approximately 2.5 hours post infection. Phagosomal escape further was required for intracellular replication of S. aureus. Strains which are not able to escape cannot replicate in the acidic vacuole, whereas, the host cytoplasm offers a rich milieu for bacterial replication. Additionally, phagosomal escape, with intracellular bacterial replication induces the subsequent host cell death. This could be confirmed by an infection assay including S. aureus knockout mutants in psmα or lukAB which were significantly less cytotoxic, compared with those infected with escape-positive wild type strains. Further, this study showed that phagosomal escape is not only mediated by bacterial toxins. Since, the phagocyte-specific cognate receptors for both escape relevant toxins, FPR2 (PSMα receptor) and CD11b (LukAB receptor) are produced in epithelial and endothelial cells only after infection with S. aureus in a calcium dependent fashion. The knockdown of both receptors using siRNA prevents S. aureus to escape the phagosome. Furthermore, blocking intracellular calcium release with the inositol trisphosphate receptor (IP3R) inhibitor 2-APB prohibits upregulation of fpr2 and cd11b and subsequently phagosomal escape of S. aureus. To conclude, the current study clarifies that phagosomal escape and host cell death are interplay of both, bacterial toxins and host cell factors. Staphylococcus aureus ist ein fakultativ Gram-positives Humanpathogen, dass verschiedene schwerwiegende Infektionen verursachen kann. Staphylokokken werden von professionellen und nicht-professionellen Phagozyten (Fresszellen) zu gleich aufgenommen. Desweitern sind sie stark zytotoxisch f{\"u}r eukaryotische Zellen. Außerdem wird vermutet, dass sie sich mittels migrierender Phagozyten dem angeborenen Immunsystem entziehen k{\"o}nnen. In dieser Studie werden die post-invasiven Ereignisse w{\"a}hrend einer Staphylokokken Infektion untersucht. Im Detail wurden St{\"a}mme identifiziert die aus den Phagosomen entkommen k{\"o}nnen und die daf{\"u}r verantwortlichen Toxine. Im Zuge dessen wurden neue Erkenntnisse der Interaktion zwischen Bakterien und Wirtszellen gewonnen. Eine neue Klasse von kleinen amphiphatischen Peptiden mit starken grenzfl{\"a}chenaktiven Eigenschaften (Surfactant), die sogenannten Phenol soluble modulins (PSMs) im Besonderen PSMα sowie das Leukozidin LukAB, sind am phagosomalen Ausbruch der klinisch relevanten S. aureus St{\"a}mmen LAC, MW2 und 6850 in nicht professionellen und professionellen Phagozyten involviert. Hingegen, sind PSMβ, δ-toxin, α-toxin, β-toxin oder Phosphatidylinositol abh{\"a}ngige Phospholipase C nicht am phagosomalen Ausbruch beteiligt. Durch die Hemmung der bakteriellen DNA-abh{\"a}ngigen RNA Polymerase mit Rifampicin wurde der Zeitpunkt f{\"u}r den Ausbruch auf etwa 2,5 Stunden nach der Infektion eingegrenzt. Der phagosomale Ausbruch ist weiterhin f{\"u}r die intrazellul{\"a}re Replikation von S. aureus notwendig. W{\"a}hrend St{\"a}mme, die nicht ausbrechen k{\"o}nnen in der anges{\"a}uerten Vakuole nicht replizieren k{\"o}nnen, bietet das Zytoplasma ein reichhaltiges Milieu f{\"u}r die Vermehrung. Zudem wird der Pathogen induzierte Zelltod erst nach dem phagosomalen Ausbruch und mit anschließender Vermehrung erm{\"o}glicht. Nachgewiesen wurde dies mittels psmα und lukAB defizienten Mutanten welche signifikant weniger zytotoxisch waren als der Wildtyp Stamm. Diese Studie zeigt dar{\"u}ber hinaus, dass der phagosomale Ausbruch nicht nur durch bakterielle Toxine vermittelt wird. Sondern, dass die Phagozyten-spezifischen Rezeptoren f{\"u}r beide relevanten Toxine, FPR2 (PSMα Rezeptor) und CD11b (LukAB Rezeptor), in Epithel- und Endothelzellen nach Infektion mit S. aureus calciumabh{\"a}ngig produziert werden und f{\"u}r den Ausbruch notwendig sind. Der knockdown beider Rezeptoren mittels siRNA verhindert den Ausbruch. Wird der intrazellul{\"a}re Calciumstrom mittels des Inositoltrisphosphat Rezeptor (IP3R) Inhibitor 2-APB blockiert k{\"o}nnen die Gene fpr2 und cd11b nicht hochreguliert werden und der Ausbruch wird ebenfalls verhindert. Folglich zeigt diese Studie, dass der phagosomale Ausbruch und Pathogen induzierte Zelltod sowohl durch bakterielle Toxine als auch Wirtsfaktoren vermittelt wird.}, subject = {Phagosom}, language = {en} } @phdthesis{Fliesser2015, author = {Fließer, Mirjam}, title = {Hypoxia and hypoxia-inducible factor 1α modulate the immune response of human dendritic cells against Aspergillus fumigatus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121392}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The mold Aspergillus fumigatus causes life-threatening infections in immunocompromised patients. Over the past decade new findings in research have improved our understanding of A. fumigatus-host interactions. One of them was the detection of localized areas of tissue hypoxia in the lungs of mice infected with A. fumigatus. The transcription factor hypoxia-inducible factor 1α (HIF 1α) is known as the central regulator of cellular responses to hypoxia. Under normoxia, this constitutively expressed protein is degraded by oxygen-dependent mechanisms in most mammalian cell types. Interaction with pathogens can induce HIF 1α stabilization under normoxic conditions in innate immune cells. Bacterial infection models revealed that hypoxic microenvironments and signaling via HIF 1α modulate functions of host immune cells. Moreover, it was recently described that in murine phagocytes, HIF 1α expression is essential to overcome an A. fumigatus infection. However, the influence of hypoxia and the role of HIF 1α signaling for anti-A. fumigatus immunity is still poorly understood, especially regarding dendritic cells (DCs), which are important regulators of anti-fungal immunity. In this study, the functional relevance of hypoxia and HIF 1α signaling in the response of human DCs against A. fumigatus has been investigated. Hypoxia attenuated the pro-inflammatory response of DCs against A. fumigatus during the initial infection as shown by genome-wide microarray expression analyses and cytokine quantification. The up-regulation of maturation-associated molecules on DCs stimulated with A. fumigatus under hypoxia was reduced; however, these DCs possessed an enhanced capacity to stimulate T cells. This study thereby revealed divergent influence of hypoxia on anti-A. fumigatus DC functions that included both, inhibiting and enhancing effects. HIF-1α was stabilized in DCs following stimulation with A. fumigatus under normoxic and hypoxic conditions. This stabilization was partially dependent on Dectin-1, the major receptor for A. fumigatus on human DCs. Using siRNA-based HIF 1α silencing combined with gene expression microarrays, a modulatory effect of HIF-1α on the anti-fungal immune response of human DCs was identified. Specifically, the transcriptomes of HIF-1α silenced DCs indicated that HIF-1α enhanced DC metabolism and cytokine release in response to A. fumigatus under normoxic and hypoxic conditions. This was confirmed by further down-stream analyses that included quantification of glycolytic activity and cytokine profiling of DCs. By that, this study demonstrated functional relevance of HIF 1α expression in DCs responding to A. fumigatus. The data give novel insight into the cellular functions of HIF 1α in human DCs that include regulation of the anti-fungal immune response under normoxia and hypoxia. The comprehensive transcriptome datasets in combination with the down-stream protein analyses from this study will promote further investigations to further characterize the complex interplay between hypoxia, activation of Dectin-1 and HIF-1α signaling in host responses against A. fumigatus.}, subject = {Immunologie}, language = {en} } @phdthesis{Pusch2015, author = {Pusch, Tobias}, title = {The transcription factor NFATc1 mediates cytotoxic T cell function in vitro and in vivo}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123690}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {While numerous experiments on NFAT were already performed with CD4+ T cells showing defective cytokine release and a reduced T helper cell development, no detailed studies existed for CD8+ T cells. From this point, we wanted to examine the impact of NFATc1 and c2 on the physiological functions of CD8+ T cells in vitro and in vivo. Therefore, we used a murine infection model with the bacteria Listeria monocytogenes and mice in which NFATc1 was specifically depleted in the T cell compartment. Our first in vitro studies showed a typical NFATc1 and c2 nuclear translocation and changes on mRNA levels upon T cell activation similarly in CD4+ as well as in CD8+ T cells extracted from wild type mice. NFAT nuclear translocation is important for target gene activation and generation of effector functions. Stimulated T cell populations lacking NFATc1 and/or NFATc2 showed a markedly decreased expression of Th1/Tc1 cytokines, as e.g. IL 2 and IFNγ being important for the clearance of intracellular pathogens. From our in vitro model for the generation of allogenically reactive cytotoxic CD8+ T cells, we revealed a decreased killing and lytic granule-release capacity in Nfatc1 inactivated CD8+ T cells whereas NFATc2-/- cytotoxic T cells did not show an altered cytotoxic response compared to wild type cells. Interestingly, we found lytic granules accumulated and mitochondria not getting translocated to the immunological synapse upon re-stimulation in NFATc1-deficient CD8+ T cells. Together with results showing the CsA insensitivity of the CTL killing/degranulation capacities, we assume that some major cellular processes are affected by NFATc1 which are not directly linked to the TCR-induced signal transduction cascade. We also showed the importance of NFATc1 in T cells during intracellular infections with the bacteria Listeria monocytogenes in an in vivo mouse model. After five days, only few bacteria were detected in wt mice whereas high amounts of Listeria particles were extracted from livers of Nfatc1fl/fl x Cd4 cre mice. Although the reactivity towards the pathogen was similar in both groups, a decreased cytokine expression in NFATc1-/- CD8+ T cells was observed together with an altered memory cell generation. Our results show the importance of NFATc1 in CD8+ T cells and give some clue for a possible connection to other basal cellular functions, as e.g. the formation of an immunological synapse.}, subject = {Transkriptionsfaktor}, language = {en} } @phdthesis{Herweg2018, author = {Herweg, Jo-Ana}, title = {Die Simkania-Vakuole: Die Rolle von ER, retro-/anterograden Protein- und Lipidtransport}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136844}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Simkania negevensis (Sn) is a Chlamydia-like obligate intracellular bacterium which replicates within a membrane bound vacuole, termed SCV (Simkania-containing vacuole). The SCV is a unique compartment closely associated with ER-membranes, consequently ER-stress is blocked by the bacteria. SCV morphology is similar among epithelial cells (HeLa229, A549, HEp-2) and macrophages (THP1). The SCV represents the first intracellular interface between the host and pathogen which serves as a replication niche. Identifying human and bacterial factors associated with ER-SCV-membranes should contribute towards the understanding of SCV composition and formation as well as interactions with ER or transports. Comparative studies of the SCV should indicate similarities to the chlamydial inclusion since some host cell factors are already known for Chlamydia. In this thesis, a purification protocol has been established that is applicable to HeLa229 and THP1 ER-SCV-membranes and has been further utilized for proteome and lipidome analyses. 302 bacterial and 1178 human proteins composing ER-SCV-membranes and 885 bacterial proteins composing purified Sn have been identified by using label-free mass spectrometry measurements. Among the human factors of non or Sn infected ER-(SCV-) membranes we found 51 enriched or depleted proteins in addition to 57 transport associated ones that indicated infection induced differences among intracellular protein transport. Contrary regulation of retrograde and anterograde transported proteins could be confirmed by using RNA interference and inhibitor tests, whereby Clathrin-associated and COPI vesicles seem to play a central role. Application of Retro-inhibitors, which interfered with retrograde transport processes between endosome to Golgi or early to late endosomes, as well as Bafilomycin A1 (retrograde, late endosomes and lysosomes) and Brefeldin A (anterograde, ER and Golgi) exerted a strong influence on SCV formation, morphology and intracellular lipid transport. By using label-free mass spectrometry measurements and thin layer chromatography we could determine differences in lipid levels within Sn infected cells, ER-SCV-membranes and purified Sn in comparison to uninfected cells. In addition to lipid enrichment or depletion in whole-cell extracts and ER-SCV-membranes, we identified two infection-specific lipids, cholesterol-ß-Dglucoside and PE 30:0. Further, high-throughput RNA interference tests indicated a dependence of Sn infections on endosome to Golgi and Clathrin-associated vesicle transports. Taken together, we were able to identify initial potential SCV-associated proteins and lipids that were connected to bacterial infection. Furthermore, SCV formation and Sn infectiousness depends on retrograde transport processes and therefore also on acquisition of nutrients, such as lipids.}, subject = {Simkania}, language = {de} } @phdthesis{Subbarayal2015, author = {Subbarayal, Prema}, title = {The role of human Ephrin receptor tyrosine kinase A2 (EphA2) in Chlamydia trachomatis infection}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114778}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Chlamydia trachomatis (Ctr), an obligate intracellular gram negative human pathogen, causes sexually transmitted diseases and acquired blindness in developing countries. The infectious elementary bodies (EB) of Ctr involved in adherence and invasion processes are critical for chlamydial infectivity and subsequent pathogenesis which requires cooperative interaction of several host cell factors. Few receptors have been known for this early event, yet the molecular mechanism of these receptors involvement throughout Ctr infection is not known. Chlamydial inclusion membrane serves as a signaling platform that coordinates Chlamydia-host cell interaction which encouraged me to look for host cell factors that associates with the inclusion membrane, using proteome analysis. The role of these factors in chlamydial replication was analyzed by RNA interference (RNAi) (in collaboration with AG Thomas Meyer). Interestingly, EphrinA2 receptor (EphA2), a cell surface tyrosine kinase receptor, implicated in many cancers, was identified as one of the potential candidates. Due to the presence of EphA2 in the Ctr inclusion proteome data, I investigated the role of EphA2 in Ctr infection. EphA2 was identified as a direct interacting receptor for adherence and entry of C. trachomatis. Pre-incubation of Ctr-EB with recombinant human EphA2, knockdown of EphA2 by siRNA, pretreatment of cells with anti-EphA2 antibodies or the tyrosine kinase inhibitor dasatinib significantly reduced Ctr infection. This marked reduction of Ctr infection was seen with both epithelial and endothelial cells used in this study. Ctr activates EphA2 upon infection and invades the cell together with the activated EphA2 receptor that interacts and activates PI3K survival signal, promoting chlamydial replication. EphA2 upregulation during infection is associated with Ctr inclusion membrane inside the cell and are prevented being translocated to the cell surface. Ephrins are natural ligands for Ephrin receptors that repress the activation of the PI3K/Akt pathway in a process called reverse signaling. Purified Ephrin-A1, a ligand of EphA2, strongly interferes with chlamydial infection and normal development, supporting the central role of these receptors in Chlamydia infection. Overexpression of full length EphA2, but not the mutant form lacking the intracellular cytoplasmic domain, enhanced PI3K activation and Ctr infection. Ctr infection induces EphA2 upregulation and is mediated by activation of ERK signaling pathway. Interfering with EphA2 upregulation sensitizes Ctr-infected cells to apoptosis induced by tumor necrosis factor-alpha (TNF-α) suggesting the importance of intracellular EphA2 signaling. Collectively, these results revealed the first Ephrin receptor "EphA2" that functions in promoting chlamydial infection. In addition, the engagement of a cell surface receptor at the inclusion membrane is a new mechanism how Chlamydia subverts the host cell and induces apoptosis resistance. By applying the natural ligand Ephrin-A1 and targeting EphA2 offers a promising new approach to interfere with Chlamydia infection. Thus, the work provides the evidence for a host cell surface tyrosine kinase receptor that is exploited for invasion as well as for receptor-mediated intracellular signaling to facilitate the chlamydial replication.}, subject = {Chlamydia trachomatis}, language = {en} }