@phdthesis{Sieck2018, author = {Sieck, Carolin}, title = {Synthesis and Photophysical Properties of Luminescent Rhodacyclopentadienes and Rhodium 2,2'-Biphenyl Complexes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154844}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The photochemistry and photophysics of transition metal complexes are of great interest, since such materials can be exploited for a wide range of applications such as in photocatalysis, sensing and imaging, multiphoton-absorption materials and the fabrication of OLEDs. A full understanding of the excited state behavior of transition metal compounds is therefore important for the design of new materials for the applications mentioned above. In principle, the luminescence properties of this class of compounds can be tuned by changing the metal or subtle changes in the ligand environment. Furthermore, transition-metal complexes continue to play a major role in modern synthetic chemistry. In particular, they can realize selective transformations that would either be difficult or impossible by conventional organic chemistry. For example, they enable the efficient and selective formation of carbon-carbon bonds. One famous example of these types of transformations are metal-catalyzed cyclization reactions. Herein, metallacyclopentadiene complexes are considered as key intermediates in a number of metal-mediated or -catalyzed cyclization reactions, i.e. the [2+2+2] cyclotrimerization of alkynes. Recent research has focused on the synthesis and characterization of these metallacyclic intermediates such as MC4 ring systems. Metallacyclopentadienes are structurally related to main group EC4 systems such as boroles, siloles, thiophenes and phospholes. Overall, this group of compounds (EC4 analogues) is well known and has attracted significant attention due to their electron-transport and optical properties. Unlike transition metal analogues, however, these EC4 systems show no phosphorescence, which is due to inefficient SOC compared to 2nd and 3rd row transition metals, which promoted us to explore the phosphorescence potential of metallacyclopentadienes. In 2001, Marder et al. developed a one-pot high-yield synthesis of luminescent 2,5 bis(arylethynyl)rhodacyclopentadienes by reductive coupling of 1,4-diarylbuta-1,3-diynes at a suitable rhodium(I) precursor. Over the past years, a variety of ligands (e.g. TMSA, S,S' diethyldithiocarbamate, etc.) and 1,4-bis(p-R-phenyl)-1,3-butadiynes or linked , bis(p-R-arylethynyl)alkanes (R = electron withdrawing or donating groups) were investigated and always provided a selective formation of 2,5 bis(arylethynyl)rhodacyclopentadienes, which were reported to be fluorescent despite presence of the heavy atom. To examine the influence of the ligand sphere around the rhodium center on the intersystem-crossing (ISC) processes in the above-mentioned fluorescent rhodacyclopentadienes and to increase the metal character in the frontier orbitals by destabilizing the Rh filled d-orbitals, a -electron donating group was introduced, namely acetylacetonato (acac). Interestingly, in 2010 Tay reacted [Rh(κ2-O,O-acac)(PMe3)2] with ,-bis(p-R-arylbutadiynyl)alkanes and observed not only the fluorescent 2,5 bis(arylethynyl)rhodacyclopentadienes, but also rhodium 2,2'-bph complexes as products, which were reported to be phosphorescent in preliminary photophysical studies. In this work, the reaction behavior of [Rh(κ2-O,O-acac)(L)2] (L = PMe3, P(p-tolyl)3) with different ,-bis(p-R-arylbutadiynyl)alkanes was established. Furthermore, the separation of the two isomers 2,5-bis(arylethynyl)rhodacyclopentadienes (A) and rhodium 2,2'-bph complexes (B), and the photophysical properties of those were explored in order to clarify their fundamentally different excited state behaviors. Reactions of [Rh(κ2-O,O-acac)(P(p-tolyl3)2)] with ,-bis(arylbutadiynyl)alkanes gives exclusively weakly fluorescent 2,5-bis(arylethynyl)rhodacyclopentadienes. Changing the phosphine ligands to PMe3, reactions of [Rh(κ2-O,O-acac)(PMe3)2] and , bis(arylbutadiynyl)alkanes afford two isomeric types of MC4 metallacycles with very different photophysical properties, as mentioned before. As a result of a normal [2+2] reductive coupling at rhodium, 2,5 bis(arylethynyl)rhodacyclopentadienes (A) are formed, which display intense fluorescence. Rhodium 2,2'-bph complexes (B), which show phosphorescence, have been isolated as a second isomer originating from an unusual [4+2] cycloaddition reaction and a subsequent -H-shift. Control of the isomer distribution, of 2,5-bis(arylethynyl)rhodacyclopentadienes (A) and rhodium biphenyl complexes (B), is achieved by modification of the linked , bis(arylbutadiynyl)alkane. Changing the linker length from four CH2 to three CH2 groups, dramatically favors the formation of the rhodium biphenyl isomer B, providing a fundamentally new route to access photoactive metal biphenyl compounds in good yields. This is very exciting as the photophysical properties of only a limited number of bph complexes of Ir, Pd and Pt had been explored. The lack of photophysical reports in the literature is presumably due to the limited synthetic access to various substituted 2,2'-bph transition metal complexes. On the other hand, as the reaction of [Rh(κ2-O,O-acac)(P(p-tolyl)3)2] with , bis(arylbutadiynyl)alkanes provides a selective reaction to give weakly fluorescent 2,5 bis(arylethynyl)rhodacyclopentadiene complexes with P(p-tolyl)3 as phosphine ligands, a different synthetic access to 2,5-bis(arylethynyl)rhodacyclopentadiene complexes with PMe3 as phosphine ligands was developed, preventing the time-consuming separation of the isomers. The weak rhodium-phosphorus bonds of 2,5-bis(arylethynyl)rhodacyclopentadiene complexes bearing P(p tolyl)3 as phosphine ligands, relative to those of related PMe3 complexes, allowed for facile ligand exchange reactions. In the presence of an excess of PMe3, a stepwise reaction was observed, giving first the mono-substituted, mixed-phosphine rhodacyclopentadiene intermediates and, subsequently, full conversion to the highly fluorescent 2,5 bis(arylethynyl)-rhodacyclopentadienes bearing only PMe3 ligands (by increasing the reaction temperature). With spectroscopically pure 2,5-bis(arylethynyl)rhodacyclopentadiene complexes A (bearing PMe3 as phosphine ligands) and rhodium 2,2-bph complexes B in hand, photophysical studies were conducted. The 2,5-bis(arylethynyl)rhodacyclopentadienes (A) are highly fluorescent with high quantum yields up to 54\% and very short lifetimes (τ = 0.2 - 2.5 ns) in solution at room temperature. Even at 77 K in glass matrices, no additional phosphorescence is observed which is in line with previous observations made by Steffen et al., who showed that SOC mediated by the heavy metal atom in 2,5-bis(arylethynyl)rhodacyclopentadienes and 2,5 bis(arylethynyl)iridacyclopentadienes is negligible. The origin of this fluorescence lies in the pure intra-ligand (IL) nature of the excited states S1 and T1. The HOMO and the LUMO are nearly pure  and * ligand orbitals, respectively, and the HOMO is energetically well separated from the filled rhodium d orbitals. The absence of phosphorescence in transition metal complexes due to mainly IL character of the excited states is not unusual, even for heavier homologues than rhodium with greater SOC, resulting in residual S1 emission (fluorescence) despite ISC S1→Tn being sufficiently fast for population of T1 states. However, there are very few complexes that exhibit fluorescence with the efficiency displayed by our rhodacyclopentadienes, which involves exceptionally slow S1→Tn ISC on the timescale of nanoseconds rather than a few picoseconds or faster. In stark contrast, the 2,2'-bph rhodium complexes B are exclusively phosphorescent, as expected for 2nd-row transition metal complexes, and show long-lived (hundreds of s) phosphorescence (Ф = 0.01 - 0.33) at room temperature in solution. As no fluorescence is detected even at low temperature, it can be assumed that S1→Tn ISC must be faster than both fluorescence and non-radiative decay from the S1 state. This contrasts with the behavior of the isomeric 2,5-bis(arylethynyl)rhodacyclopentadienes for which unusually slow ISC occurs on a timescale that is competitive with fluorescence (vide supra). The very small values for the radiative rate constants, however, indicate that the nature of the T1 state is purely 3IL with weak SOC mediated by the Rh atom. The phosphorescence efficiency of these complexes in solution at room temperature is even more impressive, as non-radiative coupling of the excited state with the ground state typically inhibits phosphorescence. Instead, the rigidity of the organic -system allows the ligand-based excited triplet state to exist in solution for up to 646 s and to emit with high quantum yields for biphenyl complexes. The exceptionally long lifetimes and small radiative rate constants of the rhodium biphenyl complexes are presumably a result of the large conjugated -system of the organic ligand. According to TD DFT studies, the T1 state involves charge-transfer from the biphenyl ligand into the arylethynyl moiety away from the rhodium atom. This reduces the SOC of the metal center that would be necessary for fast phosphorescence. These results show that the π-chromophoric ligand can gain control over the photophysical excited state behavior to such an extent that even heavy transition metal atoms like rhodium participate in increasing the fluorescence such as main-group analogues do. Furthermore, in the 2,2'-bph rhodium complexes, the rigidity of the organic -system allows the ligand-based excited triplet state to exist in solution for up to hundreds of s and to emit with exceptional quantum yields. Therefore, investigations of the influence of the ligand sphere around the rhodium center have been made to modify the photophysical properties and furthermore to explore the reaction behavior of these rhodium complexes. Bearing in mind that the P(p-tolyl)3 ligands can easily be replaced by the stronger -donating PMe3 ligands, ligand exchange reactions with N heterocyclic carbenes (NHCs) as even stronger -donors was investigated. Addition of two equivalents of NHCs at room temperature led to the release of one equivalent of P(p-tolyl3) and formation of the mono-substituted NHC rhodium complex. The reaction of isolated mono-NHC complex with another equivalent of NHC at room temperature did not result in the exchange of the second phosphine ligand. Moderate heating of the reaction to 60 °C, however, resulted in the formation of tetra-substituted NHC rhodium complex [Rh(nPr2Im)4]+[acac]-. To circumvent the loss of the other ligands in the experiments described above, a different approach was investigated to access rhodacyclopentadienes with NHC instead of phosphine ligands. Reaction of the bis-NHC complex [Rh(κ2-O,O-acac)(nPr2Im)2] with , bis(arylbutadiynyl)alkanes at room temperature resulted 2,5-bis(arylethynyl)-rhodacyclopentadienes with the NHC ligands being cis or trans to each other as indicated by NMR spectroscopic measurements and single-crystal X-ray diffraction analysis. Isolation of clean material and a fundamental photophysical study could not be finished for reasons of time within the scope of this work. Furthermore, shortening of the well conjugated -system of the chromophoric ligand (changing from tetraynes to diynes) was another strategy to examine the reaction behavior of theses ligands with rhodium(I) complexes and to modify the excited state behavior of the formed rhodacyclopentadienes. The reaction of [Rh(κ2-O,O-acac)(PMe3)2] with 1,7 diaryl 1,6-heptadiynes (diynes) leads to the selective formation of 2,5 bis(aryl)rhodacyclopentadienes. These compounds, however, are very weakly fluorescent with quantum yields ФPL < 1, and very short emission lifetimes in toluene at room temperature. Presumably, vibrational modes of the bis(phenyl)butadiene backbone leads to a higher rate constant for non-radiative decay and is thus responsible for the low quantum yields compared to their corresponding PMe3 complexes with the bis(phenylethynyl)butadiene backbone at room temperature. No additional phosphorescence, even at 77 K in the glass matrix is observed. Chancing the phosphine ligands to P(p-tolyl)3, reactions of [Rh(κ2-O,O-acac)(P(p-tolyl3)2)] with 1,7-diaryl-1,6-heptadiynes, however, resulted in a metal-mediated or -catalyzed cycloaddition reaction of alkynes and leads to full conversion to dimerization and trimerization products and recovery of the rhodium(I) starting material. This is intuitive, considering that P(Ar)3 (Ar = aryl) ligands are considered weaker -donor ligands and therefore have a higher tendency to dissociate. Therefore, rhodium(I) complexes with aryl phosphines as ligands have an increasing tendency to promote catalytic reactions, while the stronger -donating ligands (PMe3 or NHCs) promote the formation of stable rhodium complexes. Finally, in Chapter 4, the findings of the work conducted on N-heterocyclic carbenes (NHCs) and cyclic (alkyl)(amino)carbenes (CAACs) is presented. These compounds have unique electronic and steric properties and are therefore of great interest as ligands and organo-catalysts. In this work, studies of substitution reactions involving novel carbonyl complexes of rhodium and nickel are reported. For characterization and comparison of CAACmethyl with the large amount of data available for NHC and sterically more demanding CAAC ligands, an overview on physicochemical data (electronics, sterics and bond strength) is provided. The reaction of [Rh(-Cl)(CO)2]2 with 2 equivalents of CAACmethyl at low temperature afforded the mononuclear complex cis-[(RhCl(CO)2(CAACmethyl)]. However, reacting [Rh( Cl)(CO)2]2 with CAACmethyl at room temperature afforded a mixture of complexes. The mononuclear complex [(RhCl(CO)(CAACmethyl)2], the chloro-bridged complexes [(Rh2( Cl)2(CO)3(CAACmethyl)], [Rh(-Cl)(CO)(CAACmethyl)]2 and a carbon monoxide activation product were formed. The carbon monoxide activation product is presumably formed via the reaction of two equivalents of the CAAC with CO to give the bis-carbene adduct of CO, and subsequent rearrangement via migration of the Dipp moiety. While classical N-heterocyclic carbenes are not electrophilic enough to react with CO, related diamidocarbenes and alkyl(amino)carbenes undergo addition reactions with CO to give the corresponding ketenes. Consequently, to obtain the CAAC-disubstituted mononuclear complex selectively, 8 equivalents of CAACmethyl were reacted with 1 equivalent of [Rh(-Cl)(CO)2]2. For the evaluation of TEP values, [Ni(CO)3(CAAC)] was synthesized in collaboration with the group of Radius. With the complexes [(RhCl(CO)(CAACmethyl)2] and [Ni(CO)3(CAAC)] in hand, it was furthermore possible to examine the electronic and steric parameters of CAACmethyl. Like its bulkier congeners CAACmenthyl and CAACcy, the methyl-substituted CAAC is proposed to be a notably stronger -donor than common NHCs. While it has a very similar TEP value of 2046 cm-1, it additionally possess superior -acceptor properties (P = 67.2 ppm of phosphinidene adduct). CAACs appear to be very effective in the isolation of a variety of otherwise unstable main group and transition metal diamagnetic and paramagnetic species. This is due to their low-lying LUMO and the small singlet-triplet gap. These electronic properties also allow free CAACs to activate small molecules with strong bonds. They also bind strongly to transition metal centers, which enables their use under harsh conditions. One recent development is the use of CAACs as ligands in transition metal complexes, which previously were only postulated as short-lived catalytic intermediates.[292,345] The availability of these reactive species allows for a better understanding of known catalytic reactions and the design of new catalysts and, moreover, new applications. For example Radius et al.[320] prepared a CAAC complex of cobalt as a precursor for thin-film deposition and Steffen et al.[346] reported a CAAC complex of copper with very high photoluminescent properties, which could be used in LED devices. With the development of cheap and facile synthetic methods for the preparation of CAACs and their corresponding transition metals complexes, as well as the knowledge of their electronic properties, it is safe to predict that applications in and around this field of chemistry will continue to increase.}, subject = {{\"U}bergangsmetallkomplexe}, language = {en} } @phdthesis{Merz2020, author = {Merz, Julia}, title = {C-H Borylation: A Route to Novel Pyrenes and Perylenes and the Investigation of their Excited States and Redox Properties}, doi = {10.25972/OPUS-18522}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-185226}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Pyrene is a polycyclic aromatic hydrocarbon (PAH) that has very interesting photophysical properties which make it suitable for a broad range of applications. The 2,7-positions of pyrene are situated on nodal planes in both the HOMO and LUMO. Hence, electrophilic reactions take place at the 1-, 3-, 6-, and 8-positions. The goal of this project was to develop novel pyrene derivatives substituted at the 2- and 2,7-positions, with very strong donors or/and acceptors, to achieve unprecedented properties and to provide a deeper understanding of how to control the excited states and redox properties. For that reason, a julolidine-type moiety was chosen as a very strong donor, giving D-π and D-π-D systems and, with Bmes2 as a very strong acceptor, D-π-A system. These compounds exhibit unusual photophysical properties such as emission in the green region of the electromagnetic spectrum in hexane, whereas all other previously reported pyrene derivatives substituted at the 2,7-positions show blue luminescence. Furthermore, spectroelectrochemical measurements suggest very strong coupling between the substituents at the 2,7-positions of pyrene in the D-π-D system. Theoretical studies show that these properties result from the very strong julolidine-type donor and Bmes2 acceptor coupling efficiently to the pyrene HOMO-1 and LUMO+1, respectively. Destabilization of the former and stabilization of the latter lead to an orbital shuffle between HOMO and HOMO 1, and LUMO and LUMO+1 of pyrene. Consequently, the S1 state changes its nature sufficiently enough to gain higher oscillator strength, and the photophysical and electrochemical properties are then greatly influenced by the substituents. In another project, further derivatives were synthesized with additional acceptor moieties at the K-region of pyrene. These target derivatives exhibit strong bathochromically shifted absorption maxima (519-658 nm), which is a result of the outstanding charge transfer character introduced into the D-π-D pyrene system through the additional acceptor moiety at the K-region. Moreover, emission in the red to NIR region with an emission maximum at 700 nm in CH2Cl2 is detected. The excited state lives unusual long for K-region substituted pyrenes; however, such a lifetime is rather typical for 2,7-substituted pyrene derivatives. The polycyclic aromatic hydrocarbon perylene, especially perylene diimide, has received considerable attention in recent years and has found use in numerous applications such as dyes, pigments and semiconductors. Nevertheless, it is of fundamental importance to understand how to modulate the electronic and photophysical properties of perylene depending on the specific desired application. Perylenes without carboxyimide groups at the peri positions are much less well studied due to the difficulties in functionalizing the perylene core directly. In particular, only ortho heteroatom substituted perylenes have not been reported thus far (exception: (Bpin)4-Per was already reported by Marder and co-workers). Thus, the effect of substituents on the ortho positions of the perylene core has not been investigated. Two perylene derivatives were synthesized that bear four strong diphenylamine donor or strong Bmes2 acceptor moieties at the ortho positions. These compounds represent the first examples of perylenes substituted only at the ortho positions with donors or acceptors. The investigations show that the photophysical and electronic properties of these derivatives are unique and different compared to the well-studied perylene diimides. Thus, up to four reversible reductions or oxidations are possible, which is unprecedented for monomeric perylenes. Furthermore, the photophysical properties of these two ortho-substituted derivatives are unusual compared to reported perylenes on many regards. Thus, large Stokes shifts are obtained, and the singlet excited state of these derivatives lives remarkably long with intrinsic lifetimes of up to 94 ns. In a cooperation with Dr. Gerard P. McGlacken at University College Cork in Ireland, different quinolones were borylated using an iridium catalyst system to study the electronic and steric effect of the substrates. It was possible to demonstrate that the Ir-catalyzed borylation with the dtbpy ligand allows the direct borylation of various 4-quinolones at the 6- and 7-positions. Thus, later stage functionalization is possible with this method and more highly functionalized quinolones are also compatible with this mild reaction conditions.}, subject = {Pyren}, language = {en} } @phdthesis{Tian2021, author = {Tian, Yaming}, title = {Selective C-X and C-H Borylation by N-Heterocyclic Carbene Nickel(0) Complex}, doi = {10.25972/OPUS-21300}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213004}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Organoboron compounds are important building blocks in organic synthesis, materials science, and drug discovery. The development of practical and convenient ways to synthesize boronate esters attracted significant interest. Photoinduced borylations originated with stoichiometric reactions of arenes and alkanes with well-defined metal-boryl complexes. Now photoredox-initiated borylations, catalyzed either by transition-metal or organic photocatalysts, and photochemical borylations with high efficiency have become a burgeoning area of research. In this chapter, we summarize research in the field of photocatalytic C-X borylation, especially emphasizing recent developments and trends, based on transition-metal catalysis, metal-free organocatalysis and direct photochemical activation. We focus on reaction mechanisms involving single electron transfer (SET), triplet energy transfer (TET), and other radical processes. We developed a highly selective photocatalytic C-F borylation method that employs a rhodium biphenyl complex as a triplet sensitizer and the nickel catalyst [Ni(IMes)2] (IMes = 1,3-dimesitylimidazolin-2-ylidene) for the C-F bond activation and defluoroborylation process. This tandem catalyst system operates with visible (400 nm) light and achieves borylation of a wide range of fluoroarenes with B2pin2 at room temperature in excellent yields and with high selectivity. Direct irradiation of the intermediary C-F bond oxidative addition product trans-[NiF(ArF)(IMes)2] leads to fast decomposition when B2pin2 is present. This destructive pathway can be bypassed by indirect excitation of the triplet states of the nickel(II) complex via the photoexcited rhodium biphenyl complex. Mechanistic studies suggest that the exceptionally long-lived triplet excited state of the Rh biphenyl complex used as the photosensitizer allows for efficient triplet energy transfer to trans-[NiF(ArF)(IMes)2], which leads to dissociation of one of the NHC ligands. This contrasts with the majority of current photocatalytic transformations, which employ transition metals as excited state single electron transfer agents. We have previously reported that C(arene)-F bond activation with [Ni(IMes)2] is facile at room temperature, but that the transmetalation step with B2pin2 is associated with a high energy barrier. Thus, this triplet energy transfer ultimately leads to a greatly enhanced rate constant for the transmetalation step and thus for the whole borylation process. While addition of a fluoride source such as CsF enhances the yield, it is not absolutely required. We attribute this yield-enhancing effect to (i) formation of an anionic adduct of B2pin2, i.e. FB2pin2-, as an efficient, much more nucleophilic {Bpin-} transfer reagent for the borylation/transmetalation process, and/or (ii) trapping of the Lewis acidic side product FBpin by formation of [F2Bpin]- to avoid the formation of a significant amount of NHC-FBpin and consequently of decomposition of {Ni(NHC)2} species in the reaction mixture. We reported a highly selective and general photo-induced C-Cl borylation protocol that employs [Ni(IMes)2] (IMes = 1,3-dimesitylimidazoline-2-ylidene) for the radical borylation of chloroarenes. This photo-induced system operates with visible light (400 nm) and achieves borylation of a wide range of chloroarenes with B2pin2 at room temperature in excellent yields and with high selectivity, thereby demonstrating its broad utility and functional group tolerance. Mechanistic investigations suggest that the borylation reactions proceed via a radical process. EPR studies demonstrate that [Ni(IMes)2] undergoes very fast chlorine atom abstraction from aryl chlorides to give [NiI(IMes)2Cl] and aryl radicals. Control experiments indicate that light promotes the reaction of [NiI(IMes)2Cl] with aryl chlorides generating additional aryl radicals and [NiII(IMes)2Cl2]. The aryl radicals react with an anionic sp2-sp3 diborane [B2pin2(OMe)]- formed from B2pin2 and KOMe to yield the corresponding borylation product and the [Bpin(OMe)]•- radical anion, which reduces [NiII(IMes)2Cl2] under irradiation to regenerate [NiI(IMes)2Cl] and [Ni(IMes)2] for the next catalytic cycle. A highly efficient and general protocol for traceless, directed C3-selective C-H borylation of indoles with [Ni(IMes)2] as the catalyst was achieved. Activation and borylation of N-H bonds by [Ni(IMes)2] is essential to install a Bpin moiety at the N-position as a traceless directing group, which enables the C3-selective borylation of C-H bonds. The N-Bpin group which is formed is easily converted in situ back to an N-H group by the oxidiative addition product of [Ni(IMes)2] and in situ-generated HBpin. The catalytic reactions are operationally simple, allowing borylation of of a variety of substituted indoles with B2pin2 in excellent yields and with high selectivity. The C-H borylation can be followed by Suzuki-Miyaura cross-coupling of the C-borylated indoles in an overall two-step, one-pot process providing an efficient method for synthesizing C3-functionalized heteroarenes.}, subject = {Borylierung}, language = {en} } @phdthesis{Liu2021, author = {Liu, Zhiqiang}, title = {Fluorinated Aryl Boronates as Units in Organic Synthesis}, doi = {10.25972/OPUS-24576}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245769}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {It is generally acknowledged that polyfluoroarenes are important fluorinated structural units for various organic molecules, such as pharmaceuticals, agrochemicals, and organic materials. Polyfluorinated aryl alkynes and alcohols are also powerful building blocks in chemical synthesis because of their versatility to be transformed into various useful molecules and also their ubiquity in natural product synthesis. Efficient methods for the synthesis of polyfluorinated aryl alkynes and alcohols are presented in Chapter 2 and Chapter 3. In addition, 3-amino-indoles have found a broad applications in medicinal chemistry as effective anticancer agents, compounds with analgesic properties and can function as potent inhibitors of tubulin polymerization, and agents for the prevention of type II diabetes. A simple method for the synthesis of 3-amino-indoles via the annulation reaction of polyfluorophenylboronates with DMF is reported in Chapter 4. Chapter 2 In Chapter 2, a mild process for the copper-catalyzed oxidative cross-coupling of electron-deficient polyfluorophenylboronate esters with terminal alkynes (Scheme S-1) is reported. This method displays good functional group tolerance and broad substrate scope, generating cross-coupled alkynyl(fluoro)arene products in moderate to excellent yields. This copper-catalyzed reaction was conducted on a gram scale to generate the corresponding product in good yield (72\%). Scheme S-1. Copper-catalyzed oxidative cross-coupling of terminal alkynes with polyfluorophenylboronate esters. Based on previous reports and the aforementioned observations, a plausible catalytic cycle for this oxidative cross-coupling reaction is shown in Scheme S-2. The first step involves the addition of an alkynyl anion to Cu leading to the formation of alkynylcopper(II) species B. Subsequent transmetalation between ArFBpin and intermediate B occurs to form intermediate C. The desired product 3a is generated by eductive elimination. Finally, the oxidation of Cu(0) to Cu(II) with DDQ and Ag2O regenerates A to complete the catalytic cycle. Scheme S-2. Proposed mechanism of copper(II)-catalyzed oxidative cross-coupling between terminal alkynes and polyfluorophenylboronate esters. Chapter 3 In Chapter 3, A convenient and efficient protocol for the transition metal-free 1,2-addition of polyfluoroaryl boronate esters to aldehydes and ketones is reported, which provides secondary alcohols, tertiary alcohols, and ketones (Scheme S-3). The distinguishing features of this procedure include the employment of commercially available starting materials and the broad scope of the reaction with a wide variety of carbonyl compounds giving moderate to excellent yields. Scheme S-3. Base-promoted 1,2-addition of polyfluorophenylboronates to aldehydes and ketones. Control experiments were carried out to gain insight into the reaction mechanism. The reaction of 2a with pentafluorobenzene 5 under standard conditions was examined, yet 3a was not formed in any detectable amounts (Scheme S-4a), indicating that the C-Bpin moiety is essential and deprotonation of the fluoroarene or nucleophilic attack at the fluoroarene by the base is not a plausible pathway. Interestingly, for the standard reaction between 1a and 2a, the yield dropped dramatically if 18-crown-6 ether and K2CO3 were added (Scheme S-4b). This experimental result indicates that the presence of the potassium ion plays a crucial role for the outcome of the reaction. Furthermore, if the reaction of 1a and 2a was performed in the presence of only a catalytic amount of K2CO3 (20 mol\%) (Scheme S-4c), reaction rates were reduced, and a week was required to produce 3a in good yield. This finding again indicates that the potassium ion (or the base) plays an important role in the reaction. Substituting ortho-fluorines by ortho-chlorines, using either C6Cl5Bpin 2,6-dichlorophenyl-1-Bpin as substrates, did not yield any product as shown by in situ GCMS studies. Scheme S-4. Control experiments. Based on DFT calculations, a mechanism for the 1,2-addition of polyfluorophenylboronates to aryl aldehydes in the presence of K2CO3 as base is proposed, as shown in Scheme S-5. K2CO3 interacts with the Lewis-acidic Bpin moiety of substrate 1 to generate base adduct A, which weakens the carbon-boron bond and ultimately cleaves the BC bond along with attachment of a potassium cation to the aryl group. The resulting ArF- anion adduct B undergoes nucleophilic attack at the aldehyde carbon atom of substrate 2 to generate methanolate C. The methanolate oxygen atom then attacks the electrophilic Bpin group to obtain compound D. Transfer of K2CO3 from intermediate D to the boron atom of the more Lewis-acidic polyfluorophenyl-Bpin 1 finally closes the cycle and regenerates complex A. Thus, the primary reaction product is the O-borylated addition product E, which was detected by HRMS and NMR spectroscopy for the perfluorinated derivative. Scheme S-5. Proposed mechanism of the 1,2-addition of polyfluorophenylboronates to aldehydes and ketones. Chapter 4 Chapter 4 presents a novel protocol for the transition metal-free addition and annulation of polyfluoroarylboronate esters to DMF, which provides 3-aminoindoles and tertiary amines in moderate to excellent yields (Scheme S-6). Scheme S-6. Annulation and addition reactions of polyfluorophenylboronates with DMF. While exploring the application of this strategy in synthesis, perfluorophenylBpin reacted smoothly with ethynylarenes and DMF to afford propargylamines with moderate to excellent yields (Scheme S-7). Scheme S-7. Three-component cross-coupling reaction for the synthesis of propargylamines.}, subject = {Fluorinated Aryl Boronates}, language = {en} } @phdthesis{WuertembergerPietsch2017, author = {W{\"u}rtemberger-Pietsch, Sabrina}, title = {Anionic and Neutral Lewis-Base Adducts of Diboron(4) Compounds}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136321}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Anionic Adducts Sp2-sp3 tetraalkoxy diboron compounds have gained attention due to the development of new, synthetically useful catalytic reactions either with or without transition-metals. Lewis-base adducts of the diboron(4) compounds were suggested as possible intermediates in Cu catalyzed borylation reactions some time ago. However, intermolecular adducts of tetraalkoxy diboron compounds have not been studied yet in great detail. In preliminary studies, we have synthesized a series of anionic sp2-sp3 adducts of B2pin2 with alkoxy-groups (L = [OMe]-, [OtBu]-), a phenoxy-group (L = [4-tBuC6H4O]-) and fluoride (L = [F]-, with [nBu4N]+ as the counter ion) as Lewis-bases. Neutral Adducts Since their isolation and characterization, applications of N-heterocyclic carbenes (NHCs) and related molecules, e.g., cyclic alkylaminocarbenes (CAACs) and acyclic diaminocarbenes (aDCs), have grown rapidly. Their use as ligands in homogeneous catalysis and directly in organocatalysis, including recently developed borylation reactions, is now well established. Recently, several examples of ring expansion reactions (RER) involving NHCs were reported to take place at elevated temperatures, involving Be, B, and Si. Furthermore, preliminary studies in the group of Marder et al. showed the presence of neutral sp2-sp3 diboron compounds with B2pin2 and the NHC Cy2Im. In this work, we focused on the synthesis and characterization of further neutral sp2-sp3 as well as sp3-sp3 diboron adducts with B2cat2 and B2neop2 and different NHCs. Whereas the mono-NHC adduct is stable for several hours at temperatures up to 60 °C, the bis-NHC adducts undergo thermally induced rearrangement to form the ring expanded products compound 26 and 27. B2neop2 is much more reactive than B2cat2 giving ring expanded product 29 at room temperature in quantitative yields, demonstrating that NHC ring expansion and B-B bond cleavage can be very facile processes. Whereas the mono-NHC adduct is stable for several hours at temperatures up to 60 °C, the bis-NHC adducts undergo thermally induced rearrangement to form the ring expanded products compound 26 and 27. B2neop2 is much more reactive than B2cat2 giving ring expanded product 29 at room temperature in quantitative yields, demonstrating that NHC ring expansion and B-B bond cleavage can be very facile processes.}, subject = {Addukt}, language = {en} } @phdthesis{Noll2023, author = {Noll, Niklas}, title = {Second Coordination Sphere Engineering in Macrocyclic Ruthenium Water Oxidation Catalysts}, doi = {10.25972/OPUS-30533}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-305332}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {About 2.4 billion years ago, nature has fundamentally revolutionized life on earth by inventing the multi-subunit protein complex photosystem II, the only molecular machine in nature that catalyzes the thermodynamically demanding photosynthetic splitting of water into oxygen and reducing equivalents. Nature chose a distorted Mn4CaO5 cluster as catalyst, better known as oxygen-evolving complex (OEC), thus recognizing the need for transition metals to achieve high-performance catalysts. The curiosity has always driven mankind to mimic nature's achievements, but the performance of natural enzymes such as the oxygen-evolving complex in photosystem II remain commonly unmatched. An important role in fine-tuning and regulating the activity of natural enzymes is attributed to the surrounding protein domain, which facilitates substrate preorganization within well-defined nanoenvironments. In light of growing energy demands and the depletion of fossil fuels, the unparalleled efficiency of natural photosynthesis inspires chemists to artificially mimic its natural counterpart to generate hydrogen as a 'solar fuel' through the light-driven splitting of water. As a result, significant efforts have been devoted in recent decades to develop molecular water oxidation catalysts based on earth-abundant transition metals and the discovery of the Ru(bda) (bda: 2,2' bipyridine-6,6'-dicarboxylate) catalyst family enabled activities comparable to the natural OEC. Similar to the natural archetypes, the design of homogeneous catalysts that interplay judiciously with the second coordination sphere of the outer ligand framework proved to be a promising concept for catalyst design. In this present thesis, novel supramolecular design approaches for enzyme like activation of substrate water molecules for the challenging oxidative water splitting reaction were established via tailor-made engineering of the secondary ligand environment of macrocyclic Ru(bda) catalysts.}, subject = {Katalyse}, language = {en} } @phdthesis{Ferger2023, author = {Ferger, Matthias}, title = {Development of New Methods for Triarylborane Synthesis and Investigation of Triarylborane Chromophores for DNA and RNA Sensing and Singlet Oxygen Sensitization}, doi = {10.25972/OPUS-23430}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234307}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The 1st chapter provides a detailed review of the development of synthetic approaches to triarylboranes from their first report nearly 135 years ago to the present. In the 2nd chapter, a novel and convenient methodology is reported for the one-pot synthesis of sterically-congested triarylboranes, using bench-stable aryltrifluoroborates as the boron source. The new procedure gives access to symmetrically- and unsymmetrically-substituted triarylboranes. The borylated triarylboranes are suggested as building blocks for the design of functional materials. In the 3rd chapter, four luminescent tetracationic bis-triarylborane DNA and RNA sensors that show high binding affinities, in several cases even in the nM range, are investigated. The molecular structures of two of the neutral precursors reveal some structural flexibility for these compounds in the solid state. The compounds were found to be highly emissive even in water and DNA and RNA binding affinities were found to be dependent on linker length and flexibility. Strong SERS responses for three of the four compounds demonstrate the importance of triple bonds for strong Raman activity in molecules of this compound class. In chapter 4, the compound class of water-soluble tetracationic bis-triarylborane chromophores is extended by EDOT-linked compounds and those are compared to their thiophene-containing analogs. Absorption and emission are significantly red-shifted in these compounds, compared to their thiophene-containing analogs and, due to a large Stokes shift, one of the reported compounds exhibits the most bathochromically shifted emission, observable well into the near infrared region, of all tetracationic water-soluble bis-triarylborane chromophores reported to date. Long-lived excited states, completely quenched by oxygen, were observed for the water-stable compounds of this study via transient absorption spectroscopy and a quantum yield for singlet oxygen formation of 0.6 was determined for one of them.}, subject = {Triarylborane}, language = {en} } @phdthesis{Maier2021, author = {Maier, Jan Richard}, title = {Investigations of Metal-free Cannibalistic Hexadehydro-Diels-Alder and Pt-catalyzed Dimerization Reactions of Linked Aryl Bisdiynes}, doi = {10.25972/OPUS-24041}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240411}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The introductory chapter reviews the current state of mechanistic understanding of the hexadehydro-Diels-Alder (HDDA) reaction. With the rapid development of the HDDA reaction from its first discovery in 1997, the question of whether a concerted or stepwise mechanism better describes the thermally activated formation of ortho-benzyne from a diyne and a diynophile has been debated. Mechanistic and kinetic investigations were able to show that this is not a black or white situation, as minor changes can tip the balance. In chapter 2 of this thesis, the catalytic process leading from 1,11-bis(p-tolyl)undeca-1,3,8,10-tetrayne to fully-substituted naphthalene and azulene derivatives, by two different platinum-catalyzed dimerization pathways, was investigated. In chapter 3, the cannibalistic self-trapping reaction of an ortho-benzyne derivative generated from 1,11-bis(p-tolyl)undeca-1,3,8,10-tetrayne in an HDDA reaction was investigated. Without adding any specific trapping agent, the highly reactive benzyne is trapped by another bisdiyne molecule in at least three different modes. In chapter 4 direct UV/VIS spectroscopic evidence for the existence of an o-benzyne in solution is reported, and the dynamics of its formation in a photo-induced reaction are established. For this purpose, 1,11-bis(p-tolyl)undeca-1,3,8,10-tetrayne was investigated, using femtosecond transient absorption spectroscopy in the ultraviolet/visible region. In chapter 5, following the isolation and characterization of the reaction products discussed in chapter 3, further species resulting from reactions of the highly reactive ortho-benzyne derivative were identified.}, subject = {Diels-Alder-Reaktion}, language = {en} } @phdthesis{Kuehn2022, author = {Kuehn, Laura}, title = {Earth-Abundant Metal-Catalyzed and Transition Metal-Free Borylation of Aryl Halides}, doi = {10.25972/OPUS-21149}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-211499}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The present work focusses on the borylation of aryl halides. The first chapter presents a detailed review about previously reported nickel-catalyzed borylation reactions. The second chapter of the thesis describes, the borylation reaction of C-Cl bonds in aryl chlorides mediated by an NHC-stabilized nickel catalyst. The cyclohexyl substituted NHC Cy2Im was used to synthesize novel Cy2Im-stabilized nickel complexes [Ni2(Cy2Im)4(μ-(η2:η2)-COD)] 1, [Ni(Cy2Im)2(η2-C2H4)] 2, and [Ni(Cy2Im)2(η2-COE)] 3. An optimized procedure was developed using 5 mol\% of the Ni-catalyst, 1.5 equivalents of the boron reagent B2pin2, and 1.5 equivalents of NaOAc as the base in methylcyclohexane at 100 °C. With these optimized conditions, it was shown that a variety of aryl chlorides, containing either electron-withdrawing or -donating groups, were converted to the corresponding aryl boronic esters in yields up to 99\% (88\% isolated) yield. Mechanistic investigations revealed that the C-Cl oxidative addition product [Ni(Cy2Im)2(Cl)(4-F3C-C6H4)] 11, which has been synthesized and isolated separately, also catalyzes the reaction. Thus, rapid oxidative addition of the C-Cl bond of the aryl chloride to [Ni2(Cy2Im)4(μ-(η2:η2)-COD)] 1 to yield trans-[Ni(Cy2Im)2(Cl)(Ar)] represents the first step in the catalytic cycle. The rate limiting step in this catalytic cycle is the transmetalation of boron to nickel forming trans-[Ni(Cy2Im)2(Bpin)(Ar)], which was not possible to isolate. The boryl transfer reagent is assumed to be the anionic adduct Na[B2pin2(OAc)]. A final reductive elimination step gives the desired borylated product Ar-Bpin and regenerates [Ni(Cy2Im)2]. In the next chapter the first effective C-Cl bond borylation of aryl chlorides using NHC-stabilized Cu(I)-complexes of the type [Cu(NHC)(Cl)] was developed. The known complexes [Cu(iPr2Im)(Cl)] 15, [Cu(Me2ImMe)(Cl)] 16, and [Cu(Cy2Im)(Cl)] 17, bearing the small alkyl substituted NHCs, were synthesized in good yields by the reaction of copper(I) chloride with the corresponding free NHC at low temperature (-78 °C) in THF. A range of catalysts, bases, solvents, and boron sources were screened to determine the scope and limitations of this reaction. [Cu(Cy2Im)(Cl)] 17 revealed a significantly higher catalytic activity than [Cu(iPr2Im)(Cl)] 15. KOtBu turned out to be the only efficient base for this borylation reaction. Besides methylcyclohexane, toluene was the only solvent that gave the borylated product in moderate yields of 53\%. It was shown that a variety of electron-rich and electron-poor aryl chlorides can be converted to the corresponding aryl boronic esters in isolated yields of up to 80\%. A mechanism was proposed, in which a Cu-boryl complex [Cu(L)(Bpin)] is formed in the initial step. This is followed by C-B bond formation via σ-bond metathesis with the aryl chloride forming the aryl boronic ester and [Cu(L)(Cl)]. The latter reacts with KOtBu to give [Cu(L)(OtBu)], which regenerates the copper boryl complex by reaction with B2pin2. Chapter 4 describes studies directed towards the transition metal-free borylation of aryl halides using Lewis base adducts of diborane(4) compounds. A variety of novel pyridine and NHC adducts of boron compounds were synthesized. Adducts of the type pyridine·B2cat2 18-19 and NHC·B2(OR)4 20-23 were examined for their ability to transfer a boryl moiety to an aryl iodide. However, only Me2ImMe∙B2pin2 20 was found to be effective. The stoichiometric reaction of 20 with different substituted aryl iodides and bromides in benzene, at elevated temperatures, gave the desired aryl boronic esters in good yields. Interestingly, depending on the reaction temperature, C-C coupling between the aryl halide and the solvent (benzene), was detected leading to a side product which, together with observed hydrodehalogenation of the aryl halide, provided indications that the reaction might be radical in nature. When the boryl transfer reaction based on Me2ImMe∙B2pin2 20 was followed by EPR spectroscopy, a signal (though very weak and ill-defined) was detected, which is suggestive of a mechanism involving a boron-based radical. In addition, the boronium cation [(Me2ImMe)2∙Bpin]+ 37 with iodide as the counterion was isolated from the reaction residue, indicating the fate of the second boryl moiety. A preliminary mechanism for the boryl transfer from 20 to aryl iodides was proposed, which involves an NHC-Bpin˙ radical as the key intermediate. Me2ImMe-Bpin˙ is formed by homolytic B-B bond cleavage of the bis-NHC adduct (Me2ImMe)2∙B2pin2, which is formed in situ in small amounts under the reaction conditions. Me2ImMe-Bpin˙ reacts with the aryl iodide to give the aryl boronic ester with recovery of aromaticity. In the same step, from the second equivalent of NHC-Bpin˙, an NHC-stabilized iodo-Bpin adduct is formed as an intermediate, which is further coordinated by another NHC, yielding [(Me2ImMe)2∙Bpin]+I- 37.}, subject = {NHC-Nickel-Catalyst}, language = {en} } @phdthesis{Eichhorn2018, author = {Eichhorn, Antonius}, title = {Copper(I) catalyzed borylation and cross-coupling reactions}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167332}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The present thesis comprises synthesis and stoichiometric model reactions of well-defined NHC-stabilized copper(I) complexes (NHC = N-heterocyclic carbene) in order to understand their basic reactivity in borylation and cross-coupling reactions. This also includes the investigations of the reactivity of the ligands used (NHCs and CaaCs = cyclic alkyl(amino)carbenes) with the substrates, i.e. diboron(4) esters and arylboronates, which are addressed in the second part of the thesis.}, subject = {Copper}, language = {en} } @phdthesis{Rauch2020, author = {Rauch, Florian}, title = {1,3-Bis(trifluoromethyl)benzene: A Versatile Building Block for the Synthesis of New Boron-Containing Conjugated Systems}, doi = {10.25972/OPUS-21147}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-211478}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Chapter 1 Thermally activated delayed fluorescence (TADF) materials provide a strategy to improve external quantum efficiencies of organic light emitting diodes (OLEDs). Because of spin-statistics, 25\% singlet and 75\% triplet excitons are generated in an electronic device. Conventional organic emitters cannot harvest the triplet excitons, due to low spin orbit coupling, and exhibit low external quantum efficiencies. TADF materials have to be designed in such a way, that the energy gap between the lowest singlet and triplet states (ΔES-T) is sufficiently small to allow reverse intersystem crossing (rISC) in organic systems. An established structure property relationship for the generation of TADF materials is the spatial separation of HOMO and LUMO via an orthogonal arrangement of donor and acceptor in donor-π-acceptor (D-π-A) compounds. This is achieved by increasing the steric bulk of the π-bridge. However, this is not always the most efficient method and electronic parameters have to be considered. In a combined experimental and theoretical study, a computational protocol to predict the excited states in D-π-A compounds containing the B(FXyl)2 (FXyl = 2,6-bis(trifluoromethyl)phenyl) acceptor group for the design of new TADF emitters is presented. To this end, the effect of different donor and π-bridge moieties on the energy gaps between local and charge-transfer singlet and triplet states was examined. To prove the computationally aided design concept, the D-π-B(FXyl)2 compounds Cbz-π (1), Cbz-Meπ (2), Phox-Meπ (3), Phox-MeOπ (4), and MeO₃Ph-FMeπ (5) were synthesized and fully characterized. The photophysical properties of these compounds in various solvents, polymeric film and in a frozen matrix were investigated in detail and show excellent agreement with the computationally obtained data (Figure 5.1). A simple structure-property relationship based on the molecular fragment orbitals of the donor and the π-bridge which minimize the relevant singlet-triplet gaps to achieve efficient TADF emitters is presented.   Chapter 2 Three-coordinate boron is widely used as an acceptor in conjugated materials. In recent years the employment of trifluoromethylated aryls was shown to improve the acceptor properties of such boranes. Astonishingly, the use of ortho-trifluoromethylated aryls in boron containing systems also improves the stability of those systems in regard to their inherent reactivity towards nucleophiles. Borafluorenes are stronger acceptors than their non-annulated triarylborane derivatives. In previous studies, the effect of trifluoromethylated aryls as the exo-aryl moieties in borafluorenes, as well as the effect of fluorination on the backbone, were examined. As the latter suffers from a very low stability, systems using trifluoromethyl groups, both on the exo-aryl as well as the borafluorene backbone were designed in order to maximize both the stability as well as the acceptor strength. Three different perfluoroalkylated borafluorenes were prepared and their electronic and photophysical properties were investigated. The systems have four trifluoromethyl moieties on the borafluorene moiety as well as two trifluoromethyl groups at the ortho positions of their exo-aryl moieties. They differ with regard to the para-substituents on their exo-aryl moieties, being a proton (FXylFBf), a trifluoromethyl group (FMesFBf) or a dimethylamino group (p NMe2-FXylFBf), respectively. Furthermore, an acetonitrile adduct of FMesFBf was obtained and characterized. All derivatives exhibit extraordinarily low reduction potentials, comparable to those of perylenediimides. The most electron deficient derivative FMesFBf was also chemically reduced and its radical anion isolated and characterized. Furthermore, the photophysical properties of all compounds were investigated. All compounds exhibit weakly allowed lowest energy absorptions and very long fluorescent lifetimes of ca. 250 ns up to 1.6 μs; however, the underlying mechanisms differ. The donor substituted derivative p-NMe2-FXylFBf exhibits thermally activated delayed fluorescence from a charge transfer (CT) state, while the FMesFBf and FXylFBf borafluorenes exhibit only weakly allowed locally excited (LE) transitions due to their symmetry and low transition dipole moments, as suggested by DFT and TD-DFT calculations.   Chapter 3 Conjugated dendrimers find wide application in various fields, such as charge transport/storage or emitter materials in organic solar cells or OLEDs. Previous studies on boron containing conjugated dendrimers are scarce and mostly employ a convergent synthesis approach, lacking a simple, generally applicable synthetic access. A new divergent approach was designed and conjugated triarylborane dendrimers were synthesized up to the 2nd generation. The synthetic strategy consists of three steps: 1) functionalization, via iridium catalyzed C-H borylation; 2) activation, via fluorination of the generated boronate ester with K[HF2] or [N(nBu)4][HF2]; and 3) expansion, via reaction of the trifluoroborate salts with aryl Grignard reagents. The concept was also shown to be viable for a convergent approach. All but one of the conjugated borane dendrimers exhibit multiple, distinct and reversible reduction potentials, making them potentially interesting materials for applications in molecular accumulators (Figure 5.7). Based on their photophysical properties, the 1st generation dendrimers exhibit good conjugation over the whole system. The conjugation does not further increase upon expansion to the 2nd generation, but the molar extinction coefficients increase linearly with the number of triarylborane sub-units, suggesting a potential application as photonic antennas.   Chapter 4 A surprisingly high electronically-driven regioselectivity for the iridium-catalyzed C-H borylation using [Ir(COD)OMe]2 (COD = 1,5-cyclooctadiene) as the precatalytic species, bis(pinacolato)diboron (B2pin2) as the boron source and 4,4'-ditertbutyl-2,2'-bipyridin (dtbpy) as the ligand of D-π-A systems with diphenylamino (1) or carbazolyl (2) moieties as the donor, bis(2,6-bis(trifluoromethyl)phenyl)boryl (B(FXyl)2) as the acceptor, and 1,4-phenylene as the π-bridge was observed. Under these conditions, borylation was observed only at the sterically least encumbered para-positions of the acceptor groups. As boronate esters are versatile building blocks for organic synthesis (C-C coupling, functional group transformations), the C-H borylation represents a simple potential method for post-functionalization by which electronic or other properties of D-π-A systems can be fine-tuned for specific applications. The photophysical and electrochemical properties of the borylated (1-(Bpin)2) and unborylated (1) diphenylamino-substituted D-π-A systems were investigated. Interestingly, the borylated derivative exhibits coordination of THF to the boronate ester moieties, influencing the photophysical properties and exemplifying the non-innocence of boronate esters.}, subject = {Triarylborane}, language = {en} } @phdthesis{He2020, author = {He, Jiang}, title = {Studies of N-heterocyclic olefins as donors in triarylboranes and electron-poor phenylpyridyl-fused boroles}, doi = {10.25972/OPUS-21717}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-217175}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Chapter 1 N-Heterocyclic olefins (NHOs), relatives of N-heterocyclic carbenes (NHCs), exhibit high nucleophilicity and soft Lewis basic character. To investigate their π-electron donating ability, NHOs were attached to triarylborane π-acceptors (A) giving donor(D)-π-A compounds 1-3. In addition, an enamine π-donor analogue (4) was synthesized for comparison. UV-visible absorption studies show a larger red shift for the NHO-containing boranes than for the enamine analogue, a relative of a CAAC. The red shifted absorption of NHO-containing boranes indicate smaller energy gaps of NHO-containing boranes than CAAC-containing boranes. Solvent-dependent emission studies indicate that 1-4 have moderate intramolecular charge transfer (ICT) behavior. Electrochemical investigations reveal that the NHO-containing boranes have extremely low reversible oxidation potentials (e.g., for 3, E1/2ox = -0.40 V vs. Fc/Fc+ in THF) which indicate the electron rich property of NHOs. Furthermore, TD-DFT calculations were carried out on these four D-π-A boranes. The results show that the LUMOs of 1-4 only show a small difference, but the HOMOs of 1-3 are much more destabilized than that of the enamine-containing 4, which is in agreement with the electrochemical investigations and confirms the stronger donating ability of NHOs. Chapter 2 Since the beginning of this century, the chemistry of (hetero)arene-fused boroles has attracted increasing interest. (Hetero)arene-fused boroles exhibit strong Lewis acidity, distinct fluorescence properties, strong electron accepting abilities, etc. However, their chemistry been only very briefly reviewed either as part of reviews on "free" boroles or on boron-doped polycyclic aromatic hydrocarbons (PAHs). In this chapter, we addressed the chemistry of (hetero)arene-fused boroles from fundamentals to their widely varying applications. It includes: 1) Synthetic methodology  Both historical and recently developed strategies for the synthesis of fused boroles. 2) Stabilities  A comparison of different kinetic protection strategies. 3) 9-Borafluorenes with a fluorinated backbone  Application as Lewis acids, forming ion pairs with Cp2Zr(CH3)2 and applied as activators for polymerization, activators of H2, and other related applications. 4) Donor-acceptor 9-borafluorenes  Applications as F- "turn on" sensors, potential applications as electron accepting units for organic (opto)electronics, bipolar transporting materials, TADF materials, and different functionalization strategies. 5) Heteroarene-fused boroles  Enhanced antiaromaticity, unique coordination mode and their interesting properties. 6) Intramolecular dative bonding in 9-borafluorenes  Bond-cleavage-induced intramolecular charge transfer (BICT), BICT-induced large Stoke shifts and dual emissions, application as a ratiometric sensor. 7) 9-Borafluorene-based main chain polymers  Application in polymer chemistry and their distinct properties, e.g., as a sensor for gaseous NH3. 8) Electrochemistry  A comparison of electron-accepting ability of different functionalized fused boroles through electrochemical studies. 9) Chemical reduction of fused boroles  Stable radical anions and dianions of fused boroles and their properties. 10) Three-coordinate borafluorenium cations  Cationic 9-borafluorenes and their interesting properties, e.g., in THF, reversible thermal colour switching properties. Finally, a conclusion and outlook regarding the chemistry, properties and applications, and suggestions for areas which require further study was provided.   Chapter 3 Interested in fusing electron-poor arene onto boroles, two electron-poor phenylpyridyl-fused boroles, [TipPBB1]4 and TipPBB2 were prepared. [TipPBB1]4 is a white solid adopting a unique coordination mode, which forming a tetramer with a cavity in both the solid state and solution (1H DOSY). The boron center of TipPBB2 is 4-coordinate in the solid state, evidenced by a solid-state 11B{1H} RSHE/MAS NMR study, but the system dissociates in solution, leading to 3-coordinate borole species. [TipPBB1]4 exhibits two reduction processes which are attributed to the phenylpyridyl cores. TipPBB2 also exhibits two reduction processes with the first half-reduction potential of E1/2red = -1.94 V. The electron accepting ability of TipPBB2 is largely enhanced and comparable to that of FMesBf. This enhanced electron accepting ability is attributed to the electron withdrawing property of the pyridyl group. TipPBB2 exhibits concentration- and temperature-dependent dual fluorescence in solution. With the temperature is lowered, the emission intensity decreases (Figure 6.4, left). We suggested that the dual fluorescence is caused by an equilibrium between 3-coordinate TipPBB2 and a weak intermolecular adduct of TipPBB2 via a B-N bond. This hypothesis was further supported by lifetime measurements at different concentrations, low temperature excitation spectra low temperature 1H NMR spectra and lifetime measurements upon addition of DMAP to a solution of TipPBB2 to simulate the 4-coordiante TipPBB2 species. Interestingly, the ratio of the relative percentages of the two lifetimes shows a linear relationship with temperature; thus, TipPBB2 could serve as a fluorescent thermometer. Furthermore, theoretical studies were carried out on TipPBB2, and two models, ((BMe3)TipPBB1(NMe3) and (BMe3)TipPBB2(NMe3)), which utilize a BMe3 group as the Lewis acid coordinated to pyridine and an NMe3 group as the Lewis base coordinated to the boron center of the borole, were used to simulate the [TipPBB1]4 and intermolecular 4-coordinate TipPBB2, respectively. Theoretical studies indicate that the HOMO of TipPBB2 is located at the Tip group, which is in contrast to its borafluorene derivatives for which the HOMOs are located on the borafluorene cores. Chapter 4 Two derivatives of phenylpyridyl-fused boroles were prepared via functionalization of the pyridyl groups in two different directions, namely an electron-rich dihydropyridine moiety (compound 10) and an electron-deficient N-methylpyridinium cation (compound 11). Both compounds were fully characterized. The 11B NMR signal of compound 10 was observed at 58.8 ppm in CDCl3, which suggests strong conjugation between the boron atom and dihydropyridine moiety. Compound 11 shows a reversible coordination to THF which was confirmed by NMR studies. Compared to other 2,4,6-triisopropylphenyl protected 9-borafluorenes which only coordinate to CH3CN or DMF, the coordination of the weaker and bulkier THF to compound 11 indicates an extremely electron-deficient boron center in compound 11. The electron-rich property of the dihydropyridine moiety of compound 10 was confirmed by its oxidation potential (Epc = +0.37 V). Due to the strong conjugation of the dihydropyridine moiety with the boron atom, the reduction potential of compound 10 shifts cathodically and is more negative than -2.5 V. Compound 11 exhibits three reduction processes with the first reversible reduction potential at Ered1/2 = -1.23 V, which is significantly anodically shifted compared to that of its precursor (TipPBB2) or its framework 1-methyl-2-phenylpyridin-1-ium triflate (12). This significantly anodically shifted reduction potential confirms an extremely electron-deficient property of compound 11. Photophysical studies indicate that the lowest energy transition of compound 10 is more likely a locally-excited (LE) transition and compound 11 exhibits a polarized ground state. Furthermore, we performed theoretical studies for both compounds. The electron cloud distribution of the HOMO of compound 10 supports the strong conjugation between the boron atom and the dihydropyridine moiety in the ground state. An extremely low LUMO energy was determined by theoretical studies which confirmed the extremely electron-deficient property of compound 11.   Chapter 5 Inspired by the enhancement of electron accepting ability with increasing numbers of electron withdrawing groups at boron, we tried to study the properties of a bis(pyridyl)arylboranes. In our attempt to synthesize a bis(pyridyl)arylborane, we obtained a bis(2-pyridyl)methoxyborate Li+ complex which is as a dimer both in solution and the solid state. In the solid state, compound [16]2 is a dimer containing two bis(2-pyridyl)methoxyborate which are linked by two lithium cations. Each lithium cation coordinates to one methoxy group and two pyridyl groups, one from each of the two bis(2-pyridyl)methoxyborate anions. The parameters of [16]2 were compared with other bis(2-pyridyl)methoxyborate stabilized Pt(IV) complex, bis(2-pyridyl)hydroxylborate stabilized Ru(II) complex and the dimer of EtAl(OMe)(2-pyridyl)2Li. To confirm the coordination mode in solution, 1H DOSY spectroscopy was carried out in CD2Cl2. The van der Waals radius obtained by 1H DOSY nicely matches with the result from the solid state and thus proves the dimer of 16 is persistent in solution. Finally, different Lewis acids (e.g., TMSCl, BF3•Et2O, AlCl3, HCl) were used to attempt to detach the methoxy group of [16]2. However, we observed either decomposition or selective cleavage of the Tip group, or no reaction at all, rather than cleavage of the methoxy group from boron.}, subject = {Triarylborane}, language = {en} } @phdthesis{Berger2022, author = {Berger, Sarina Maria}, title = {Influence of Charge and Its Distribution on Biological Applications of Bis-Triarylboranes and Preliminary Investigations on H\(_2\)O\(_2\)-Cleavable Aryl Boronate Esters}, doi = {10.25972/OPUS-24314}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-243147}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {This dissertation describes the synthesis of an unsymmetrically-substituted triarylborane. This term describes a three-coordinate boron atom that is bound to three different aromatic systems, namely 2,6-dimethylphenyl, mesityl, and 4-(N,N-dimethylamino)-2,6-dimethylphenyl. It is also demonstrated that the amine functionality can be converted with methyl triflate into an ammonium moiety. The investigation of photophysical and electrochemical properties of this compound in comparison with the non-aminated and di-aminated analogues of the triarylborane is described besides other investigations of e. g. singlet oxygen sensitization, rotational barriers, and fundamental DFT calculations. Based on these investigations, selectively mono-, bis- and tris-dimethylamino- and trimethylammonium-substituted bis-triarylborane bithiophene chromophores were synthesized and their photophysical, and electrochemical properties were investigated together with the water solubility and singlet oxygen sensitizing efficiency of the cationic compounds Cat1+, Cat2+, Cat(i)2+, and Cat3+. Comparing these properties with the results obtained for the mono-triarylboranes reveals a large influence of the bridging unit on the investigated properties of the bis-triarylboranes. In addition, the interaction of the cationic bis-triarylboranes with different polynucleotides were investigated in buffered solutions as well as the ability of these selectively charged compounds to enter and localize within organelles of human lung carcinoma and normal lung cells. All these investigations demonstrate that the number of charges and their distribution influences the interactions and staining properties as well as most of the other properties investigated. In addition, preliminary investigations on H2O2-cleavable boronate esters in the presence of stochiometric amounts of H2O2 are described for three different aryl boronate esters.}, subject = {Triarylborane}, language = {en} } @phdthesis{Liu2020, author = {Liu, Xiaocui}, title = {Catalytic Triboration and Diboration of Terminal Alkynes}, doi = {10.25972/OPUS-19253}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192537}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Chapter two reports the catalytic triboration of terminal alkynes with B2pin2 using readily available Cu(OAc)2 and PnBu3. Various 1,1,2-triborylalkenes, a class of compounds which have been demonstrated to be potential Matrix Metalloproteinase-2 (MMP-2) inhibitors, are obtained directly in moderate to good yields. The process features mild reaction conditions, broad substrate scope, and good functional group tolerance were observed. This Cu-catalyzed reaction can be conducted on a gram scale to produce the corresponding 1,1,2-triborylalkenes in modest yields. The utility of these products is demonstrated by further transformation of the C-B bonds to prepare gem-dihaloborylalkenes (F, Cl, Br), monohalodiborylalkenes (Cl, Br), and trans-diaryldiborylalkenes, which serve as important synthons and have previously been challenging to prepare. A convenient and efficient one step synthesis of 1,1,1-triborylalkanes was achieved via sequential dehydrogenative borylation and double hydroboration of terminal alkynes with HBpin (HBpin = pinacolborane) catalyzed by inexpensive and readily available Cu(OAc)2. This protocol proceeded under mild conditions, furnishing 1,1,1-tris(boronates) with wide substrate scope, excellent selectivity and good functional group tolerance, and is applicable to gram-scale synthesis without loss of yield. The 1,1,1-triborylalkanes can be used in the preparation of α-vinylboronates and borylated cyclic compounds, which are valuable but previously rare compounds. Different alkyl groups can be introduced stepwise via base-mediated deborylative alkylation to produce racemic tertiary alkyl boronates, which can be readily transformed into useful tertiary alcohols. Chapter 4 reported a NaOtBu-catalyzed mixed 1,1-diboration of terminal alkynes with an unsymmetrical diboron reagent BpinBdan. This Br{\o}nsted base-catalyzed reaction proceeds in a regio- and stereoselective fashion affording 1,1-diborylalkenes with two different boryl moieties in moderate to high yields, and is applicable to gram-scale synthesis without loss of yield or selectivity. Hydrogen bonding between the Bdan group and tBuOH is proposed to be responsible for the observed stereoselectivity. The mixed 1,1-diborylalkenes can be utilized in stereoselective Suzuki-Miyaura cross-coupling reactions.}, subject = {Borylierung}, language = {en} } @phdthesis{Ming2021, author = {Ming, Wenbo}, title = {Synthesis of α‑Aminoboronates and PBP Pincer Palladium Boryl Complexes}, doi = {10.25972/OPUS-19832}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-198323}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The first Borono-Strecker reaction has been developed to synthesize α-aminoboronates via a multicomponent reaction of readily available carbonyl compounds (aldehydes and ketones), amines and B2pin2. The preparation of α-amino cyclic boronates can be achieved via multicomponent coupling of salicylaldehydes, amines, and B2(OH)4. In addition, the diazaborole-based PBP pincer palladium chloride and the diazaborole-based PBP pincer palladium trifluoromethanesulfonate complexes were synthesized and fully characterized for the first time, and used as catalysts for Suzuki-Miyaura cross-coupling reactions.}, language = {en} } @phdthesis{Huang2022, author = {Huang, Mingming}, title = {C-S Bond Borylation and Diborylation of Alkyl Halides, Tosylates, and Alcohols}, doi = {10.25972/OPUS-25718}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257186}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Alkylboronates play an important role in synthetic chemistry, materials science and drug discovery. They are easy to handle due to their good air and moisture stability, and can be readily employed to form carbon-carbon and carbon-heteroatom bonds and can be converted to various functional groups under mild reaction conditions. Compared with conventional groups, such as aryl (pseudo)halides or alcohols, organosulfur compounds represent an alternative and complimentary substitute in coupling reactions. The construction of C-B bond from C-SO bond of aryl sulfoxide is presented in Chapter 2. The selective cleavage of either alkyl(C)-sulfonyl or aryl(C)-sulfonyl bonds of an aryl alkyl sulfone via Cu-free or Cu-mediated processes generates the corresponding boronate esters, which are presented in Chapter 3 and Chapter 4. 1,2-Bis(boronate esters) are emerging as important synthetic intermediates for preparing 1,2-difunctional compounds. In addition, the boryl moieties in different environments in a 1,2-bis(boronate ester) can be differentiated and converted selectively, allowing the synthesis of a wide variety of complex molecules. A direct and selective diboration of C-X and C-O bonds for the preparation of 1,2-bis(boronate esters) is presented in Chapter 5.}, language = {en} } @phdthesis{Wu2022, author = {Wu, Zhu}, title = {Room Temperature Phosphorescence (RTP): Experimental And Theoretical Studies on Boron-Containing Materials}, doi = {10.25972/OPUS-26084}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260844}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Persistent room temperature phosphorescent (RTP) luminophores have gained remarkable interest recently for a number of applications in security printing, OLEDs, optical storage, time-gated biological imaging and oxygen sensors. We report the first persistent RTP with lifetimes up to 0.5 s from simple triarylboranes which have no lone pairs. We also have prepared 3 isomeric (o, m, p-bromophenyl)-bis(2,6-dimethylphenyl)boranes. Among the 3 isomers (o-, m- and p-BrTAB) synthesized, the ortho-one is the only one which shows dual phosphorescence, with a short lifetime of 0.8 ms and a long lifetime of 234 ms in the crystalline state at room temperature. At last, we checked the RTP properties from the boric acid. We found that the pure boric acid does not show RTP in the solid state.}, language = {en} } @phdthesis{Budiman2020, author = {Budiman, Yudha Prawira}, title = {Applications of Fluorinated Aryl Boronates in Organic Synthesis}, doi = {10.25972/OPUS-21757}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-217579}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Fluorinated compounds are an important motif, particularly in pharmaceuticals, as one-third of the top performing drugs have fluorine in their structures. Fluorinated biaryls also have numerous applications in areas such as material science, agriculture, crystal engineering, supramolecular chemistry, etc. Thus, the development of new synthetic routes to fluorinated chemical compounds is an important area of current research. One promising method is the borylation of suitable precursors to generate fluorinated aryl boronates as versatile building blocks for organic synthesis. Chapter 1 In this chapter, the latest developments in the synthesis, stability issues, and applications of fluorinated aryl boronates in organic synthesis are reviewed. The catalytic synthesis of fluorinated aryl boronates using different methods, such as C-H, C-F, and C-X (X = Cl, Br, I, OTf) borylations are discussed. Further studies covering instability issues of the fluorinated boronate derivatives, which are accelerated by ortho-fluorine, have been reported, and the applications of these substrates, therefore, need special treatment. Numerous groups have reported methods to employ highly fluorinated aryl boronates that anticipate the protodeboronation issue; thus, polyfluorinated aryl boronates, especially those containing ortho-fluorine substituents, can be converted into chloride, bromide, iodide, phenol, carboxylic acid, nitro, cyano, methyl esters, and aldehyde analogues. These substrates can be applied in many cross-coupling reactions, such as the Suzuki-Miyaura reaction with aryl halides, the Chan-Evans-Lam C-N reaction with aryl amines or nitrosoarenes, C-C(O) reactions with N-(aryl-carbonyloxy)phthalamides or thiol esters (Liebskind-Srogl cross-coupling), and oxidative coupling reactions with terminal alkynes. Furthermore, the difficult reductive elimination from the highly stable complex [PdL2(2,6-C6F2+nH3-n)2] was the next challenge to be targeted in the homocoupling of 2,6-di-fluoro aryl pinacol boronates, and it has been solved by conducting the reaction in arene solvents that reduce the energy barrier in this step as long as no coordinating solvent or ancillary ligand is employed. Chapter 2 In this chapter, phenanthroline-ligated copper complexes proved to be efficient catalysts for the Suzuki-Miyaura cross-coupling of highly fluorinated aryl boronate esters (ArF-Bpin) with aryl iodides or bromides. This newly developed method is an attractive alternative to the traditional methods as copper is an Earth-abundant metal, less toxic, and cheaper compared to the traditional methods which commonly required palladium catalysts, and silver oxide that is also often required in stoichiometric amounts. A combination of 10 mol\% copper iodide and 10 mol\% phenanthroline, with CsF as a base, in DMF, at 130 ˚C, for 18 hours is efficient to cross-couple fluorinated aryl pinacol boronates with aryl iodides to generate cross-coupled products in good to excellent yields. This method is also viable for polyfluorophenyl borate salts such as pentafluorophenyl-BF3K. Notably, employing aryl bromides instead of aryl iodides for the coupling with fluorinated aryl-Bpin compounds is also possible; however, increased amounts of CuI/phenanthroline catalyst is necessary, in a mixture of DMF and toluene (1:1). A diverse range of π···π stacking interactions is observed in the cross-coupling products partly perfluorinated biaryl crystals. They range from arene-perfluoroarene interactions (2-(perfluorophenyl)naphthalene and 2,3,4-trifluorobiphenyl) to arene-arene (9-perfluorophenyl)anthracene) and perfluoroarene-perfluoroarene (2,3,4,5,6-pentafluoro-2'methylbiphenyl) interactions. Chapter 3 In this chapter, the efficient Pd-catalyzed homocoupling reaction of aryl pinacol pinacol boronates (ArF-Bpin) that contain two ortho-fluorines is presented. The reaction must be conducted in a "noncoordinating" solvent such as toluene, benzene, or m-xylene and, notably, stronger coordinating solvents or ancillary ligands have to be avoided. Thus, the Pd center becomes more electron deficient and the reductive elimination becomes more favorable. The Pd-catalyzed homocoupling reaction of di-ortho-fluorinated aryl boronate derivatives is difficult in strongly coordinating solvents or in the presence of strong ancillary ligands, as the reaction stops at the [PdL2(2,6-C6F2+nH3-n)2] stage after the transmetalations without the reductive elimination taking place. It is known that the rate of reductive elimination of Ar-Ar from [ML2(Ar)(Ar)] complexes containing group-10 metals decreases in the order Arrich-Arpoor > Arrich-Arrich > Arpoor-Arpoor. Furthermore, reductive elimination of the most electron-poor diaryls, such as C6F5-C6F5, from [PdL2(C6F5)2] complexes is difficult and has been a challenge for 50 years, due to their high stability as the Pd-Caryl bond is strong. Thus, the Pd-catalyzed homocoupling of perfluoro phenyl boronates is found to be rather difficult.   Further investigation showed that stoichiometric reactions of C6F5Bpin, 2,4,6-trifluorophenyl-Bpin, or 2,6-difluorophenyl-Bpin with palladium acetate in MeCN stops at the double transmetalation step, as demonstrated by the isolation of cis-[Pd(MeCN)2(C6F5)2], cis-[Pd(MeCN)2(2,4,6-C6F3H2)2], and cis-[Pd(MeCN)2(2,6-C6F2H3)2] in quantitative yields. Thus, it can be concluded that the reductive elimination from diaryl-palladium complexes containing two ortho-fluorines in both aryl rings, is difficult even in a weakly coordinating solvent such as MeCN. Therefore, even less coordinating solvents are needed to make the Pd center more electron deficient. Reactions using "noncoordinating" arene solvents such as toluene, benzene, or m-xylene were conducted and found to be effective for the catalytic homocoupling of 2,6-C6F2+nH3-nBpin. The scope of the reactions was expanded. Using toluene as the solvent, the palladium-catalyzed homocoupling of ArF-Bpin derivatives containing one, two or no ortho-fluorines gave the coupled products in excellent yields without any difficulties. DFT calculations at the B3LYP-D3/def2-TZVP/6-311+g(2d,p)/IEFPCM // B3LYP-D3/SDD/6-31g**/IEFPCM level of theory predicted an exergonic process and lower barrier (< 21 kcal/mol) for the reductive elimination of Pd(C6F5)2 complexes bearing arene ligands, compared to stronger coordinating solvents (acetonitrile, THF, SMe2, and PMe3), which have high barriers ( > 33.7 kcal/mol). Reductive elimination from [Pd(ηn-Ar)(C6F5)2] complexes have low barriers due to: (i) ring slippage of the arene ligand as a hapticity change from η6 in the reactant to ηn (n ≤ 3) in the transition state and the product, which led to less σ-repulsion; and (ii) more favorable π-back-bonding from Pd(ArF)2 to the arene fragment in the transition state. Chapter 4 In this chapter, the efficient Pd-catalyzed C-Cl borylation of aryl chlorides containing two ortho-fluorines is presented. The reactions are conducted under base-free conditions to prevent the decomposition of the di-ortho-fluorinated aryl boronates, which are unstable in the presence of base. A combination of Pd(dba)2 (dba = dibenzylideneacetone) with SPhos (2-dicyclohexylphosphino-2′,6′-dimethoxybiphenyl) as a ligand is efficient to catalyze the C-Cl borylation of aryl chlorides containing two ortho-fluorine substituents without base, and the products were isolated in excellent yields. The substrate scope can be expanded to aryl chloride containing one or no ortho-fluorines and the borylated products were isolated in good to very good yield. This method provides a nice alternative to traditional methodologies using lithium or Grignard reagents.}, subject = {Homogene Katalyse}, language = {en} } @phdthesis{Ricker2023, author = {Ricker, Robert}, title = {Synthesis, group 10 metal-catalyzed cyclization reactions and hydroboration of polyynes}, doi = {10.25972/OPUS-28680}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286801}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Bisdiynes undergo Pd(0)-catalyzed cyclization, forming azulene and naphthalene products. When dibenzylideneacetone is present in the reaction, it undergoes a [2+2+2] cyclization with the bisdiyne, forming cyclohexadiene derivatives. Ni(0) catalyzes the [2+2+2] cycloaddition of diynes with tolanes towards alkynylated o-terphenyl derivatives. The D-A substituted products are solvatochromic, fluorescent dyes with high quantum yields and short lifetimes. Bis-triarylborane tetrayne dyes were synthesized in both neutral and tetracationic forms, as potential DNA/RNA sensor. Both molecules are weakly fluorescent in solution and exhibit characteristic alkyne absorptions in the Raman spectra. Tributyl phosphine catalyzes the trans-hydroboration of 1,3-butadiynes with HBpin. We confirmed experimentally via NMR and HRMS experiments, that phosphine attack on the diyne is a key step in the catalytic cycle.}, subject = {Polyine}, language = {en} }