@phdthesis{Bernuth2020, author = {Bernuth, Silvia}, title = {Bioaktiv funktionalisierbare Hyalurons{\"a}ure-Polyglycidol-Hydrogele unter Verwendung von ASCs aus dem Fettgewebe zur Rekonstruktion von Weichgewebsdefekten}, doi = {10.25972/OPUS-21424}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214248}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {In der Plastischen Chirurgie erfordert die Rekonstruktion von {\"a}sthetisch anspruchsvollen Bereichen in vielen F{\"a}llen die Wiederherstellung von subkutanem Fettgewebe. Neben chirurgischen Rekonstruktionen k{\"o}nnte das Tissue Engineering von Fettgewebe einen wertvollen Beitrag leisten. Jedoch bringt es vielschichtige Herausforderungen mit sich und ist zum aktuellen Zeitpunkt nur limitiert m{\"o}glich. Ein Ansatz ist die Schaffung einer Tr{\"a}germatrix zur Besiedelung und Differenzierung von Stammzellen. Auf dieser Basis sollten in der vorliegenden Arbeit zwei Teilbereiche untersucht werden. In dem ersten Teilbereich erfolgten Untersuchungen verschiedener Gewinnungsmethoden von ASCs aus dem subkutanen Fettgewebe bezogen auf ihr Effizienz. Die untersuchten Liposuktionstechniken zeigten eine deutlich h{\"o}here Effizienz gegen{\"u}ber der mechanischen Gewinnungsmethode bezogen auf die gewonnene Zellzahl. In den Viabilit{\"a}tsuntersuchungen zeigte sich eine {\"a}hnliche Tendenz. ASCs aller drei Gewinnungsmethoden proliferierten durchaus gleich gut, jedoch zeigten die histologischen und quantitativen Adipogeneseuntersuchungen tendenziell mehr Lipidbildung bei den Liposuktionstechniken. Das {\"u}bergeordnete Ziel des zweiten Abschnittes dieser Arbeit war es eine Tr{\"a}germatrix auf Hyalurons{\"a}ure-Basis mit dem vielseitig modifizierbarem Crosslinker Polyglycidol zu untersuchen, sie mit mesenchymalen Stammzellen aus dem Fettgewebe zu besiedeln und diese adipogen zu differenzieren. Des Weiteren erfolgten erste Versuche die Hydrogele mit funktionellen Gruppen zu modifizieren um eine Verbesserung der Adh{\"a}sion der Zellen im Hydrogel zu erreichen. Die unmodifizierten Hydrogele waren zu jeder Zeit stabil in ihrer Form und zeigten nach Besiedelung mit ASCs eine gleichm{\"a}ßige Verteilung der Zellen im Gel. Auch ließ sich die Adipogenese histologisch visualisieren und biochemisch best{\"a}tigen. Die inkorporierten Peptide brachten eine peptidabh{\"a}ngige und konzentrationsabh{\"a}ngige Ver{\"a}nderung der Zellverteilung im Hydrogel. Eine Steigerung der Funktionalit{\"a}t der Zellen bezogen auf das {\"U}berleben und die Adipogenese konnte in diesen ersten Versuchen noch nicht gezeigt werden. Generell zeigt sich eine Eignung der hyalurons{\"a}urebasierten mit Polyglycidol-verlinkten Hydrogele f{\"u}r das Tissue Engineering von Fettgewebe. Weitere Untersuchungen bez{\"u}glich der Modifikation der Hydrogele mit adh{\"a}siven und adipogenen funktionellen Gruppen bietet sich daher an und k{\"o}nnte ein fettgewebs{\"a}hnliches Umgebungsmilieu hervorbringen.}, subject = {Hyalurons{\"a}ure}, language = {de} } @phdthesis{Wiesner2020, author = {Wiesner, Miriam}, title = {Stem Cell-based Adipose Tissue Engineering - Engineering of Prevascularized Adipose Tissue Constructs In Vitro \& Investigation on Gap Junctional Intercellular Communication in Adipose-derived Stem Cells}, doi = {10.25972/OPUS-18500}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-185005}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {In reconstructive and plastic surgery, there exists a growing demand of adequate tissue implants, since currently available strategies for autologous transplantation are limited by complications including transplant failure and donor site morbidity. By developing in vitro and in vivo autologous substitutes for defective tissue sites, adipose tissue engineering can address these challenges, although there are several obstacles to overcome. One of the major limitations is the sufficient vascularization of in vitro engineered large constructs that remains crucial and demanding for functional tissues. Decellularized jejunal segments may represent a suitable scaffolding system with preexisting capillary structures that can be repopulated with human microvascular endothelial cells (hMVECs), and a luminal matrix applicable for the adipogenic differentiation of human adipose-derived stem cells (hASCs). Hence, co-culture of these cells in jejunal segments, utilizing a custom-made bioreactor system, was characterized in terms of vascularization and adipose tissue development. Substantial adipogenesis of hASCs was demonstrated within the jejunal lumen in contrast to non-induced controls, and the increase of key adipogenic markers was verified over time upon induction. The development of major extracellular matrix components of mature adipose tissue, such as laminin and collagen IV, was shown within the scaffold in induced samples. Successful reseeding of the vascular network with hMVECs was demonstrated in long-term culture and co-localization of vascular structures and adipogenically differentiated hASCs was observed. Therefore, these results represent a novel approach for in vitro engineering of vascularized adipose tissue constructs that warrants further investigations in preclinical studies. Another still existing obstacle in adipose tissue engineering is the insufficient knowledge about the applied cells, for instance the understanding of how cells can be optimally expanded and differentiated for successful engineering of tissue transplants. Even though hASCs can be easily isolated from liposuction of abdominal fat depots, yielding low donor site morbidity, huge numbers of cells are required to entirely seed complex and large 3D matrices or scaffolds. Thus, cells need to be large-scale expanded in vitro on the premise of not losing their differentiation capacity caused by replicative aging. Accordingly, an improved differentiation of hASCs in adipose tissue engineering approaches remains still desirable since most engineered constructs exhibit an inhomogeneous differentiation pattern. For mesenchymal stem cells (MSCs), it has been shown that growth factor application can lead to a significant improvement of both proliferation and differentiation capacity. Especially basic fibroblast growth factor (bFGF) represents a potent mitogen for MSCs, while maintaining or even promoting their osteogenic, chondrogenic and adipogenic differentiation potential. As there are currently different contradictory information present in literature about the applied bFGF concentration and the explicit effect of bFGF on ASC differentiation, here, the effect of bFGF on hASC proliferation and differentiation capacity was investigated at different concentrations and time points in 2D culture. Preculture of hASCs with bFGF prior to adipogenic induction showed a remarkable effect, whereas administration of bFGF during culture did not improve adipogenic differentiation capacity. Furthermore, the observations indicated as mode of action an impact of this preculture on cell proliferation capacity, resulting in increased cellular density at the time of adipogenic induction. The difference in cell density at this time point appeared to be pivotal for increased adipogenic capacity of the cells, which was confirmed in a further experiment employing different seeding densities. Interestingly, furthermore, the obtained results suggested a cell-cell contact-mediated mechanism positively influencing adipogenic differentiation. As a consequence, subsequently, studies were conducted focusing on intercellular communication of these cells, which has hardly been investigated to date. Despite the multitude of literature on the differentiation capacity of ASCs, little is reported about the physiological properties contributing to and controlling the process of lineage differentiation. Direct intercellular communication between adjacent cells via gap junctions has been shown to modulate differentiation processes in other cell types, with connexin 43 (Cx43) being the most abundant isoform of the gap junction-forming connexins. Thus, in the present study we focused on the expression of Cx43 and gap junctional intercellular communication (GJIC) in hASCs, and its significance for adipogenic differentiation of these cells. Cx43 expression in hASCs was demonstrated histologically and on the gene and protein expression level and was shown to be greatly positively influenced by cell seeding density. Functionality of gap junctions was proven by dye transfer analysis in growth medium. Adipogenic differentiation of hASCs was shown to be also distinctly elevated at higher cell seeding densities. Inhibition of GJIC by 18α-glycyrrhetinic acid significantly compromised adipogenic differentiation, as demonstrated by histology, triglyceride quantification, and adipogenic marker gene expression. Flow cytometry analysis showed a lower proportion of cells undergoing adipogenesis when GJIC was inhibited, further indicating the importance of GJIC in the differentiation process. Altogether, these results demonstrate the impact of direct cell-cell communication via gap junctions on the adipogenic differentiation process of hASCs and may contribute to further integrate direct intercellular crosstalk in rationales for tissue engineering approaches.}, subject = {Tissue Engineering}, language = {en} } @phdthesis{Wittmann2014, author = {Wittmann, Katharina}, title = {Adipose Tissue Engineering - Development of Volume-Stable 3-Dimensional Constructs and Approaches Towards Effective Vascularization}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-107196}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Adipose tissue defects and related pathologies still represent major challenges in reconstructive surgery. Based on to the paradigm 'replace with alike', adipose tissue is considered the ideal substitute material for damaged soft tissue [1-3]. Yet the transfer of autologous fat, particularly larger volumes, is confined by deficient and unpredictable long term results, as well as considerable operative morbidity at the donor and recipient site [4-6], calling for innovative treatment options to improve patient care. With the aim to achieve complete regeneration of soft tissue defects, adipose tissue engineering holds great promise to provide functional, biologically active adipose tissue equivalents. Here, especially long-term maintenance of volume and shape, as well as sufficient vascularization of engineered adipose tissue represent critical and unresolved challenges [7-9]. For adipose tissue engineering approaches to be successful, it is thus essential to generate constructs that retain their initial volume in vivo, as well as to ensure their rapid vascularization to support cell survival and differentiation for full tissue regeneration [9,10]. Therefore, it was the ultimate goal of this thesis to develop volume-stable 3D adipose tissue constructs and to identify applicable strategies for sufficient vascularization of engineered constructs. The feasibility of the investigated approaches was verified by translation from in vitro to in vivo as a critical step for the advancement of potential regenerative therapies. For the development of volume-stable constructs, the combination of two biomaterials with complementary properties was successfully implemented. In contrast to previous approaches in the field using mainly non-degradable solid structures for mechanical protection of developing adipose tissue [11-13], the combination of a cell-instructive hydrogel component with a biodegradable porous support structure of adequate texture was shown advantageous for the generation of volume-stable adipose tissue. Specifically, stable fibrin hydrogels previously developed in our group [14] served as cell carrier and supported the adipogenic development of adipose-derived stem cells (ASCs) as reflected by lipid accumulation and leptin secretion. Stable fibrin gels were thereby shown to be equally supportive of adipogenesis compared to commercial TissuCol hydrogels in vitro. Using ASCs as a safe source of autologous cells [15,16] added substantial practicability to the approach. To enhance the mechanical strength of the engineered constructs, porous biodegradable poly(ε caprolactone)-based polyurethane (PU) scaffolds were introduced as support structures and shown to exhibit adequately sized pores to host adipocytes as well as interconnectivity to allow coherent tissue formation and vascularization. Low wettability and impaired cell attachment indicated that PU scaffolds alone were insufficient in retaining cells within the pores, yet cytocompatibility and differentiation of ASCs were adequately demonstrated, rendering the PU scaffolds suitable as support structures for the generation of stable fibrin/PU composite constructs (Chapter 3). Volume-stable adipose tissue constructs were generated by seeding the pre-established stable fibrin/PU composites with ASCs. Investigation of size and weight in vitro revealed that composite constructs featured enhanced stability relative to stable fibrin gels alone. Comparing stable fibrin gels and TissuCol as hydrogel components, it was found that TissuCol gels were less resilient to degradation and contraction. Composite constructs were fully characterized, showing good cell viability of ASCs and strong adipogenic development as indicated by functional analysis via histological Oil Red O staining of lipid vacuoles, qRT-PCR analysis of prominent adipogenic markers (PPARγ, C/EBPα, GLUT4, aP2) and quantification of leptin secretion. In a pilot study in vivo, investigating the suitability of the constructs for transplantation, stable fibrin/PU composites provided with a vascular pedicle gave rise to areas of well-vascularized adipose tissue, contrasted by insufficient capillary formation and adipogenesis in constructs implanted without pedicle. The biomaterial combination of stable fibrin gels and porous biodegradable PU scaffolds was thereby shown highly suitable for the generation of volume-stable adipose tissue constructs in vivo, and in addition, the effectiveness of immediate vascularization upon implantation to support adipose tissue formation was demonstrated (Chapter 4). Further pursuing the objective to investigate adequate vascularization strategies for engineered adipose tissue, hypoxic preconditioning was conducted as a possible approach for in vitro prevascularization. In 2D culture experiments, analysis on the cellular level illustrated that the adipogenic potential of ASCs was reduced under hypoxic conditions when applied in the differentiation phase, irrespective of the oxygen tension encountered by the cells during expansion. Hypoxic treatment of ASCs in 3D constructs prepared from stable fibrin gels similarly resulted in reduced adipogenesis, whereas endothelial CD31 expression as well as enhanced leptin and vascular endothelial growth factor (VEGF) secretion indicated that hypoxic treatment indeed resulted in a pro-angiogenic response of ASCs. Especially the observed profound regulation of leptin production by hypoxia and the dual role of leptin as adipokine and angiogenic modulator were considered an interesting connection advocating further study. Having confirmed the hypothesis that hypoxia may generate a pro-angiogenic milieu inside ASC-seeded constructs, faster vessel ingrowth and improved vascularization as well as an enhanced tolerance of hypoxia-treated ASCs towards ischemic conditions upon implanatation may be expected, but remain to be verified in rodent models in vivo (Chapter 5). Having previously been utilized for bone and cartilage engineering [17-19], as well as for revascularization and wound healing applications [20-22], stromal-vascular fraction (SVF) cells were investigated as a novel cell source for adipose tissue engineering. Providing cells with adipogenic differentiation as well as vascularization potential, the SVF was applied with the specific aim to promote adipogenesis and vascularization in engineered constructs in vivo. With only basic in vitro investigations by Lin et al. addressing the SVF for adipose repair to date [23], the present work thoroughly investigated SVF cells for adipose tissue construct generation in vitro, and in particular, pioneered the application of these cells for adipose tissue engineering in vivo. Initial in vitro experiments compared SVF- and ASC-seeded stable fibrin constructs in different medium compositions employing preadipocyte (PGM-2) and endothelial cell culture medium (EGM-2). It was found that a 1:1 mixture of PGM-2 and EGM-2, as previously established for co-culture models of adipogenesis [24], efficiently maintained cells with adipogenic and endothelial potential in SVF-seeded constructs in short and long-term culture setups. Observations on the cellular level were supported by analysis of mRNA expression of characteristic adipogenic and endothelial markers. In preparation of the evaluation of SVF-seeded constructs under in vivo conditions, a whole mount staining (WMS) method, facilitating the 3D visualization of adipocytes and blood vessels, was successfully established and optimized using native adipose tissue as template (Chapter 6). In a subcutaneous nude mouse model, SVF cells were, for the first time in vivo, elucidated for their potential to support the functional assembly of vascularized adipose tissue. Investigating the effect of adipogenic precultivation of SVF-seeded stable fibrin constructs in vitro prior to implantation on the in vivo outcome, hormonal induction was shown beneficial in terms of adipocyte development, whereas a strong vascularization potential was observed when no adipogenic inducers were added. Via histological analysis, it was proven that the developed structures were of human origin and derived from the implanted cells. Applying SVF cells without precultivation in vitro but comparing two different fibrin carriers, namely stable fibrin and TissuCol gels, revealed that TissuCol profoundly supported adipose formation by SVF cells in vivo. This was contrasted by only minor SVF cell development and a strong reduction of cell numbers in stable fibrin gels implanted without precultivation. Histomorphometric analysis of adipocytes and capillary structures was conducted to verify the qualitative results, concluding that particularly SVF cells in TissuCol were highly suited for adipose regeneration in vivo. Employing the established WMS technique, the close interaction of mature adipocytes and blood vessels in TissuCol constructs was impressively shown and via species-specific human vimentin staining, the expected strong involvement of implanted SVF cells in the formation of coherent adipose tissue was confirmed (Chapter 7). With the development of biodegradable volume-stable adipose tissue constructs, the application of ASCs and SVF cells as two promising cell sources for functional adipose regeneration, as well as the thorough evaluation of strategies for construct vascularization in vitro and in vivo, this thesis provides valuable solutions to current challenges in adipose tissue engineering. The presented findings further open up new perspectives for innovative treatments to cure soft tissue defects and serve as a basis for directed approaches towards the generation of clinically applicable soft tissue substitutes.}, subject = {Tissue Engineering}, language = {en} } @phdthesis{Nestmeyer2016, author = {Nestmeyer, Markus}, title = {Kokultur von mesenchymalen Stammzellen aus humanem Fettgewebe und mikrovaskul{\"a}ren Endothelzellen - Ausgew{\"a}hlte Aspekte in einem 3D Sph{\"a}roid-Modell}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123949}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Weißes Fettgewebe (WAT) stellt heute aus vielerlei Hinsicht ein interessantes Forschungsgebiet dar. Zum einen ist die Pr{\"a}valenz der Adipositas weiterhin sehr hoch; mit ihr einher gehen Gesundheitsprobleme wie Bluthochdruck, Diabetes, Dyslipid{\"a}mie und Atherosklerose, sowie deshalb das Bestreben, bessere Behandlungsm{\"o}glichkeiten zu entwickeln. Zum anderen hofft man im Bereich des Tissue Engineering, zuk{\"u}nftig mit in vitro hergestelltem weißem Fettgewebe Weichteildefekte decken zu k{\"o}nnen. Aus therapeutischer Sicht ist die weitere Erforschung von weißem Fettgewebe deshalb von großer Wichtigkeit. In vivo ist weißes Fettgewebe stark vaskularisiert. Die starken physiologischen Schwankungen von Fettgewebe erfordern deshalb ein besonders dynamisches Gef{\"a}ßwachstum. F{\"u}r ein genaueres Verst{\"a}ndnis der Physiologie von WAT ist es unerl{\"a}sslich das Zusammenspiel von Gef{\"a}ß- und Fettzellen zu verstehen. 2-dimensionale Kultursysteme sind in ihrer Aussagekraft {\"u}ber die Bedingungen in vivo jedoch sehr limitiert. Deshalb kommt in der Erforschung von WAT zunehmend die 3-dimensionale Kultivierung zur Anwendung, welche bez{\"u}glich des Gewebekontextes einem lebenden Organismus n{\"a}her kommt und damit eine gr{\"o}ßere Aussagekraft haben kann. Ein Ziel dieser Arbeit war, die Voraussetzungen f{\"u}r die Untersuchung der einzelnen Zellfraktionen von Kokulturen aus mesenchymalen Stammzellen aus humanem Fettgewebe (ASC) und mikrovaskul{\"a}ren Endothelzellen (MVEC) zu schaffen. Hierf{\"u}r wurde erfolgreich ein Protokoll zur Trennung solcher Zellsuspensionen mittels Magnetic Activated Cell Sorting (MACS) etabliert. W{\"a}hrend in vorangegangenen Arbeiten nur eine der beiden Zellfraktionen analysiert werden konnte, erm{\"o}glichte es dieses Protokoll nun beide Zellfraktionen einer Kokultur verunreinigungsfrei zu isolieren und zu analysieren. Dies er{\"o}ffnet neue M{\"o}glichkeiten in der Erforschung des Zusammenspiels dieser beiden Zelltypen. Um diese zu demonstrieren wurde in dieser Arbeit die Expression von vier Genen in ASC und MVEC aus gemeinsamer Kokultivierung in einem 3-dimensionalen Sph{\"a}roid-Modell analysiert. Hierbei konnte festgestellt werden, dass die Expression der Gene Angiopoietin-2, Interleukin-1B, Interleukin-6 und Leukemia Inhibitory Factor in MVEC bei 3-dimensionaler Kokultivierung mit ASC nach zwei Tagen Kultur stark anstieg, w{\"a}hrend sich in der Fraktion der ASC kaum Ver{\"a}nderungen zeigten. Dies wiederum spricht f{\"u}r eine angiogene Aktivit{\"a}t der MVEC. Ohne ein Protokoll zur Trennung solcher ASC-MVEC-Kokulturen mittels MACS, welche die weitere Analyse beider Zelltypen erlaubt, w{\"a}re diese Untersuchung so nicht m{\"o}glich gewesen Ziel dieser Arbeit war auch, der Hypothese {\"u}ber eine Beteiligung des Wnt-Signalwegs an der Steuerung der Adipogenese durch Endothelzellen in ASC-MVEC-Kokultur-Sph{\"a}roiden nachzugehen. Zuvor konnte beobachtet werden, dass in diesen die Triglyceridsynthese lokal reduziert war, w{\"a}hrend sie in ASC-Monokultur-Sph{\"a}roiden homogen verteilt und nicht inhibiert war. Hierf{\"u}r wurden Schnitte von adipogen induzierten ASC-MVEC-Kokultur-Sph{\"a}roiden und ASC-Monokultur-Sph{\"a}roiden immunhistochemisch auf aktives beta-Catenin gef{\"a}rbt, wodurch der aktive Wnt-Signalweg innerhalb des Sph{\"a}roids dargestellt werden konnte. Tats{\"a}chlich konnte innerhalb der Kokultur-Sph{\"a}roide f{\"u}r die H{\"a}lfte der untersuchten Schnitte eine regionale Erh{\"o}hung von aktivem beta-Catenin festgestellt werden, welche auf der Seite der ASC-Monokultur-Sph{\"a}roide nicht nachweisbar war. In Betrachtung der Ergebnisse dieser Arbeit -- auch im Kontext weiterer Forschungsergebnisse -- erscheint eine Beteiligung des Wnt-Signalwegs an der Steuerung der Adipogenese in ASC-MVEC-Kokultur-Sph{\"a}roiden sehr wahrscheinlich. In dieser Arbeit konnte ein Beitrag zum Verst{\"a}ndnis des Zusammenspiels von ASC und MVEC in 3-dimensionaler Kokultivierung sowie dessen weiterer Untersuchung geleistet werden. Die gewonnenen Erkenntnisse unterstreichen die Anwendbarkeit und Wichtigkeit von 3-dimensionalen Kulturumgebungen in der Erforschung von weißem Fettgewebe, sowohl f{\"u}r die Adipositasforschung als auch f{\"u}r Adipose Tissue Engineering.}, subject = {Fettgewebe}, language = {de} } @phdthesis{Stebani2020, author = {Stebani, Tanja Veronika}, title = {Tissue Engineering von Fettgewebe: Immunohistochemische und histologische Analyse der Entwicklung der Extrazellul{\"a}rmatrix und der Adipogenese in 3D Gewebekonstrukten in vivo}, doi = {10.25972/OPUS-21537}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-215375}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Die Erzeugung von klinisch in der plastischen und rekonstruktiven Chirurgie nutzbarem Fettgewebe stellt einen sehr wichtigen Aspekt in aktuellen Arbeiten des Tissue Engineerings, also der Erzeugung von spezifischem Gewebe aus Spenderzellen dar. Sollte es gelingen, aus patienteneigenen Zellen wieder neues Gewebe zu z{\"u}chten, so w{\"u}rden daraus eine F{\"u}lle neuer Behandlungsm{\"o}glichkeiten f{\"u}r Gewebedefekte resultieren. In einer Vorg{\"a}ngerarbeit zu der vorliegenden Arbeit konnte gezeigt werden, dass die Adipogenese in vivo von Fettgewebe aus Vorl{\"a}uferzellen, den Pr{\"a}adipozyten, durch geeignete Methoden der Vorkultivierung in vitro beeinflusst werden kann. Die Unterschiede in der Vorbehandlung lagen in einer Induktion der Differenzierung der Pr{\"a}adipozyten bei gleichzeitigem Stopp der Proliferation und einer anschließenden verschieden langen Ausdifferenzierungsphase der Zellen in vitro im Brutschrank. Die resultierenden Konstrukte wurden in jeweils drei M{\"a}use in vier Gruppen implantiert und nach 1, 5, 12 und 24 Wochen entnommen und untersucht. W{\"a}hrend die Pr{\"a}adipozyten von Gruppe 1 keine Induktion erfuhren, erfolgte diese bei den anderen drei Gruppen. Die Konstrukte der Gruppe 2 wurden dann bereits nach 2 Tagen der Induktion der Pr{\"a}adipozyten implantiert, die Konstrukte der Gruppe 3 blieben zur Differenzierung noch 7 Tage, die der Gruppe 4 noch 33 Tage im Brutschrank, bevor sie in die Versuchstiere eingebracht wurden. Ziel der vorliegenden Arbeit war es zun{\"a}chst, an den Gewebekonstrukten der Vorg{\"a}ngerarbeit eine histomorphometrische Analyse der resultierenden Adipozyten in vivo {\"u}ber die Zeit durchzuf{\"u}hren, um eine detaillierte Beurteilung des Verlaufs der Fettgewebeentwicklung anhand resultierender Zellzahlen darzustellen. Hierf{\"u}r wurden die Gewebed{\"u}nnschnitte der M{\"a}use nach einer HE-Anf{\"a}rbung mikroskopisch untersucht und die Zellzahlen resultierend jeweils aus unreifen und reifen Adipozyten histomorphometrisch quantifiziert. Die Unterscheidung erfolgte mittels einer Gr{\"o}ßenzuordnung, wobei Zellen kleiner 20 µm Durchmesser den unreifen und Zellen gr{\"o}ßer 20 µm Durchmesser den reifen Adipozyten zugeordnet wurden. Aus der quantitativen Analyse mittels Histomorphometrie ergab sich, dass in allen Konstrukten die Zahlen an Zellen der den unreifen Adipozyten zugeordneten Gr{\"o}ßenordnung von kleiner als 20µm tendenziell w{\"a}hrend der gesamten Zeit in vivo klein bleibt. Die Zellzahlen resultierend aus großen Zellen mit einem Durchmesser mehr als 20µm, die den reifen Adipozyten zugeordnet wurden, steigen dagegen in allen Proben leicht an, wobei die Konstrukte der Gruppe 4 den absolut h{\"o}chsten Wert aufwiesen. In der HE-Anf{\"a}rbung ist demgem{\"a}ß in Gruppe 4 eine Vielzahl reifer Adipozyten zu erkennen. Das zweite Ziel dieser Arbeit war es, durch Anf{\"a}rbung charakteristischer Proteine der extrazellul{\"a}ren Matrix mittels markierter Antik{\"o}rper und einer anschließenden immunohistochemischen Analyse des Verlaufs der Signalintensit{\"a}t dieser markierten Komponenten in der EZM die Adipogenese mittels Analyse der entstehenden Ger{\"u}stproteine zu verfolgen. Hierf{\"u}r wurde durch eine umfangreiche immunohistochemische Analyse die Bildung der Kollagene I, IV und VI sowie von Laminin als Bestandteile der EZM analysiert und damit die Art und der Umfang der entstandenen extrazellul{\"a}ren Matrix w{\"a}hrend der Adipogenese qualitativ beurteilt. Die Fluoreszenz-Bilder der Proben nach den jeweiligen Gruppen und Wochen in vivo zeigen einen deutlichen Hinweis im Sinne der Bildung von Fettgewebe in den Gewebe-Konstrukten der Gruppe 4. W{\"a}hrend in den Gruppen 1 und 2 fast durchweg faserartige Bindegewebsstrukturen, verbunden mit den entsprechenden eher fibrill{\"a}rem Aussehen der Signale f{\"u}r die untersuchten Kollagene I, IV, VI und f{\"u}r Laminin gefunden werden konnten, zeigen die Konstrukte der Gruppe 3 und insbesondere von Gruppe 4 in den Fluoreszenz-Abbildungen deutlich ausgepr{\"a}gtere, netzartig ausgebildete Strukturen. Aus den Resultaten der vorliegenden Arbeit kann demnach geschlossen werden, dass die Art der Vorkultivierung eine sp{\"a}tere Adipogenese eindeutig beeinflussen kann. Eine l{\"a}ngere Inkubationszeit nach erfolgter Induktion der Pr{\"a}adipozyten zur F{\"o}rderung der Reifung zu Adipozyten vor der Implantation f{\"o}rdert die Bildung einer h{\"o}heren Anzahl von Adipozyten und die Ausbildung einer charakteristischen EZM. Diese Erkenntnisse er{\"o}ffnen f{\"u}r zuk{\"u}nftige Arbeiten die M{\"o}glichkeit, durch die weitere Optimierung der Vorkultivierung, verbunden mit einer eventuell noch besseren {\"U}berlebensrate der urspr{\"u}nglich eingebrachten Zellen, die Herstellung von klinisch geeigneten Konstrukten aus Fettgewebe weiter voranzutreiben.}, subject = {Tissue Engineering}, language = {de} } @phdthesis{Werner2014, author = {Werner, Katharina Julia}, title = {Adipose Tissue Engineering - In vitro Development of a subcutaneous fat layer and a vascularized adipose tissue construct utilizing extracellular matrix structures}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-104676}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Each year millions of plastic and reconstructive procedures are performed to regenerate soft tissue defects after, for example, traumata, deep burns or tumor resections. Tissue engineered adipose tissue grafts are a promising alternative to autologous fat transfer or synthetic implants to meet this demand for adipose tissue. Strategies of tissue engineering, especially the use of cell carriers, provide an environment for better cell survival, an easier positioning and supplemented with the appropriate conditions a faster vascularization in vivo. To successfully engineer an adipose tissue substitute for clinical use, it is crucial to know the actual intended application. In some areas, like the upper and lower extremities, only a thin subcutaneous fat layer is needed and in others, large volumes of vascularized fat grafts are more desirable. The use and interplay of stem cells and selected scaffolds were investigated and provide now a basis for the generation of fitted and suitable substitutes in two different application areas. Complex injuries of the upper and lower extremities, in many cases, lead to excessive scarring. Due to severe damage to the subcutaneous fat layer, a common sequela is adhesion formation to mobile structures like tendons, nerves, and blood vessels resulting in restricted motion and disabling pain [Moor 1996, McHugh 1997]. In order to generate a subcutaneous fat layer to cushion scarred tissue after substantial burns or injuries, different collagen matrices were tested for clinical handling and the ability to support adipogenesis. When testing five different collagen matrices, PermacolTM and StratticeTM showed promising characteristics; additionally both possess the clinical approval. Under culture conditions, only PermacolTM, a cross-linked collagen matrix, exhibited an excellent long-term stability. Ranking nearly on the same level was StratticeTM, a non-cross-linked dermal scaffold; it only exhibited a slight shrinkage. All other scaffolds tested were severely compromised in stability under culture conditions. Engineering a subcutaneous fat layer, a construct would be desirable with a thin layer of emerging fat for cushioning on one side, and a non-seeded other side for cell migration and host integration. With PermacolTM and StratticeTM, it was possible to produce constructs with ASC (adipose derived stem cells) seeded on one side, which could be adipogenically differentiated. Additionally, the thickness of the cell layer could be varied. Thereby, it becomes possible to adjust the thickness of the construct to the surrounding tissue. In order to reduce the pre-implantation time ex vivo and the costs, the culture time was varied by testing different induction protocols. An adipogenic induction period of only four days was demonstrated to be sufficient to obtain a substantial adipogenic differentiation of the applied ASC. Thus, seeded with ASC, PermacolTM and StratticeTM are suitable scaffolds to engineer subcutaneous fat layers for reconstruction of the upper and lower extremities, as they support adipogenesis and are appropriately thin, and therefore would not compromise the cosmesis. For the engineering of large-volume adipose tissue, adequate vascularization still represents a major challenge. With the objective to engineer vascularized fat pads, it is important to consider the slow kinetics of revascularization in vivo. Therefore, a decellularized porcine jejunum with pre-existing vascular structures and pedicles to connect to the host vasculature or the circulation of a bioreactor system was used. In a first step, the ability of a small decellularized jejunal section was tested for cell adhesion and for supporting adipogenic differentiation of hASC mono-cultures. Cell adhesion and adipogenic maturation of ASC seeded on the jejunal material was verified through histological and molecular analysis. After the successful mono-culture, the goal was to establish a MVEC (microvascular endothelial cells) and ASC co-culture; suitable culture conditions had to be found, which support the viability of both cell types and do not interfere with the adipogenic differentiation. After the elimination of EGF (epidermal growth factor) from the co-culture medium, substantial adipogenic maturation was observed. In the next step, a large jejunal segment (length 8 cm), with its pre-existing vascular structures and arterial/venous pedicles, was connected to the supply system of a custom-made bioreactor. After successful reseeding the vascular structure with endothelial cells, the lumen was seeded with ASC which were then adipogenically induced. Histological and molecular examinations confirmed adipogenic maturation and the existence of seeded vessels within the engineered construct. Noteworthily, a co-localization of adipogenically differentiating ASC and endothelial cells in vascular networks could be observed. So, for the first time a vascularized fat construct was developed in vitro, based on the use of a decellularized porcine jejunum. As this engineered construct can be connected to a supply system or even to a patient vasculature, it is versatile in use, for example, as transplant in plastic and reconstruction surgery, as model in basic research or as an in vitro drug testing system. To summarize, in this work a promising substitute for subcutaneous fat layer reconstruction, in the upper and lower extremities, was developed, and the first, as far as reported, in vitro generated adipose tissue construct with integrated vascular networks was successfully engineered.}, subject = {Tissue Engineering}, language = {en} } @phdthesis{Lukaszyk2021, author = {Lukaszyk, Daniel}, title = {Vergleich der Kollagenentwicklung und Differenzierungsf{\"a}higkeit humaner Stammzellen des Fettgewebes unter dem Einfluss des Prolyl-4- Hydroxylase-Inhibitors EDHB im 2D und 3D Modell}, doi = {10.25972/OPUS-24091}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240912}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Das Tissue Engineering von Fettgewebe befasst sich mit der Herstellung von biologisch {\"a}quivalenten Gewebekonstrukten mit dem Ziel, diese in der Regenerativen Medizin zur Deckung von Weichteildefekten einzusetzen. F{\"u}r die Ausreifung, Funktion und das {\"U}berleben von Adipozyten wurde die Bedeutung der Extrazellul{\"a}rmatrix (EZM) zunehmend deutlich.18-20 Untersuchungen zur EZM und ihrer Einflussnahme auf die Adipogenese wurden bislang haupts{\"a}chlich an konventionellen zweidimensionalen Zellkulturen unter Verwendung von mesenchymalen Stammzellen aus dem Knochenmark (bone marrow-derived MSC), Pr{\"a}adipozyten der Mauszelllinie 3T3-L1 und intramuskul{\"a}ren Pr{\"a}adipozyten aus Rindern (bovine intramuscular preadipocytes, BIP) vorgenommen.23,56,69,76,115 Ziel dieser Arbeit war es Erkenntnisse {\"u}ber den Einfluss der EZM auf die adipogene Differenzierungsf{\"a}higkeit unter Verwendung von humanen mesenchymalen Stammzellen des Fettgewebes (human adipose-derived stem cells, hASC) zu gewinnen. Um in vitro eine nat{\"u}rlichere Mikroumgebung der Zellen zu generieren, wurde neben einer 2D Kultur vergleichend ein 3D Modell bestehend aus multizellul{\"a}ren Sph{\"a}roiden verwendet.84,85 Zudem war die Bestimmung eines stabilen Housekeeping-Gens notwendig, um valide Ergebnisse in qPCR-Analysen von Genexpressionsstudien zu gew{\"a}hrleisten. Die Auswertung statistischer Parameter (Standardabweichung und Interquartilsbereich) sowie die Ergebnisse dreier zur Stabilit{\"a}tspr{\"u}fung eingesetzten Softwares identifizierten EF1α als robustestes HKG. Der Zusammenhang zwischen der EZM-Entwicklung und der Adipogenese wurde durch Hemmung der Kollagenentwicklung unter Verwendung von Ethyl-3,4-dihydroxybenzoat (EDHB) untersucht. Bei Betrachtung der Triglyceridsynthese mittels Histologie und quantitativer Analyse (Triglyceridassay) konnte in beiden Kultursystemen eine konzentrationsabh{\"a}ngige Hemmung der Adipogenese festgestellt werden. Im Unterschied zur 2D Kultur konnte der Triglyceridgehalt im 3D Modell ann{\"a}hernd auf das Niveau der nicht-induzierten Kontrolle gesenkt werden und damit ein tendenziell st{\"a}rkerer negativer Effekt im 3D Modell demonstriert werden. In Untersuchungen zur Genexpression wurde die Expressionsrate der sp{\"a}ten adipogenen Marker aP2 und C/EBPα maximal durch Zugabe von 0,05 mM EDHB gesenkt, wobei der Effekt in 3D erneut st{\"a}rker ausgepr{\"a}gt war. Bei Betrachtung der Kollagenentwicklung zeigte sich immunhistochemisch zun{\"a}chst eine Adipogenese-assoziierte Entwicklung der Kollagene I, IV und VI im 2D und 3D Modell. Durch die Zugabe von EDHB ließ sich die Kollagenbildung gleichermaßen in 2D und 3D konzentrationsabh{\"a}ngig inhibieren. Damit konnte ein R{\"u}ckgang der Synthese von drei f{\"u}r die Adipozyten relevanten Kollagenen zusammen mit der St{\"o}rung der adipogenen Differenzierung nachgewiesen werden. Auf mRNA-Ebene hingegen war eine unterschiedliche Expression von Kollagen I und IV nachweisbar. F{\"u}r Kollagen I wurde eine Abnahme der Expression bei Differenzierung der Zellen beobachtet, w{\"a}hrend die Expressionsrate von Kollagen IV erst mit Beginn der Adipogenese gesteigert wurde. Die Genexpression der untersuchten Kollagene wurde durch EDHB nicht negativ beeinflusst. Insgesamt weisen die Ergebnisse auf einen engen Zusammenhang der Kollagensynthese mit der Adipogenese hin. Inwieweit eine durch Zell-Matrix-Interaktionen ausgel{\"o}ste Signaltransduktion und regulatorische Mechanismen in den Pr{\"a}adipozyten die Adipogenese beeinflussen, bleibt jedoch Gegenstand zuk{\"u}nftiger Forschung.}, subject = {Tissue engineering}, language = {de} }