@phdthesis{Hoecker2022, author = {H{\"o}cker, Julian Harald}, title = {High-quality Organolead Trihalide Perovskite Crystals: Growth, Characterisation, and Photovoltaic Applications}, doi = {10.25972/OPUS-25859}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258590}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Overview of the Organolead Trihalide Perovskite Crystal Area Studies of perovskite single crystals with high crystallographic quality is an important technological area of the perovskite research, which enables to estimate their full optoelectronic potential, and thus to boost their future applications [26]. It was therefore essential to grow high-quality single crystals with lowest structural as well as chemical defect densities and with a stoichiometry relevant for their thin-film counterparts [26]. Optoelectronic devices, e.g. solar cells, are highly complex systems in which the properties of the active layer (absorber) are strongly influenced by the adjacent layers, so it is not always easy to define the targeted properties and elaborate the design rules for the active layer. Currently, organolead trihalide perovskite (OLTP) single crystals with the structure ABX3 are one of the most studied crystalline systems. These hybrid crystals are solids composed of an organic cation such as methylammonium (A = MA+) or formamidinium (A = FA+) to form a three-dimensional periodic lattice together with the lead cation (B = Pb2+) and a halogen anion such as chloride, bromide or iodide (X = Cl-, Br- or I-) [23]. Among them are methylammonium lead tribromide (MAPbBr3), methylammonium lead triiodide (MAPbI3), as well as methylammonium lead trichloride (MAPbCl3) [62, 63]. Important representatives with the larger cation FA+ are formamidinium lead tribromide (FAPbBr3) and formamidinium lead triiodide (FAPbI3) [23, 64]. Besides the exchange of cations as well as anions, it was possible to grow crystals containing two halogens to obtain mixed crystals with different proportions of chlorine to bromine and bromine to iodine, as it is shown in Figure 70. By varying the mixing ratio of the halogens, it was therefore possible to vary the colour and thus the absorption properties of the crystals [85], as it can be done with thin polycrystalline perovskite films. In addition, since a few years it is also doable to grow complex crystals that contain several cations as well as anions [26, 80, 81]. These include the perovskites double cation - double halide formamidinium lead triiodide - methylammonium lead tribromide (FAPbI3)0.9(MAPbBr3)0.1 (FAMA) [26, 80] and formamidinium lead triiodide - methylammonium lead tribromide - caesium lead tribromide (FAPbI3)0.9(MAPbBr3)0.05(CsPbBr3)0.05 (CsFAMA) [81], which have made a significant contribution to increase the power conversion efficiency (PCE) in thin-film photovoltaics [47, 79, 182]. The growth of crystals to this day is performed exclusively from solution [23, 26, 56, 62]. Important preparation methods are the cooling acid-based precursor solution crystallisation [22], the inverse temperature crystallisation (ITC) [62], and the antisolvent vapour-assistant crystallisation (AVC) [137]. In the cooling crystallisation, the precursor salts AX and PbX2 are dissolved in an aqueous halogen-containing acid at high temperatures [56]. Controlled and slow cooling finally results in a supersaturated precursor solution, which leads to spontaneous nucleation of crystal nuclei, followed by subsequent crystal growth. The ITC method is based on the inverse or retrograde solubility of a dissociated perovskite in an organic solvent [23, 64]. With increasing temperature, the solubility of the perovskite decreases and mm-sized crystals can be grown within a few hours [23]. In the AVC method, the precursors are also dissolved in an organic solvent as well [137]. By slow evaporation of a so-called antisolvent [137], the solubility of the perovskite in the now present solvent mixture decreases and it finally precipitates. In addition, there are many other methods with the goal of growing high quality and large crystals in a short period of time [60, 61, 233, 310].}, subject = {Perowskit}, language = {en} } @phdthesis{Namal2018, author = {Namal, Imge}, title = {Fabrication and Optical and Electronic Characterization of Conjugated Polymer-Stabilized Semiconducting Single-Wall Carbon Nanotubes in Dispersions and Thin Films}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162393}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {In order to shrink the size of semiconductor devices and improve their efficiency at the same time, silicon-based semiconductor devices have been engineered, until the material almost reaches its performance limits. As the candidate to be used next in semiconducting devices, single-wall carbon nanotubes show a great potential due to their promise of increased device efficiency and their high charge carrier mobilities in the nanometer size active areas. However, there are material based problems to overcome in order to imply SWNTs in the semiconductor devices. SWNTs tend to aggregate in bundles and it is not trivial to obtain an electronically or chirally homogeneous SWNT dispersion and when it is done, a homogeneous thin film needs to be produced with a technique that is practical, easy and scalable. This work was aimed to solve both of these problems. In the first part of this study, six different polymers, containing fluorene or carbazole as the rigid part and bipyridine, bithiophene or biphenyl as the accompanying copolymer unit, were used to selectively disperse semiconducting SWNTs. With the data obtained from absorption and photoluminescence spectroscopy of the corresponding dispersions, it was found out that the rigid part of the copolymer plays a primary role in determining its dispersion efficiency and electronic sorting ability. Within the two tested units, carbazole has a higher π electron density. Due to increased π-π interactions, carbazole containing copolymers have higher dispersion efficiency. However, the electronic sorting ability of fluorene containing polymers is superior. Chiral selection of the polymers in the dispersion is not directly foreseeable from the selection of backbone units. At the end, obtaining a monochiral dispersion is found to be highly dependent on the used raw material in combination to the preferred polymer. Next, one of the best performing polymers due to high chirality enrichment and electronic sorting ability was chosen in order to disperse SWNTs. Thin films of varying thickness between 18 ± 5 to 755o±o5 nm were prepared using vacuum filtration wet transfer method in order to analyze them optically and electronically. The scalability and efficiency of the integrated thin film production method were shown using optical, topographical and electronic measurements. The relative photoluminescence quantum yield of the radiative decay from the SWNT thin films was found to be constant for the thickness scale. Constant roughness on the film surface and linearly increasing concentration of SWNTs were also supporting the scalability of this thin film production method. Electronic measurements on bottom gate top contact transistors have shown an increasing charge carrier mobility for linear and saturation regimes. This was caused by the missing normalization of the mobility for the thickness of the active layer. This emphasizes the importance of considering this dimension for comparison of different field effect transistor mobilities.}, subject = {Feldeffekttransistor}, language = {en} }