@phdthesis{Anneser2020, author = {Anneser, Katrin}, title = {Elektrochemische Doppelschichtkondensatoren zur Stabilisierung fluktuierender photovoltaischer Leistung}, doi = {10.25972/OPUS-19933}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-199339}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Der Ausbau der regenerativen Energiequellen f{\"u}hrt vermehrt zu unvorhersehbaren Schwankungen der erzeugten Leistung, da Windkraft und Photovoltaik von nat{\"u}rlichen Bedingungen abh{\"a}ngen. Gerade Kurzzeitfluktuationen im Sekunden- bis Minutenbereich, die bei Solarzellen durch die Verschattung von vor{\"u}berziehenden Wolken zustande kommen, wird bislang wenig Beachtung geschenkt. Kurzzeitspeicher m{\"u}ssen eine hohe Zyklenstabilit{\"a}t aufweisen, um zur Gl{\"a}ttung dieser Leistungsfluktuationen in Frage zu kommen. Im Rahmen der vorliegenden Dissertation wurden elektrochemische Doppelschichtkondensatoren f{\"u}r die Kopplung mit Siliziumsolarzellen und organischen Solarmodulen mit Hilfe von Simulationen und Messungen untersucht. Zus{\"a}tzlich wurden grundlegende Fragestellungen zur Prozessierung und Alterung von Doppelschichtkondensatoren im Hinblick auf ein in der Literatur bereits diskutiertes System betrachtet, das beide Komponenten in einem Bauteil integriert - den sogenannten photocapacitor. Um die Druckbarkeit des gesamten elektrochemischen Doppelschichtkondensators zu erm{\"o}glichen, wurde der konventionell verwendete Fl{\"u}ssigelektrolyt durch einen Polymer-Gel-Elektrolyten auf Basis von Polyvinylalkohol und einer S{\"a}ure ersetzt. Durch eine Verbesserung der Prozessierung konnte ein gr{\"o}ßerer Anteil der spezifischen Fl{\"a}che der por{\"o}sen Kohlenstoffelektroden vom Elektrolyten benetzt und somit zur Speicherung genutzt werden. Die Untersuchungen zeigen, dass mit Polymer-Gel-Elektrolyten {\"a}hnliche Kapazit{\"a}ten erreicht werden wie mit Fl{\"u}ssigelektrolyten. Im Hinblick auf die Anwendung im gekoppelten System muss der elektrochemische Doppelschichtkondensator den gleichen Umweltbedingungen hinsichtlich Temperatur und Luftfeuchte standhalten wie die Solarzelle. Hierzu wurden umfangreiche Alterungstests durchgef{\"u}hrt und festgestellt, dass die Kapazit{\"a}t zwar bei Austrocknung des wasserhaltigen Polymer-Gel-Elektrolyten sinkt, bei einer Wiederbefeuchtung aber auch eine Regeneration des Speichers erfolgt. Zur passenden Auslegung des elektrochemischen Doppelschichtkondensators wurde eine detaillierte Analyse der Leistungsfluktuationen durchgef{\"u}hrt, die mit einem eigens entwickelten MPP-Messger{\"a}t an organischen Solarmodulen gemessen wurden. Anhand der Daten wurde analysiert, welche Energiemengen f{\"u}r welche Zeit im Kurzzeitspeicher zwischengespeichert werden m{\"u}ssen, um eine effiziente Gl{\"a}ttung der ins Netz einzuspeisenden Leistung zu erreichen. Aus der Statistik der Fluktuationen wurde eine Kapazit{\"a}t berechnet, die als Richtwert in die Simulationen einging und dann mit anderen Kapazit{\"a}ten verglichen wurde. Neben einem idealen MPP-Tracking f{\"u}r verschiedene Arten von Solarzellen und Beleuchtungsprofilen konnte die Simulation auch die Kopplung aus Solarzelle und elektrochemischem Doppelschichtkondensator mit zwei verschiedenen Betriebsstrategien nachbilden. Zum einen wurde ein fester Lastwiderstand genutzt, zum anderen eine Zielspannung f{\"u}r den Kurzzeitspeicher und somit auch die Solarzelle vorgegeben und der Lastwiderstand variabel so angepasst, dass die Zielspannung gehalten wird. Beide Betriebsmethoden haben einen Energieverlust gegen{\"u}ber der MPP-getrackten Solarzelle zu verzeichnen, f{\"u}hren aber zu einer Gl{\"a}ttung der Leistung des gekoppelten Systems. Die Simulation konnte f{\"u}r Siliziumsolarzellen mit einem Demonstratorversuch im Labor und f{\"u}r organische Solarzellen unter realen Bedingungen validiert werden. Insgesamt ergibt sich eine vielversprechende Gl{\"a}ttung der Leistungsfluktuationen von Solarzellen durch den Einsatz von elektrochemischen Doppelschichtkondensatoren.}, subject = {Energie}, language = {de} } @phdthesis{Langer2020, author = {Langer, Fabian}, title = {Wachstum und Charakterisierung von 1,0 eV GaInNAs-Halbleitern f{\"u}r die Anwendung in Mehrfachsolarzellen}, doi = {10.25972/OPUS-20088}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200881}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Im Rahmen dieser Arbeit wurden GaInP/GaAs/GaInNAs 3J-Mehrfachsolarzellen in einem MBE/MOVPE-Hybridprozess hergestellt und untersucht. Der verwendete Hybridprozess, bei dem nur die GaInNAs-Teilsolarzelle mittels MBE hergestellt wird, kombiniert diese beiden Technologien und setzt sie entsprechend ihrer jeweiligen Vorteile ein. Die gezeigten Ergebnisse best{\"a}tigen grunds{\"a}tzlich die Machbarkeit des Hybridprozesses, denn eine Degradation des mittels MBE hergestellten GaInNAs-Materials durch die Atmosph{\"a}re im MOVPE-Reaktor konnte nicht festgestellt werden. Dieses Resultat wurde von im Hybridprozess hergestellten 3J-Mehrfachsolarzellen, die GaInNAs-Teilsolarzellen enthalten, bekr{\"a}ftigt. Die offene Klemmspannung einer gezeigten Solarzelle erreichte bereits 2,59 V (AM1.5d) bzw. 2,48 V (AM0) und liegt damit jeweils {\"u}ber einer als Referenz hergestellten 2J-Mehrfachsolarzelle ohne GaInNAs. Die mittlere interne Quanteneffizienz der enthaltenen GaInNAs-Teilsolarzelle liegt bei 79 \%. Die Berechnungen auf Grundlage dieser Effizienz unter Beleuchtung mit AM1.5d und unter Beleuchtung mit AM0 zeigten, dass nicht die enthaltene GaInNAs-Teilsolarzelle Strom limitierend wirkt, sondern die mittels MOVPE gewachsene GaInP-Teilsolarzelle. Die experimentell bestimmte Kurzschlussstromdichte der hergestellten Mehrfachsolarzelle ist wegen dieser Limitierung etwas geringer als die der 2J-Referenzsolarzelle. Der MOVPE-{\"U}berwachsvorgang bietet zwar noch weiteres Verbesserungspotential, aber es ist naheliegend, dass der Anwachsvorgang auf dem MBE-Material soweit optimiert werden kann, dass die aufgewachsenen GaInP- und GaAs-Schichten frei von Degradation bleiben. Damit bietet der Hybridprozess perspektivisch das Potential g{\"u}nstigere Produktionskosten in der Epitaxie von Mehrfachsolarzellen mit verd{\"u}nnten Nitriden zu erreichen als es ausschließlich mittels MBE m{\"o}glich ist. Im Vorfeld zur Herstellung der 3J-Mehrfachsolarzellen wurden umfassende Optimierungsarbeiten des MBE-Prozesses zur Herstellung der GaInNAs-Teilsolarzelle durchgef{\"u}hrt. So wurde insbesondere festgestellt, dass das As/III-Verh{\"a}ltnis w{\"a}hrend dem Wachstum einen entscheidenden Einfluss auf die elektrisch aktive Dotierung des GaInNAs-Materials besitzt. Die elektrisch aktive Dotierung wiederum beeinflusst sehr stark die Ausdehnung der Raumladungszone in den als p-i-n-Struktur hergestellten GaInNAs-Solarzellen und hat damit einen direkten Einfluss auf deren Stromerzeugung. In der Tendenz zeigte sich eine Zunahme der Stromerzeugung der GaInNAs-Teilsolarzellen bei einer gleichzeitigen Abnahme ihrer offenen Klemmspannung, sobald das As/III-Verh{\"a}ltnis w{\"a}hrend des Wachstums reduziert wurde. Durch eine sehr exakte Kalibration des As/III-Verh{\"a}ltnisses konnte ein bestm{\"o}glicher Kompromiss zwischen offener Klemmspannung und Stromerzeugung gefunden werden. Eine gezeigte GaInNAs-Einfachsolarzelle erreichte eine mittlere interne Quanteneffizienz von 88 \% und eine offene Klemmspannung von 341 mV (AM1.5d) bzw. 351 mV (AM0). Berechnungen auf Grundlage der Quanteneffizienz ergaben, dass diese Solarzelle integriert in eine 3J-Mehrfachsolarzelle unter dem Beleuchtungsspektrum AM1.5g eine Stromdichte von 14,2 mA/cm^2 und unter AM0 von 17,6 mA/cm^2 erzeugen w{\"u}rde. Diese Stromdichten sind so hoch, dass diese GaInNAs-Solarzelle die Stromproduktion der GaInP- und GaAs-Teilsolarzellen in einer g{\"a}ngigen Mehrfachsolarzelle erreicht und keine Ladungstr{\"a}gerverluste auftreten w{\"u}rden. Aufgrund ihrer h{\"o}heren offenen Klemmspannung gegen{\"u}ber einer Ge-Teilsolarzelle bietet diese GaInNAs-Teilsolarzelle das Potential die Effizienz der Mehrfachsolarzelle zu steigern. Messungen der Dotierkonzentration in der GaInNAs-Schicht dieser Solarzelle ergaben extrem geringe Werte im Bereich von 1x10^14 1/cm^3 bis 1x10^15 1/cm^3 (p-Leitung). In Erg{\"a}nzung zu den Optimierungen des As/III-Verh{\"a}ltnisses konnte gezeigt werden, dass sich ein {\"U}bergang von p- zu n-Leitung im GaInNAs mit der Verringerung des As/III-Verh{\"a}ltnisses erzeugen l{\"a}sst. Nahe des {\"U}bergangsbereiches wurden sehr geringe Dotierungen erreicht, die sich durch eine hohe Stromproduktion aufgrund der Ausbildung einer extrem breiten Verarmungszone gezeigt haben. Durch eine reduzierte offene Klemmspannung der bei relativ geringen As/III-Verh{\"a}ltnissen hergestellten Solarzellen mit n-leitendem GaInNAs konnte auf das Vorhandensein von elektrisch aktiven Defekten geschlossen werden. Generell konnten die gemessenen elektrisch aktiven Dotierkonzentrationen im Bereich von {\"u}blicherweise 10^16 1/cm^3 mit hoher Wahrscheinlichkeit auf elektrisch aktive Kristalldefekte im GaInNAs zur{\"u}ckgef{\"u}hrt werden. Eine Kontamination des Materials mit Kohlenstoffatomen in dieser Gr{\"o}ßenordnung wurde ausgeschlossen.}, subject = {Mehrfach-Solarzelle}, language = {de} } @phdthesis{Huppmann2020, author = {Huppmann, Sophia}, title = {Atomlagenabscheidung von Oxidschichten auf Edelmetalloberfl{\"a}chen und deren Haftung}, doi = {10.25972/OPUS-20708}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-207085}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Ziel dieser Arbeit war die Untersuchung einer Passivierungsschicht auf Silber, um es vor Degradation unter Feuchte oder Schadgasen zu sch{\"u}tzen. Dazu wurden Al\(_2\)O\(_3\) und Ta\(_2\)O\(_5\) mittels Atomlagenabscheidung (atomic layer deposition: ALD) auf polykristallinen Silberoberfl{\"a}chen abgeschieden und deren Wachstum und Haftung analysiert. Zum Vergleich wurden die Edelmetalle Gold und Platin herangezogen. Die Beurteilung der Barriereeigenschaften gegen{\"u}ber Schadgas erfolgte mittels einer Ozon-Behandlung in der ALD-Prozesskammer. Es zeigte sich, dass nur ALD-Schichten, die bis zu eine Abscheidetemperatur von unter 140~°C abgeschieden wurden, eine ausreichende Barrierewirkung liefern konnten. Erkl{\"a}rt werden konnte dieses Ph{\"a}nomen durch unterschiedliche Wachtumsregime f{\"u}r unterschiedliche Abscheidetemperaturen zwischen 100 und 300~°C, die in einer temperaturabh{\"a}ngigen Bedeckung der Silberoberfl{\"a}che resultieren. W{\"a}hrend bei niedrigen Temperaturen eine geschlossene Schicht aufw{\"a}chst, findet ALD-Wachstum bei h{\"o}heren Temperaturen, beginnend {\"u}ber 115~°C, nur an Korngrenzen, Stufenkanten und Defekten statt. Es wurden verschiedene Oberfl{\"a}chenbehandlungen untersucht und nur eine Vorbehandlung mit H\(_2\)O bei 100~°C in der ALD-Prozesskammer konnte auch bei h{\"o}heren Temperaturen zu einem geschlossenen Schichtwachstum f{\"u}hren. In-vacuo XPS Untersuchungen der ersten Zyklen des Al\(_2\)O\(_3\)-Wachstums bei 100 und 200~°C auf Silber wurden miteinander und mit einer Silizium Referenzprobe verglichen. Bei beiden Wachstumstemperaturen kam es nicht zur Oxidation von Ag. Ab dem ersten TMA-Puls konnten Al-Verbindungen auf der Oberfl{\"a}che nachgewiesen werden. Es zeigte sich, dass TMA auf der Ag-Oberfl{\"a}che zu Methylaluminium und Methylresten dissoziieren und an Adsorbaten anbinden kann. Zus{\"a}tzlich zeigte sich ein erh{\"o}htes, nicht ges{\"a}ttigtes Wachstumsverhalten bei 200~°C, das {\"u}ber einen Sauerstoffdiffusionsprozess erkl{\"a}rt werden kann. Sauerstoff-Verunreinigungen, die sich in der Silberschicht befinden, konnten {\"u}ber Korngrenzendiffusion an die Oberfl{\"a}che gelangen und dort mit TMA reagieren. Aufgrund von Oberfl{\"a}chendiffusion bei h{\"o}heren Temperaturen gab es eine stabile Adsorption nur an Korngrenzen, Stufenkanten und Defekten. Nur die Si-Oberfl{\"a}che zeigte ein typisches ALD-Wachstum. Auf Pt und Au lag unabh{\"a}ngig von weiteren Vorbehandlungen bei allen Beschichtungstemperaturen ein geschlossenes ALD-Anwachsen vor. Damit eignete sich Au gut um die Barriere-Eigenschaften der ALD-Schicht gegen Feuchtigkeit in Abh{\"a}ngigkeit von der Wachstumstemperatur nachzuweisen. Dies wurde mit einer cyanidischen {\"A}tzl{\"o}sung getestet. W{\"a}hrend f{\"u}r eine Barriere gegen Ozon bereits eine d{\"u}nne geschlossene Schicht, abgeschieden bei 100~°C ausreicht, musste gegen die {\"A}tzl{\"o}sung eine h{\"o}here Beschichtungstemperatur verwendet werden. F{\"u}r die Bewertung der Haftung der Passivierungsschicht wurde neben den {\"u}blichen einfachen Tesatest und Schertest, ein pneumatischer Haftungstest entwickelt und eingesetzt. Daf{\"u}r wurde die Methode des Blistertest angepasst, der urspr{\"u}nglich f{\"u}r die Bestimmung der Haftung organischer Schichten, wie beispielsweise Kleber und Lacke, eingesetzt wurde, sodass er sich f{\"u}r die Untersuchung d{\"u}nner Schichten eignet. Dazu wurde die zu testende Grenzfl{\"a}che mittels eines Si-Tr{\"a}gers mechanisch unterst{\"u}tzt. Hierdurch kann die Deformation der Schicht minimiert werden und es kommt stattdessen zu einem Bruch. Die Delamination der Testschicht wurde durch das Anlegen des hydrostatischen Drucks erreicht, was eine gleichm{\"a}ßige Kraftverteilung gew{\"a}hrleistet. Die Proben ließen sich mittels Standard-D{\"u}nnfilmtechnologie herstellen und k{\"o}nnen damit industriell gut eingesetzt werden. Sowohl der Messaufbau als auch die Probenpr{\"a}paration wurden in dieser Arbeit vorgestellt. Es wurde mittels der beiden Bondmaterialien AuSn und Indium die maximal bestimmbare Adh{\"a}sionsspannung evaluiert und daf{\"u}r Werte von (0,26 \(\pm\) 0,03) \(\cdot 10^9 \) Pa f{\"u}r AuSn und (0,09 \(\pm\) 0,01) \(\cdot 10^9 \) Pa f{\"u}r In bestimmt. Da im In bereits bei sehr niedrigen Dr{\"u}cken ein koh{\"a}sives Versagen auftritt, eignet sich AuSn besser f{\"u}r die Messung anderer Grenzfl{\"a}chen. Damit wurden schließlich die Grenzfl{\"a}chen ALD-Al\(_2\)O\(_3\) und ALD-Ta\(_2\)O\(_5\) auf Ag mit H\(_2\)O-Vorbehandlung sowie ALD-Al\(_2\)O\(_3\) auf Pt untersucht. Es wurden die folgenden Adh{\"a}sionsspannungen erreicht: F{\"u}r ALD-Al\(_2\)O\(_3\) auf Ag: (0,23 \(\pm\) 0,01) \(\cdot 10^9 \) Pa, f{\"u}r ALD-Ta\(_2\)O\(_5\) auf Ag: (0,15 \(\pm\) 0,03) \(\cdot 10^9 \) Pa und f{\"u}r ALD-Al\(_2\)O\(_3\) auf Pt: (0,20 \(\pm\) 0,01) \(\cdot 10^9 \) Pa. Somit wurde best{\"a}tigt, dass mit Hilfe der Vorbehandlung der Ag-Oberfl{\"a}che die ALD-Al\(_2\)O\(_3\)-Schicht nicht nur geschlossen ist, sondern auch ausreichend gut haftet und sich damit hervorragend als Barriere eignet.}, subject = {Aluminiumoxide}, language = {de} } @phdthesis{Kiermasch2020, author = {Kiermasch, David}, title = {Charge Carrier Recombination Dynamics in Hybrid Metal Halide Perovskite Solar Cells}, doi = {10.25972/OPUS-20862}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208629}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {In order to facilitate the human energy needs with renewable energy sources in the future, new concepts and ideas for the electricity generation are needed. Solar cells based on metal halide perovskite semiconductors represent a promising approach to address these demands in both single-junction and tandem configurations with existing silicon technology. Despite intensive research, however, many physical properties and the working principle of perovskite PVs are still not fully understood. In particular, charge carrier recombination losses have so far mostly been studied on pure films not embedded in a complete solar cell. This thesis aimed for the identification and quantification of charge carrier recombination dynamics in fully working devices under conditions corresponding to those under real operation. To study different PV systems, transient electrical methods, more precisely Open-Circuit Voltage Decay (OCVD), Transient Photovoltage (TPV) and Charge Extraction (CE), were applied. Whereas OCVD and TPV provide information about the recombination lifetime, CE allows to access the charge carrier density at a specific illumination intensity. The benefit of combining these different methods is that the obtained quantities can not only be related to the Voc but also to each other, thus enabling to determine also the dominant recombination mechanisms.The aim of this thesis is to contribute to a better understanding of recombination losses in fully working perovskite solar cells and the experimental techniques which are applied to determine these losses.}, subject = {Solarzelle}, language = {en} } @phdthesis{Auth2020, author = {Auth, Michael Tilman}, title = {Quantitative Electron Paramagnetic Resonance Studies of Charge Transfer in Organic Semiconductors}, doi = {10.25972/OPUS-18951}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189513}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {In the present work we investigated various charge transfer processes, as they appear in the versatile world of organic semiconductors by probing the spin states of the corresponding charge carrier species via electron paramagnetic resonance (EPR) spectroscopy. All studied material systems are carbon-based compounds, either belonging to the group of polymers, fullerenes, or single-wall carbon nanotubes (SWNTs). In the first instance, we addressed the change of the open circuit voltage (Voc) with the fullerene blend stoichiometry in fullerene-based solar cells for organic photovoltaics (OPV). The voltage depends strongly on the energy separation between the lowest unoccupied molecular orbital (LUMO) of the donor and the highest occupied molecular orbital (HOMO) of the acceptor. By exploiting the Gaussian distribution of the charge carriers in a two-level system, and thus also their spins in the EPR experiment, it could be shown that the LUMOs get closer by a few to a few hundred meV when going from pure fullerene materials to a fullerene mixture. The reason for this strong energetic effect is likely the formation of a fullerene alloy. Further, we investigated the chemical doping mechanism of SWNTs with a (6,5)-chirality and their behaviour under optical excitation. In order to determine the unintentional (pre)-doping of SWNTs, EPR spectra of the raw material as well as after different purification steps were recorded. This facilitated the determination of nanotube defects and atmospheric p-doping as the causes of the measured EPR signals. In order to deliberately transfer additional charge carriers to the nanotubes, we added the redox-active substance AuCl3 where we determined an associated doping-yield of (1.5±0.2)\%. In addition, a statistical occupation model was developed which can be used to simulate the distribution of EPR active, i.e. unpaired and localised charge carriers on the nanotubes. Finally, we investigated the charge transfer behaviour of (6,5)-SWNTs together with the polymer P3HT and the fullerene PC60BM after optical excitation.}, subject = {Organische Halbleiter}, language = {en} }