@techreport{LhamoNguyenFitzek2022, type = {Working Paper}, author = {Lhamo, Osel and Nguyen, Giang T. and Fitzek, Frank H. P.}, title = {Virtual Queues for QoS Compliance of Haptic Data Streams in Teleoperation}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28076}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280762}, pages = {4}, year = {2022}, abstract = {Tactile Internet aims at allowing perceived real-time interactions between humans and machines. This requires satisfying a stringent latency requirement of haptic data streams whose data rates vary drastically as the results of perceptual codecs. This introduces a complex problem for the underlying network infrastructure to fulfill the pre-defined level of Quality of Service (QoS). However, novel networking hardware with data plane programming capability allows processing packets differently and opens up a new opportunity. For example, a dynamic and network-aware resource management strategy can help satisfy the QoS requirements of different priority flows without wasting precious bandwidth. This paper introduces virtual queues for service differentiation between different types of traffic streams, leveraging protocol independent switch architecture (PISA). We propose coordinating the management of all the queues and dynamically adapting their sizes to minimize packet loss and delay due to network congestion and ensure QoS compliance.}, subject = {Datennetz}, language = {en} } @techreport{VomhoffGeisslerHossfeld2022, type = {Working Paper}, author = {Vomhoff, Viktoria and Geißler, Stefan and Hoßfeld, Tobias}, title = {Identification of Signaling Patterns in Mobile IoT Signaling Traffic}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28081}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280819}, pages = {4}, year = {2022}, abstract = {We attempt to identify sequences of signaling dialogs, to strengthen our understanding of the signaling behavior of IoT devices by examining a dataset containing over 270.000 distinct IoT devices whose signaling traffic has been observed over a 31-day period in a 2G network [4]. We propose a set of rules that allows the assembly of signaling dialogs into so-called sessions in order to identify common patterns and lay the foundation for future research in the areas of traffic modeling and anomaly detection.}, subject = {Datennetz}, language = {en} } @misc{FunkenTscherner2019, author = {Funken, Matthias and Tscherner, Michael}, title = {Jahresbericht 2018 des Rechenzentrums der Universit{\"a}t W{\"u}rzburg}, edition = {1. Auflage}, organization = {Rechenzentrum (Universit{\"a}t W{\"u}rzburg)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-188265}, pages = {76}, year = {2019}, abstract = {Eine {\"U}bersicht {\"u}ber die Aktivit{\"a}ten des Rechenzentrums im Jahr 2018.}, subject = {Julius-Maximilians-Universit{\"a}t W{\"u}rzburg}, language = {de} } @misc{OPUS4-15355, title = {Jahresbericht 2016 des Rechenzentrums der Universit{\"a}t W{\"u}rzburg}, edition = {1. Auflage}, organization = {Rechenzentrum (Universit{\"a}t W{\"u}rzburg)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153558}, pages = {72}, year = {2017}, abstract = {Das Dokument umfasst eine j{\"a}hrliche Zusammenfassung der Aktivit{\"a}ten des Rechenzentrums als zentraler IT-Dienstleister der Universit{\"a}t W{\"u}rzburg}, subject = {Jahresbericht}, language = {de} } @misc{FunkenTscherner2018, author = {Funken, Matthias and Tscherner, Michael}, title = {Jahresbericht 2017 des Rechenzentrums der Universit{\"a}t W{\"u}rzburg}, edition = {1. Auflage}, organization = {Rechenzentrum (Universit{\"a}t W{\"u}rzburg)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168537}, pages = {68}, year = {2018}, abstract = {Eine {\"U}bersicht {\"u}ber die Aktivit{\"a}ten des Rechenzentrums im Jahr 2017.}, subject = {Julius-Maximilians-Universit{\"a}t W{\"u}rzburg}, language = {de} } @article{SchererFleishmanJonesetal.2021, author = {Scherer, Marc and Fleishman, Sarel J. and Jones, Patrik R. and Dandekar, Thomas and Bencurova, Elena}, title = {Computational Enzyme Engineering Pipelines for Optimized Production of Renewable Chemicals}, series = {Frontiers in Bioengineering and Biotechnology}, volume = {9}, journal = {Frontiers in Bioengineering and Biotechnology}, issn = {2296-4185}, doi = {10.3389/fbioe.2021.673005}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240598}, year = {2021}, abstract = {To enable a sustainable supply of chemicals, novel biotechnological solutions are required that replace the reliance on fossil resources. One potential solution is to utilize tailored biosynthetic modules for the metabolic conversion of CO2 or organic waste to chemicals and fuel by microorganisms. Currently, it is challenging to commercialize biotechnological processes for renewable chemical biomanufacturing because of a lack of highly active and specific biocatalysts. As experimental methods to engineer biocatalysts are time- and cost-intensive, it is important to establish efficient and reliable computational tools that can speed up the identification or optimization of selective, highly active, and stable enzyme variants for utilization in the biotechnological industry. Here, we review and suggest combinations of effective state-of-the-art software and online tools available for computational enzyme engineering pipelines to optimize metabolic pathways for the biosynthesis of renewable chemicals. Using examples relevant for biotechnology, we explain the underlying principles of enzyme engineering and design and illuminate future directions for automated optimization of biocatalysts for the assembly of synthetic metabolic pathways.}, language = {en} } @article{KammererGoesterReichertetal.2021, author = {Kammerer, Klaus and G{\"o}ster, Manuel and Reichert, Manfred and Pryss, R{\"u}diger}, title = {Ambalytics: a scalable and distributed system architecture concept for bibliometric network analyses}, series = {Future Internet}, volume = {13}, journal = {Future Internet}, number = {8}, issn = {1999-5903}, doi = {10.3390/fi13080203}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-244916}, year = {2021}, abstract = {A deep understanding about a field of research is valuable for academic researchers. In addition to technical knowledge, this includes knowledge about subareas, open research questions, and social communities (networks) of individuals and organizations within a given field. With bibliometric analyses, researchers can acquire quantitatively valuable knowledge about a research area by using bibliographic information on academic publications provided by bibliographic data providers. Bibliometric analyses include the calculation of bibliometric networks to describe affiliations or similarities of bibliometric entities (e.g., authors) and group them into clusters representing subareas or communities. Calculating and visualizing bibliometric networks is a nontrivial and time-consuming data science task that requires highly skilled individuals. In addition to domain knowledge, researchers must often provide statistical knowledge and programming skills or use software tools having limited functionality and usability. In this paper, we present the ambalytics bibliometric platform, which reduces the complexity of bibliometric network analysis and the visualization of results. It accompanies users through the process of bibliometric analysis and eliminates the need for individuals to have programming skills and statistical knowledge, while preserving advanced functionality, such as algorithm parameterization, for experts. As a proof-of-concept, and as an example of bibliometric analyses outcomes, the calculation of research fronts networks based on a hybrid similarity approach is shown. Being designed to scale, ambalytics makes use of distributed systems concepts and technologies. It is based on the microservice architecture concept and uses the Kubernetes framework for orchestration. This paper presents the initial building block of a comprehensive bibliometric analysis platform called ambalytics, which aims at a high usability for users as well as scalability.}, language = {en} } @article{OberdoerferBirnstielLatoschiketal.2021, author = {Oberd{\"o}rfer, Sebastian and Birnstiel, Sandra and Latoschik, Marc Erich and Grafe, Silke}, title = {Mutual Benefits: Interdisciplinary Education of Pre-Service Teachers and HCI Students in VR/AR Learning Environment Design}, series = {Frontiers in Education}, volume = {6}, journal = {Frontiers in Education}, issn = {2504-284X}, doi = {10.3389/feduc.2021.693012}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241612}, year = {2021}, abstract = {The successful development and classroom integration of Virtual (VR) and Augmented Reality (AR) learning environments requires competencies and content knowledge with respect to media didactics and the respective technologies. The paper discusses a pedagogical concept specifically aiming at the interdisciplinary education of pre-service teachers in collaboration with human-computer interaction students. The students' overarching goal is the interdisciplinary realization and integration of VR/AR learning environments in teaching and learning concepts. To assist this approach, we developed a specific tutorial guiding the developmental process. We evaluate and validate the effectiveness of the overall pedagogical concept by analyzing the change in attitudes regarding 1) the use of VR/AR for educational purposes and in competencies and content knowledge regarding 2) media didactics and 3) technology. Our results indicate a significant improvement in the knowledge of media didactics and technology. We further report on four STEM learning environments that have been developed during the seminar.}, language = {en} } @article{NaglerNaegeleGillietal.2018, author = {Nagler, Matthias and N{\"a}gele, Thomas and Gilli, Christian and Fragner, Lena and Korte, Arthur and Platzer, Alexander and Farlow, Ashley and Nordborg, Magnus and Weckwerth, Wolfram}, title = {Eco-Metabolomics and Metabolic Modeling: Making the Leap From Model Systems in the Lab to Native Populations in the Field}, series = {Frontiers in Plant Science}, volume = {9}, journal = {Frontiers in Plant Science}, number = {1556}, issn = {1664-462X}, doi = {10.3389/fpls.2018.01556}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189560}, year = {2018}, abstract = {Experimental high-throughput analysis of molecular networks is a central approach to characterize the adaptation of plant metabolism to the environment. However, recent studies have demonstrated that it is hardly possible to predict in situ metabolic phenotypes from experiments under controlled conditions, such as growth chambers or greenhouses. This is particularly due to the high molecular variance of in situ samples induced by environmental fluctuations. An approach of functional metabolome interpretation of field samples would be desirable in order to be able to identify and trace back the impact of environmental changes on plant metabolism. To test the applicability of metabolomics studies for a characterization of plant populations in the field, we have identified and analyzed in situ samples of nearby grown natural populations of Arabidopsis thaliana in Austria. A. thaliana is the primary molecular biological model system in plant biology with one of the best functionally annotated genomes representing a reference system for all other plant genome projects. The genomes of these novel natural populations were sequenced and phylogenetically compared to a comprehensive genome database of A. thaliana ecotypes. Experimental results on primary and secondary metabolite profiling and genotypic variation were functionally integrated by a data mining strategy, which combines statistical output of metabolomics data with genome-derived biochemical pathway reconstruction and metabolic modeling. Correlations of biochemical model predictions and population-specific genetic variation indicated varying strategies of metabolic regulation on a population level which enabled the direct comparison, differentiation, and prediction of metabolic adaptation of the same species to different habitats. These differences were most pronounced at organic and amino acid metabolism as well as at the interface of primary and secondary metabolism and allowed for the direct classification of population-specific metabolic phenotypes within geographically contiguous sampling sites.}, language = {en} } @article{PetschkeStaab2018, author = {Petschke, Danny and Staab, Torsten E.M.}, title = {DLTPulseGenerator: a library for the simulation of lifetime spectra based on detector-output pulses}, series = {SoftwareX}, volume = {7}, journal = {SoftwareX}, doi = {10.1016/j.softx.2018.04.002}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176883}, pages = {122-128}, year = {2018}, abstract = {The quantitative analysis of lifetime spectra relevant in both life and materials sciences presents one of the ill-posed inverse problems and, hence, leads to most stringent requirements on the hardware specifications and the analysis algorithms. Here we present DLTPulseGenerator, a library written in native C++ 11, which provides a simulation of lifetime spectra according to the measurement setup. The simulation is based on pairs of non-TTL detector output-pulses. Those pulses require the Constant Fraction Principle (CFD) for the determination of the exact timing signal and, thus, the calculation of the time difference i.e. the lifetime. To verify the functionality, simulation results were compared to experimentally obtained data using Positron Annihilation Lifetime Spectroscopy (PALS) on pure tin.}, language = {en} }