@phdthesis{Geissler2022, author = {Geißler, Stefan}, title = {Performance Evaluation of Next-Generation Data Plane Architectures and their Components}, issn = {1432-8801}, doi = {10.25972/OPUS-26015}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260157}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {In this doctoral thesis we cover the performance evaluation of next generation data plane architectures, comprised of complex software as well as programmable hardware components that allow fine granular configuration. In the scope of the thesis we propose mechanisms to monitor the performance of singular components and model key performance indicators of software based packet processing solutions. We present novel approaches towards network abstraction that allow the integration of heterogeneous data plane technologies into a singular network while maintaining total transparency between control and data plane. Finally, we investigate a full, complex system consisting of multiple software-based solutions and perform a detailed performance analysis. We employ simulative approaches to investigate overload control mechanisms that allow efficient operation under adversary conditions. The contributions of this work build the foundation for future research in the areas of network softwarization and network function virtualization.}, subject = {Leistungsbewertung}, language = {en} } @phdthesis{Glasser2001, author = {Glaßer, Christian}, title = {Forbidden-Patterns and Word Extensions for Concatenation Hierarchies}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-1179153}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {Starfree regular languages can be build up from alphabet letters by using only Boolean operations and concatenation. The complexity of these languages can be measured with the so-called dot-depth. This measure leads to concatenation hierarchies like the dot-depth hierarchy (DDH) and the closely related Straubing-Th{\´e}rien hierarchy (STH). The question whether the single levels of these hierarchies are decidable is still open and is known as the dot-depth problem. In this thesis we prove/reprove the decidability of some lower levels of both hierarchies. More precisely, we characterize these levels in terms of patterns in finite automata (subgraphs in the transition graph) that are not allowed. Therefore, such characterizations are called forbidden-pattern characterizations. The main results of the thesis are as follows: forbidden-pattern characterization for level 3/2 of the DDH (this implies the decidability of this level) decidability of the Boolean hierarchy over level 1/2 of the DDH definition of decidable hierarchies having close relations to the DDH and STH Moreover, we prove/reprove the decidability of the levels 1/2 and 3/2 of both hierarchies in terms of forbidden-pattern characterizations. We show the decidability of the Boolean hierarchies over level 1/2 of the DDH and over level 1/2 of the STH. A technique which uses word extensions plays the central role in the proofs of these results. With this technique it is possible to treat the levels 1/2 and 3/2 of both hierarchies in a uniform way. Furthermore, it can be used to prove the decidability of the mentioned Boolean hierarchies. Among other things we provide a combinatorial tool that allows to partition words of arbitrary length into factors of bounded length such that every second factor u leads to a loop with label u in a given finite automaton.}, subject = {Automatentheorie}, language = {en} } @article{GlemarecLugrinBosseretal.2022, author = {Gl{\´e}marec, Yann and Lugrin, Jean-Luc and Bosser, Anne-Gwenn and Buche, C{\´e}dric and Latoschik, Marc Erich}, title = {Controlling the stage: a high-level control system for virtual audiences in Virtual Reality}, series = {Frontiers in Virtual Reality}, volume = {3}, journal = {Frontiers in Virtual Reality}, issn = {2673-4192}, doi = {10.3389/frvir.2022.876433}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284601}, year = {2022}, abstract = {This article presents a novel method for controlling a virtual audience system (VAS) in Virtual Reality (VR) application, called STAGE, which has been originally designed for supervised public speaking training in university seminars dedicated to the preparation and delivery of scientific talks. We are interested in creating pedagogical narratives: narratives encompass affective phenomenon and rather than organizing events changing the course of a training scenario, pedagogical plans using our system focus on organizing the affects it arouses for the trainees. Efficiently controlling a virtual audience towards a specific training objective while evaluating the speaker's performance presents a challenge for a seminar instructor: the high level of cognitive and physical demands required to be able to control the virtual audience, whilst evaluating speaker's performance, adjusting and allowing it to quickly react to the user's behaviors and interactions. It is indeed a critical limitation of a number of existing systems that they rely on a Wizard of Oz approach, where the tutor drives the audience in reaction to the user's performance. We address this problem by integrating with a VAS a high-level control component for tutors, which allows using predefined audience behavior rules, defining custom ones, as well as intervening during run-time for finer control of the unfolding of the pedagogical plan. At its core, this component offers a tool to program, select, modify and monitor interactive training narratives using a high-level representation. The STAGE offers the following features: i) a high-level API to program pedagogical narratives focusing on a specific public speaking situation and training objectives, ii) an interactive visualization interface iii) computation and visualization of user metrics, iv) a semi-autonomous virtual audience composed of virtual spectators with automatic reactions to the speaker and surrounding spectators while following the pedagogical plan V) and the possibility for the instructor to embody a virtual spectator to ask questions or guide the speaker from within the Virtual Environment. We present here the design, and implementation of the tutoring system and its integration in STAGE, and discuss its reception by end-users.}, language = {en} } @article{GlemarecLugrinBosseretal.2021, author = {Gl{\´e}marec, Yann and Lugrin, Jean-Luc and Bosser, Anne-Gwenn and Collins Jackson, Aryana and Buche, C{\´e}dric and Latoschik, Marc Erich}, title = {Indifferent or Enthusiastic? Virtual Audiences Animation and Perception in Virtual Reality}, series = {Frontiers in Virtual Reality}, volume = {2}, journal = {Frontiers in Virtual Reality}, doi = {10.3389/frvir.2021.666232}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259328}, pages = {666232}, year = {2021}, abstract = {In this paper, we present a virtual audience simulation system for Virtual Reality (VR). The system implements an audience perception model controlling the nonverbal behaviors of virtual spectators, such as facial expressions or postures. Groups of virtual spectators are animated by a set of nonverbal behavior rules representing a particular audience attitude (e.g., indifferent or enthusiastic). Each rule specifies a nonverbal behavior category: posture, head movement, facial expression and gaze direction as well as three parameters: type, frequency and proportion. In a first user-study, we asked participants to pretend to be a speaker in VR and then create sets of nonverbal behaviour parameters to simulate different attitudes. Participants manipulated the nonverbal behaviours of single virtual spectator to match a specific levels of engagement and opinion toward them. In a second user-study, we used these parameters to design different types of virtual audiences with our nonverbal behavior rules and evaluated their perceptions. Our results demonstrate our system's ability to create virtual audiences with three types of different perceived attitudes: indifferent, critical, enthusiastic. The analysis of the results also lead to a set of recommendations and guidelines regarding attitudes and expressions for future design of audiences for VR therapy and training applications.}, language = {en} } @article{GreubelAndresHennecke2023, author = {Greubel, Andr{\´e} and Andres, Daniela and Hennecke, Martin}, title = {Analyzing reporting on ransomware incidents: a case study}, series = {Social Sciences}, volume = {12}, journal = {Social Sciences}, number = {5}, issn = {2076-0760}, doi = {10.3390/socsci12050265}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313746}, year = {2023}, abstract = {Knowledge about ransomware is important for protecting sensitive data and for participating in public debates about suitable regulation regarding its security. However, as of now, this topic has received little to no attention in most school curricula. As such, it is desirable to analyze what citizens can learn about this topic outside of formal education, e.g., from news articles. This analysis is both relevant to analyzing the public discourse about ransomware, as well as to identify what aspects of this topic should be included in the limited time available for this topic in formal education. Thus, this paper was motivated both by educational and media research. The central goal is to explore how the media reports on this topic and, additionally, to identify potential misconceptions that could stem from this reporting. To do so, we conducted an exploratory case study into the reporting of 109 media articles regarding a high-impact ransomware event: the shutdown of the Colonial Pipeline (located in the east of the USA). We analyzed how the articles introduced central terminology, what details were provided, what details were not, and what (mis-)conceptions readers might receive from them. Our results show that an introduction of the terminology and technical concepts of security is insufficient for a complete understanding of the incident. Most importantly, the articles may lead to four misconceptions about ransomware that are likely to lead to misleading conclusions about the responsibility for the incident and possible political and technical options to prevent such attacks in the future.}, language = {en} } @techreport{GrigorjewDiederichHossfeldetal.2022, type = {Working Paper}, author = {Grigorjew, Alexej and Diederich, Philip and Hoßfeld, Tobias and Kellerer, Wolfgang}, title = {Affordable Measurement Setups for Networking Device Latency with Sub-Microsecond Accuracy}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28075}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280751}, pages = {5}, year = {2022}, abstract = {This document presents a networking latency measurement setup that focuses on affordability and universal applicability, and can provide sub-microsecond accuracy. It explains the prerequisites, hardware choices, and considerations to respect during measurement. In addition, it discusses the necessity for exhaustive latency measurements when dealing with high availability and low latency requirements. Preliminary results show that the accuracy is within ±0.02 μs when used with the Intel I350-T2 network adapter.}, subject = {Datennetz}, language = {en} } @techreport{GrigorjewSchumannDiederichetal.2023, type = {Working Paper}, author = {Grigorjew, Alexej and Schumann, Lukas Kilian and Diederich, Philip and Hoßfeld, Tobias and Kellerer, Wolfgang}, title = {Understanding the Performance of Different Packet Reception and Timestamping Methods in Linux}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32206}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322064}, pages = {5}, year = {2023}, abstract = {This document briefly presents some renowned packet reception techniques for network packets in Linux systems. Further, it compares their performance when measuring packet timestamps with respect to throughput and accuracy. Both software and hardware timestamps are compared, and various parameters are examined, including frame size, link speed, network interface card, and CPU load. The results indicate that hardware timestamping offers significantly better accuracy with no downsides, and that packet reception techniques that avoid system calls offer superior measurement throughput.}, language = {en} } @article{GrohmannHerbstChalbanietal.2020, author = {Grohmann, Johannes and Herbst, Nikolas and Chalbani, Avi and Arian, Yair and Peretz, Noam and Kounev, Samuel}, title = {A Taxonomy of Techniques for SLO Failure Prediction in Software Systems}, series = {Computers}, volume = {9}, journal = {Computers}, number = {1}, issn = {2073-431X}, doi = {10.3390/computers9010010}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200594}, pages = {10}, year = {2020}, abstract = {Failure prediction is an important aspect of self-aware computing systems. Therefore, a multitude of different approaches has been proposed in the literature over the past few years. In this work, we propose a taxonomy for organizing works focusing on the prediction of Service Level Objective (SLO) failures. Our taxonomy classifies related work along the dimensions of the prediction target (e.g., anomaly detection, performance prediction, or failure prediction), the time horizon (e.g., detection or prediction, online or offline application), and the applied modeling type (e.g., time series forecasting, machine learning, or queueing theory). The classification is derived based on a systematic mapping of relevant papers in the area. Additionally, we give an overview of different techniques in each sub-group and address remaining challenges in order to guide future research.}, language = {en} } @techreport{GrossmannHomeyer2023, type = {Working Paper}, author = {Großmann, Marcel and Homeyer, Tobias}, title = {Emulation of Multipath Transmissions in P4 Networks with Kathar{\´a}}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32209}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322095}, pages = {4}, year = {2023}, abstract = {Packets sent over a network can either get lost or reach their destination. Protocols like TCP try to solve this problem by resending the lost packets. However, retransmissions consume a lot of time and are cumbersome for the transmission of critical data. Multipath solutions are quite common to address this reliability issue and are available on almost every layer of the ISO/OSI model. We propose a solution based on a P4 network to duplicate packets in order to send them to their destination via multiple routes. The last network hop ensures that only a single copy of the traffic is further forwarded to its destination by adopting a concept similar to Bloom filters. Besides, if fast delivery is requested we provide a P4 prototype, which randomly forwards the packets over different transmission paths. For reproducibility, we implement our approach in a container-based network emulation system called Kathar{\´a}.}, language = {en} } @techreport{GrossmannLe2023, type = {Working Paper}, author = {Großmann, Marcel and Le, Duy Thanh}, title = {Visualization of Network Emulation Enabled by Kathar{\´a}}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32218}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322189}, pages = {4}, year = {2023}, abstract = {In network research, reproducibility of experiments is not always easy to achieve. Infrastructures are cumbersome to set up or are not available due to vendor-specific devices. Emulators try to overcome those issues to a given extent and are available in different service models. Unfortunately, the usability of emulators requires time-consuming efforts and a deep understanding of their functionality. At first, we analyze to which extent currently available open-source emulators support network configurations and how user-friendly they are. With these insights, we describe, how an ease-to-use emulator is implemented and may run as a Network Emulator as a Service (NEaaS). Therefore, virtualization plays a major role in order to deploy a NEaaS based on Kathar{\´a}.}, language = {en} }