@techreport{NavadeMaileGerman2023, type = {Working Paper}, author = {Navade, Piyush and Maile, Lisa and German, Reinhard}, title = {Multiple DCLC Routing Algorithms for Ultra-Reliable and Time-Sensitive Applications}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32217}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322177}, pages = {4}, year = {2023}, abstract = {This paper discusses the problem of finding multiple shortest disjoint paths in modern communication networks, which is essential for ultra-reliable and time-sensitive applications. Dijkstra's algorithm has been a popular solution for the shortest path problem, but repetitive use of it to find multiple paths is not scalable. The Multiple Disjoint Path Algorithm (MDPAlg), published in 2021, proposes the use of a single full graph to construct multiple disjoint paths. This paper proposes modifications to the algorithm to include a delay constraint, which is important in time-sensitive applications. Different delay constraint least-cost routing algorithms are compared in a comprehensive manner to evaluate the benefits of the adapted MDPAlg algorithm. Fault tolerance, and thereby reliability, is ensured by generating multiple link-disjoint paths from source to destination.}, language = {en} } @techreport{SimonGallenmuellerCarle2023, type = {Working Paper}, author = {Simon, Manuel and Gallenm{\"u}ller, Sebastian and Carle, Georg}, title = {Never Miss Twice - Add-On-Miss Table Updates in Software Data Planes}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32207}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322071}, pages = {5}, year = {2023}, abstract = {State Management at line rate is crucial for critical applications in next-generation networks. P4 is a language used in software-defined networking to program the data plane. The data plane can profit in many circumstances when it is allowed to manage its state without any detour over a controller. This work is based on a previous study by investigating the potential and performance of add-on-miss insertions of state by the data plane. The state keeping capabilities of P4 are limited regarding the amount of data and the update frequency. We follow the tentative specification of an upcoming portable-NIC-architecture and implement these changes into the software P4 target T4P4S. We show that insertions are possible with only a slight overhead compared to lookups and evaluate the influence of the rate of insertions on their latency.}, language = {en} } @techreport{BrischKasslerVestinetal.2023, type = {Working Paper}, author = {Brisch, Fabian and Kassler, Andreas and Vestin, Jonathan and Pieska, Marcus and Amend, Markus}, title = {Accelerating Transport Layer Multipath Packet Scheduling for 5G-ATSSS}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32205}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322052}, pages = {4}, year = {2023}, abstract = {Utilizing multiple access networks such as 5G, 4G, and Wi-Fi simultaneously can lead to increased robustness, resiliency, and capacity for mobile users. However, transparently implementing packet distribution over multiple paths within the core of the network faces multiple challenges including scalability to a large number of customers, low latency, and high-capacity packet processing requirements. In this paper, we offload congestion-aware multipath packet scheduling to a smartNIC. However, such hardware acceleration faces multiple challenges due to programming language and platform limitations. We implement different multipath schedulers in P4 with different complexity in order to cope with dynamically changing path capacities. Using testbed measurements, we show that our CMon scheduler, which monitors path congestion in the data plane and dynamically adjusts scheduling weights for the different paths based on path state information, can process more than 3.5 Mpps packets 25 μs latency.}, language = {en} } @techreport{HasslingerNtougiasHasslingeretal.2023, type = {Working Paper}, author = {Hasslinger, Gerhard and Ntougias, Konstantinos and Hasslinger, Frank and Hohlfeld, Oliver}, title = {Performance Analysis of Basic Web Caching Strategies (LFU, LRU, FIFO, ...) with Time-To-Live Data Validation}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32204}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322048}, pages = {5}, year = {2023}, abstract = {Web caches often use a Time-to-live (TTL) limit to validate data consistency with web servers. We study the impact of TTL constraints on the hit ratio of basic strategies in caches of fixed size. We derive analytical results and confirm their accuracy in comparison to simulations. We propose a score-based caching method with awareness of the current TTL per data for improving the hit ratio close to the upper bound.}, language = {en} } @techreport{FundaMarinGarciaGermanetal.2023, type = {Working Paper}, author = {Funda, Christoph and Mar{\´i}n Garc{\´i}a, Pablo and German, Reinhard and Hielscher, Kai-Steffen}, title = {Online Algorithm for Arrival \& Service Curve Estimation}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32211}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322112}, pages = {5}, year = {2023}, abstract = {This paper presents a novel concept to extend state-of-the-art buffer monitoring with additional measures to estimate service-curves. The online algorithm for service-curve estimation replaces the state-of-the-art timestamp logging, as we expect it to overcome the main disadvantages of generating a huge amount of data and using a lot of CPU resources to store the data to a file during operation. We prove the accuracy of the online-algorithm offline with timestamp data and compare the derived bounds to the measured delay and backlog. We also do a proof-of- concept of the online-algorithm, implement it in LabVIEW and compare its performance to the timestamp logging by CPU load and data-size of the log-file. However, the implementation is still work-in-progress.}, language = {en} } @techreport{MazighBeausencourtBodeetal.2023, type = {Working Paper}, author = {Mazigh, Sadok Mehdi and Beausencourt, Marcel and Bode, Max Julius and Scheffler, Thomas}, title = {Using P4-INT on Tofino for Measuring Device Performance Characteristics in a Network Lab}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32208}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322084}, pages = {4}, year = {2023}, abstract = {This paper presents a prototypical implementation of the In-band Network Telemetry (INT) specification in P4 and demonstrates a use case, where a Tofino Switch is used to measure device and network performance in a lab setting. This work is based on research activities in the area of P4 data plane programming conducted at the network lab of HTW Berlin.}, language = {en} } @techreport{GrossmannHomeyer2023, type = {Working Paper}, author = {Großmann, Marcel and Homeyer, Tobias}, title = {Emulation of Multipath Transmissions in P4 Networks with Kathar{\´a}}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32209}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322095}, pages = {4}, year = {2023}, abstract = {Packets sent over a network can either get lost or reach their destination. Protocols like TCP try to solve this problem by resending the lost packets. However, retransmissions consume a lot of time and are cumbersome for the transmission of critical data. Multipath solutions are quite common to address this reliability issue and are available on almost every layer of the ISO/OSI model. We propose a solution based on a P4 network to duplicate packets in order to send them to their destination via multiple routes. The last network hop ensures that only a single copy of the traffic is further forwarded to its destination by adopting a concept similar to Bloom filters. Besides, if fast delivery is requested we provide a P4 prototype, which randomly forwards the packets over different transmission paths. For reproducibility, we implement our approach in a container-based network emulation system called Kathar{\´a}.}, language = {en} } @techreport{GrossmannLe2023, type = {Working Paper}, author = {Großmann, Marcel and Le, Duy Thanh}, title = {Visualization of Network Emulation Enabled by Kathar{\´a}}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32218}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322189}, pages = {4}, year = {2023}, abstract = {In network research, reproducibility of experiments is not always easy to achieve. Infrastructures are cumbersome to set up or are not available due to vendor-specific devices. Emulators try to overcome those issues to a given extent and are available in different service models. Unfortunately, the usability of emulators requires time-consuming efforts and a deep understanding of their functionality. At first, we analyze to which extent currently available open-source emulators support network configurations and how user-friendly they are. With these insights, we describe, how an ease-to-use emulator is implemented and may run as a Network Emulator as a Service (NEaaS). Therefore, virtualization plays a major role in order to deploy a NEaaS based on Kathar{\´a}.}, language = {en} } @techreport{DworzakGrossmannLe2023, type = {Working Paper}, author = {Dworzak, Manuel and Großmann, Marcel and Le, Duy Thanh}, title = {Federated Learning for Service Placement in Fog and Edge Computing}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32219}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322193}, pages = {4}, year = {2023}, abstract = {Service orchestration requires enormous attention and is a struggle nowadays. Of course, virtualization provides a base level of abstraction for services to be deployable on a lot of infrastructures. With container virtualization, the trend to migrate applications to a micro-services level in order to be executable in Fog and Edge Computing environments increases manageability and maintenance efforts rapidly. Similarly, network virtualization adds effort to calibrate IP flows for Software-Defined Networks and eventually route it by means of Network Function Virtualization. Nevertheless, there are concepts like MAPE-K to support micro-service distribution in next-generation cloud and network environments. We want to explore, how a service distribution can be improved by adopting machine learning concepts for infrastructure or service changes. Therefore, we show how federated machine learning is integrated into a cloud-to-fog-continuum without burdening single nodes.}, language = {en} } @techreport{MartinoDeutschmannHielscheretal.2023, type = {Working Paper}, author = {Martino, Luigi and Deutschmann, J{\"o}rg and Hielscher, Kai-Steffen and German, Reinhard}, title = {Towards a 5G Satellite Communication Framework for V2X}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32214}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322148}, pages = {5}, year = {2023}, abstract = {In recent years, satellite communication has been expanding its field of application in the world of computer networks. This paper aims to provide an overview of how a typical scenario involving 5G Non-Terrestrial Networks (NTNs) for vehicle to everything (V2X) applications is characterized. In particular, a first implementation of a system that integrates them together will be described. Such a framework will later be used to evaluate the performance of applications such as Vehicle Monitoring (VM), Remote Driving (RD), Voice Over IP (VoIP), and others. Different configuration scenarios such as Low Earth Orbit and Geostationary Orbit will be considered.}, language = {en} }