@article{SeufertPoigneeSeufertetal.2023, author = {Seufert, Anika and Poign{\´e}e, Fabian and Seufert, Michael and Hoßfeld, Tobias}, title = {Share and multiply: modeling communication and generated traffic in private WhatsApp groups}, series = {IEEE Access}, volume = {11}, journal = {IEEE Access}, doi = {10.1109/ACCESS.2023.3254913}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349430}, pages = {25401-25414}, year = {2023}, abstract = {Group-based communication is a highly popular communication paradigm, which is especially prominent in mobile instant messaging (MIM) applications, such as WhatsApp. Chat groups in MIM applications facilitate the sharing of various types of messages (e.g., text, voice, image, video) among a large number of participants. As each message has to be transmitted to every other member of the group, which multiplies the traffic, this has a massive impact on the underlying communication networks. However, most chat groups are private and network operators cannot obtain deep insights into MIM communication via network measurements due to end-to-end encryption. Thus, the generation of traffic is not well understood, given that it depends on sizes of communication groups, speed of communication, and exchanged message types. In this work, we provide a huge data set of 5,956 private WhatsApp chat histories, which contains over 76 million messages from more than 117,000 users. We describe and model the properties of chat groups and users, and the communication within these chat groups, which gives unprecedented insights into private MIM communication. In addition, we conduct exemplary measurements for the most popular message types, which empower the provided models to estimate the traffic over time in a chat group.}, language = {en} } @techreport{HerrmannRizk2023, type = {Working Paper}, author = {Herrmann, Martin and Rizk, Amr}, title = {On Data Plane Multipath Scheduling for Connected Mobility Applications}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, edition = {aktualisierte Version}, doi = {10.25972/OPUS-35344}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-353444}, pages = {4}, year = {2023}, abstract = {Cooperative, connected and automated mobility (CCAM) systems depend on a reliable communication to provide their service and more crucially to ensure the safety of users. One way to ensure the reliability of a data transmission is to use multiple transmission technologies in combination with redundant flows. In this paper, we describe a system requiring multipath communication in the context of CCAM. To this end, we introduce a data plane-based scheduler that uses replication and integration modules to provide redundant and transparent multipath communication. We provide an analytical model for the full replication module of the system and give an overview of how and where the data-plane scheduler components can be realized.}, language = {en} } @article{KrenzerHeilFittingetal., author = {Krenzer, Adrian and Heil, Stefan and Fitting, Daniel and Matti, Safa and Zoller, Wolfram G. and Hann, Alexander and Puppe, Frank}, title = {Automated classification of polyps using deep learning architectures and few-shot learning}, series = {BMC Medical Imaging}, volume = {23}, journal = {BMC Medical Imaging}, doi = {10.1186/s12880-023-01007-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357465}, abstract = {Background Colorectal cancer is a leading cause of cancer-related deaths worldwide. The best method to prevent CRC is a colonoscopy. However, not all colon polyps have the risk of becoming cancerous. Therefore, polyps are classified using different classification systems. After the classification, further treatment and procedures are based on the classification of the polyp. Nevertheless, classification is not easy. Therefore, we suggest two novel automated classifications system assisting gastroenterologists in classifying polyps based on the NICE and Paris classification. Methods We build two classification systems. One is classifying polyps based on their shape (Paris). The other classifies polyps based on their texture and surface patterns (NICE). A two-step process for the Paris classification is introduced: First, detecting and cropping the polyp on the image, and secondly, classifying the polyp based on the cropped area with a transformer network. For the NICE classification, we design a few-shot learning algorithm based on the Deep Metric Learning approach. The algorithm creates an embedding space for polyps, which allows classification from a few examples to account for the data scarcity of NICE annotated images in our database. Results For the Paris classification, we achieve an accuracy of 89.35 \%, surpassing all papers in the literature and establishing a new state-of-the-art and baseline accuracy for other publications on a public data set. For the NICE classification, we achieve a competitive accuracy of 81.13 \% and demonstrate thereby the viability of the few-shot learning paradigm in polyp classification in data-scarce environments. Additionally, we show different ablations of the algorithms. Finally, we further elaborate on the explainability of the system by showing heat maps of the neural network explaining neural activations. Conclusion Overall we introduce two polyp classification systems to assist gastroenterologists. We achieve state-of-the-art performance in the Paris classification and demonstrate the viability of the few-shot learning paradigm in the NICE classification, addressing the prevalent data scarcity issues faced in medical machine learning.}, language = {en} } @article{BayerPruckner2023, author = {Bayer, Daniel and Pruckner, Marco}, title = {A digital twin of a local energy system based on real smart meter data}, series = {Energy Informatics}, volume = {6}, journal = {Energy Informatics}, doi = {10.1186/s42162-023-00263-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357456}, year = {2023}, abstract = {The steadily increasing usage of smart meters generates a valuable amount of high-resolution data about the individual energy consumption and production of local energy systems. Private households install more and more photovoltaic systems, battery storage and big consumers like heat pumps. Thus, our vision is to augment these collected smart meter time series of a complete system (e.g., a city, town or complex institutions like airports) with simulatively added previously named components. We, therefore, propose a novel digital twin of such an energy system based solely on a complete set of smart meter data including additional building data. Based on the additional geospatial data, the twin is intended to represent the addition of the abovementioned components as realistically as possible. Outputs of the twin can be used as a decision support for either system operators where to strengthen the system or for individual households where and how to install photovoltaic systems and batteries. Meanwhile, the first local energy system operators had such smart meter data of almost all residential consumers for several years. We acquire those of an exemplary operator and discuss a case study presenting some features of our digital twin and highlighting the value of the combination of smart meter and geospatial data.}, language = {en} } @article{HentschelKobsHotho2022, author = {Hentschel, Simon and Kobs, Konstantin and Hotho, Andreas}, title = {CLIP knows image aesthetics}, series = {Frontiers in Artificial Intelligence}, volume = {5}, journal = {Frontiers in Artificial Intelligence}, issn = {2624-8212}, doi = {10.3389/frai.2022.976235}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297150}, year = {2022}, abstract = {Most Image Aesthetic Assessment (IAA) methods use a pretrained ImageNet classification model as a base to fine-tune. We hypothesize that content classification is not an optimal pretraining task for IAA, since the task discourages the extraction of features that are useful for IAA, e.g., composition, lighting, or style. On the other hand, we argue that the Contrastive Language-Image Pretraining (CLIP) model is a better base for IAA models, since it has been trained using natural language supervision. Due to the rich nature of language, CLIP needs to learn a broad range of image features that correlate with sentences describing the image content, composition, environments, and even subjective feelings about the image. While it has been shown that CLIP extracts features useful for content classification tasks, its suitability for tasks that require the extraction of style-based features like IAA has not yet been shown. We test our hypothesis by conducting a three-step study, investigating the usefulness of features extracted by CLIP compared to features obtained from the last layer of a comparable ImageNet classification model. In each step, we get more computationally expensive. First, we engineer natural language prompts that let CLIP assess an image's aesthetic without adjusting any weights in the model. To overcome the challenge that CLIP's prompting only is applicable to classification tasks, we propose a simple but effective strategy to convert multiple prompts to a continuous scalar as required when predicting an image's mean aesthetic score. Second, we train a linear regression on the AVA dataset using image features obtained by CLIP's image encoder. The resulting model outperforms a linear regression trained on features from an ImageNet classification model. It also shows competitive performance with fully fine-tuned networks based on ImageNet, while only training a single layer. Finally, by fine-tuning CLIP's image encoder on the AVA dataset, we show that CLIP only needs a fraction of training epochs to converge, while also performing better than a fine-tuned ImageNet model. Overall, our experiments suggest that CLIP is better suited as a base model for IAA methods than ImageNet pretrained networks.}, language = {en} } @article{GuptaMinochaThapaetal.2022, author = {Gupta, Shishir K. and Minocha, Rashmi and Thapa, Prithivi Jung and Srivastava, Mugdha and Dandekar, Thomas}, title = {Role of the pangolin in origin of SARS-CoV-2: an evolutionary perspective}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {16}, issn = {1422-0067}, doi = {10.3390/ijms23169115}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285995}, year = {2022}, abstract = {After the recent emergence of SARS-CoV-2 infection, unanswered questions remain related to its evolutionary history, path of transmission or divergence and role of recombination. There is emerging evidence on amino acid substitutions occurring in key residues of the receptor-binding domain of the spike glycoprotein in coronavirus isolates from bat and pangolins. In this article, we summarize our current knowledge on the origin of SARS-CoV-2. We also analyze the host ACE2-interacting residues of the receptor-binding domain of spike glycoprotein in SARS-CoV-2 isolates from bats, and compare it to pangolin SARS-CoV-2 isolates collected from Guangdong province (GD Pangolin-CoV) and Guangxi autonomous regions (GX Pangolin-CoV) of South China. Based on our comparative analysis, we support the view that the Guangdong Pangolins are the intermediate hosts that adapted the SARS-CoV-2 and represented a significant evolutionary link in the path of transmission of SARS-CoV-2 virus. We also discuss the role of intermediate hosts in the origin of Omicron.}, language = {en} } @phdthesis{Bleier2023, author = {Bleier, Michael}, title = {Underwater Laser Scanning - Refractive Calibration, Self-calibration and Mapping for 3D Reconstruction}, isbn = {978-3-945459-45-4}, doi = {10.25972/OPUS-32269}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322693}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {There is great interest in affordable, precise and reliable metrology underwater: Archaeologists want to document artifacts in situ with high detail. In marine research, biologists require the tools to monitor coral growth and geologists need recordings to model sediment transport. Furthermore, for offshore construction projects, maintenance and inspection millimeter-accurate measurements of defects and offshore structures are essential. While the process of digitizing individual objects and complete sites on land is well understood and standard methods, such as Structure from Motion or terrestrial laser scanning, are regularly applied, precise underwater surveying with high resolution is still a complex and difficult task. Applying optical scanning techniques in water is challenging due to reduced visibility caused by turbidity and light absorption. However, optical underwater scanners provide significant advantages in terms of achievable resolution and accuracy compared to acoustic systems. This thesis proposes an underwater laser scanning system and the algorithms for creating dense and accurate 3D scans in water. It is based on laser triangulation and the main optical components are an underwater camera and a cross-line laser projector. The prototype is configured with a motorized yaw axis for capturing scans from a tripod. Alternatively, it is mounted to a moving platform for mobile mapping. The main focus lies on the refractive calibration of the underwater camera and laser projector, the image processing and 3D reconstruction. For highest accuracy, the refraction at the individual media interfaces must be taken into account. This is addressed by an optimization-based calibration framework using a physical-geometric camera model derived from an analytical formulation of a ray-tracing projection model. In addition to scanning underwater structures, this work presents the 3D acquisition of semi-submerged structures and the correction of refraction effects. As in-situ calibration in water is complex and time-consuming, the challenge of transferring an in-air scanner calibration to water without re-calibration is investigated, as well as self-calibration techniques for structured light. The system was successfully deployed in various configurations for both static scanning and mobile mapping. An evaluation of the calibration and 3D reconstruction using reference objects and a comparison of free-form surfaces in clear water demonstrate the high accuracy potential in the range of one millimeter to less than one centimeter, depending on the measurement distance. Mobile underwater mapping and motion compensation based on visual-inertial odometry is demonstrated using a new optical underwater scanner based on fringe projection. Continuous registration of individual scans allows the acquisition of 3D models from an underwater vehicle. RGB images captured in parallel are used to create 3D point clouds of underwater scenes in full color. 3D maps are useful to the operator during the remote control of underwater vehicles and provide the building blocks to enable offshore inspection and surveying tasks. The advancing automation of the measurement technology will allow non-experts to use it, significantly reduce acquisition time and increase accuracy, making underwater metrology more cost-effective.}, subject = {Selbstkalibrierung}, language = {en} } @techreport{GrossmannLe2023, type = {Working Paper}, author = {Großmann, Marcel and Le, Duy Thanh}, title = {Visualization of Network Emulation Enabled by Kathar{\´a}}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32218}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322189}, pages = {4}, year = {2023}, abstract = {In network research, reproducibility of experiments is not always easy to achieve. Infrastructures are cumbersome to set up or are not available due to vendor-specific devices. Emulators try to overcome those issues to a given extent and are available in different service models. Unfortunately, the usability of emulators requires time-consuming efforts and a deep understanding of their functionality. At first, we analyze to which extent currently available open-source emulators support network configurations and how user-friendly they are. With these insights, we describe, how an ease-to-use emulator is implemented and may run as a Network Emulator as a Service (NEaaS). Therefore, virtualization plays a major role in order to deploy a NEaaS based on Kathar{\´a}.}, language = {en} } @techreport{DworzakGrossmannLe2023, type = {Working Paper}, author = {Dworzak, Manuel and Großmann, Marcel and Le, Duy Thanh}, title = {Federated Learning for Service Placement in Fog and Edge Computing}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32219}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322193}, pages = {4}, year = {2023}, abstract = {Service orchestration requires enormous attention and is a struggle nowadays. Of course, virtualization provides a base level of abstraction for services to be deployable on a lot of infrastructures. With container virtualization, the trend to migrate applications to a micro-services level in order to be executable in Fog and Edge Computing environments increases manageability and maintenance efforts rapidly. Similarly, network virtualization adds effort to calibrate IP flows for Software-Defined Networks and eventually route it by means of Network Function Virtualization. Nevertheless, there are concepts like MAPE-K to support micro-service distribution in next-generation cloud and network environments. We want to explore, how a service distribution can be improved by adopting machine learning concepts for infrastructure or service changes. Therefore, we show how federated machine learning is integrated into a cloud-to-fog-continuum without burdening single nodes.}, language = {en} } @article{GreubelAndresHennecke2023, author = {Greubel, Andr{\´e} and Andres, Daniela and Hennecke, Martin}, title = {Analyzing reporting on ransomware incidents: a case study}, series = {Social Sciences}, volume = {12}, journal = {Social Sciences}, number = {5}, issn = {2076-0760}, doi = {10.3390/socsci12050265}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313746}, year = {2023}, abstract = {Knowledge about ransomware is important for protecting sensitive data and for participating in public debates about suitable regulation regarding its security. However, as of now, this topic has received little to no attention in most school curricula. As such, it is desirable to analyze what citizens can learn about this topic outside of formal education, e.g., from news articles. This analysis is both relevant to analyzing the public discourse about ransomware, as well as to identify what aspects of this topic should be included in the limited time available for this topic in formal education. Thus, this paper was motivated both by educational and media research. The central goal is to explore how the media reports on this topic and, additionally, to identify potential misconceptions that could stem from this reporting. To do so, we conducted an exploratory case study into the reporting of 109 media articles regarding a high-impact ransomware event: the shutdown of the Colonial Pipeline (located in the east of the USA). We analyzed how the articles introduced central terminology, what details were provided, what details were not, and what (mis-)conceptions readers might receive from them. Our results show that an introduction of the terminology and technical concepts of security is insufficient for a complete understanding of the incident. Most importantly, the articles may lead to four misconceptions about ransomware that are likely to lead to misleading conclusions about the responsibility for the incident and possible political and technical options to prevent such attacks in the future.}, language = {en} }