@phdthesis{Hopfner2008, author = {Hopfner, Marbod}, title = {Source Code Analysis, Management, and Visualization for PROLOG}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-36300}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {This thesis deals with the management and analysis of source code, which is represented in XML. Using the elementary methods of the XML repository, the XML source code representation is accessed, changed, updated, and saved. We reason about the source code, refactor source code and we visualize dependency graphs for call analysis. The visualized dependencies between files, modules, or packages are used to structure the source code in order to get a system, which is easily to comprehend, to modify and to complete. Sophisticated methods have been developed to slice the source code in order to obtain a working package of a large system, containing only a specific functionality. The basic methods, on which the visualizations and analyses are built on can be changed like changing a plug-in. The visualization methods can be reused in order to handle arbitrary source code representations, e.g., JAML, PHPML, PROLOGML. Dependencies of other context can be visualized, too, e.g., ER diagrams, or website references. The tool SCAV supports source code visualization and analyzing methods.}, subject = {Refactoring}, language = {en} } @article{WienrichKommaVogtetal.2021, author = {Wienrich, Carolin and Komma, Philipp and Vogt, Stephanie and Latoschik, Marc E.}, title = {Spatial Presence in Mixed Realities - Considerations About the Concept, Measures, Design, and Experiments}, series = {Frontiers in Virtual Reality}, volume = {2}, journal = {Frontiers in Virtual Reality}, doi = {10.3389/frvir.2021.694315}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260328}, year = {2021}, abstract = {Plenty of theories, models, measures, and investigations target the understanding of virtual presence, i.e., the sense of presence in immersive Virtual Reality (VR). Other varieties of the so-called eXtended Realities (XR), e.g., Augmented and Mixed Reality (AR and MR) incorporate immersive features to a lesser degree and continuously combine spatial cues from the real physical space and the simulated virtual space. This blurred separation questions the applicability of the accumulated knowledge about the similarities of virtual presence and presence occurring in other varieties of XR, and corresponding outcomes. The present work bridges this gap by analyzing the construct of presence in mixed realities (MR). To achieve this, the following presents (1) a short review of definitions, dimensions, and measurements of presence in VR, and (2) the state of the art views on MR. Additionally, we (3) derived a working definition of MR, extending the Milgram continuum. This definition is based on entities reaching from real to virtual manifestations at one time point. Entities possess different degrees of referential power, determining the selection of the frame of reference. Furthermore, we (4) identified three research desiderata, including research questions about the frame of reference, the corresponding dimension of transportation, and the dimension of realism in MR. Mainly the relationship between the main aspects of virtual presence of immersive VR, i.e., the place-illusion, and the plausibility-illusion, and of the referential power of MR entities are discussed regarding the concept, measures, and design of presence in MR. Finally, (5) we suggested an experimental setup to reveal the research heuristic behind experiments investigating presence in MR. The present work contributes to the theories and the meaning of and approaches to simulate and measure presence in MR. We hypothesize that research about essential underlying factors determining user experience (UX) in MR simulations and experiences is still in its infancy and hopes this article provides an encouraging starting point to tackle related questions.}, language = {en} } @article{WickHarteltPuppe2019, author = {Wick, Christoph and Hartelt, Alexander and Puppe, Frank}, title = {Staff, symbol and melody detection of Medieval manuscripts written in square notation using deep Fully Convolutional Networks}, series = {Applied Sciences}, volume = {9}, journal = {Applied Sciences}, number = {13}, issn = {2076-3417}, doi = {10.3390/app9132646}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197248}, year = {2019}, abstract = {Even today, the automatic digitisation of scanned documents in general, but especially the automatic optical music recognition (OMR) of historical manuscripts, still remains an enormous challenge, since both handwritten musical symbols and text have to be identified. This paper focuses on the Medieval so-called square notation developed in the 11th-12th century, which is already composed of staff lines, staves, clefs, accidentals, and neumes that are roughly spoken connected single notes. The aim is to develop an algorithm that captures both the neumes, and in particular its melody, which can be used to reconstruct the original writing. Our pipeline is similar to the standard OMR approach and comprises a novel staff line and symbol detection algorithm based on deep Fully Convolutional Networks (FCN), which perform pixel-based predictions for either staff lines or symbols and their respective types. Then, the staff line detection combines the extracted lines to staves and yields an F\(_1\) -score of over 99\% for both detecting lines and complete staves. For the music symbol detection, we choose a novel approach that skips the step to identify neumes and instead directly predicts note components (NCs) and their respective affiliation to a neume. Furthermore, the algorithm detects clefs and accidentals. Our algorithm predicts the symbol sequence of a staff with a diplomatic symbol accuracy rate (dSAR) of about 87\%, which includes symbol type and location. If only the NCs without their respective connection to a neume, all clefs and accidentals are of interest, the algorithm reaches an harmonic symbol accuracy rate (hSAR) of approximately 90\%. In general, the algorithm recognises a symbol in the manuscript with an F\(_1\) -score of over 96\%.}, language = {en} } @techreport{SavvidisRothTutsch2022, type = {Working Paper}, author = {Savvidis, Dimitrios and Roth, Robert and Tutsch, Dietmar}, title = {Static Evaluation of a Wheel-Topology for an SDN-based Network Usecase}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28071}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280715}, pages = {3}, year = {2022}, abstract = {The increased occurrence of Software-Defined-Networking (SDN) not only improves the dynamics and maintenance of network architectures, but also opens up new use cases and application possibilities. Based on these observations, we propose a new network topology consisting of a star and a ring topology. This hybrid topology will be called wheel topology in this paper. We have considered the static characteristics of the wheel topology and compare them with known other topologies.}, subject = {Datennetz}, language = {en} } @phdthesis{Travers2007, author = {Travers, Stephen}, title = {Structural Properties of NP-Hard Sets and Uniform Characterisations of Complexity Classes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-27124}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {This thesis is devoted to the study of computational complexity theory, a branch of theoretical computer science. Computational complexity theory investigates the inherent difficulty in designing efficient algorithms for computational problems. By doing so, it analyses the scalability of computational problems and algorithms and places practical limits on what computers can actually accomplish. Computational problems are categorised into complexity classes. Among the most important complexity classes are the class NP and the subclass of NP-complete problems, which comprises many important optimisation problems in the field of operations research. Moreover, with the P-NP-problem, the class NP represents the most important unsolved question in computer science. The first part of this thesis is devoted to the study of NP-complete-, and more generally, NP-hard problems. It aims at improving our understanding of this important complexity class by systematically studying how altering NP-hard sets affects their NP-hardness. This research is related to longstanding open questions concerning the complexity of unions of disjoint NP-complete sets, and the existence of sparse NP-hard sets. The second part of the thesis is also dedicated to complexity classes but takes a different perspective: In a sense, after investigating the interior of complexity classes in the first part, the focus shifts to the description of complexity classes and thereby to the exterior in the second part. It deals with the description of complexity classes through leaf languages, a uniform framework which allows us to characterise a great variety of important complexity classes. The known concepts are complemented by a new leaf-language model. To a certain extent, this new approach combines the advantages of the known models. The presented results give evidence that the connection between the theory of formal languages and computational complexity theory might be closer than formerly known.}, subject = {Berechnungskomplexit{\"a}t}, language = {en} } @article{LeschKoenigKounevetal.2022, author = {Lesch, Veronika and K{\"o}nig, Maximilian and Kounev, Samuel and Stein, Anthony and Krupitzer, Christian}, title = {Tackling the rich vehicle routing problem with nature-inspired algorithms}, series = {Applied Intelligence}, volume = {52}, journal = {Applied Intelligence}, issn = {1573-7497}, doi = {10.1007/s10489-021-03035-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-268942}, pages = {9476-9500}, year = {2022}, abstract = {In the last decades, the classical Vehicle Routing Problem (VRP), i.e., assigning a set of orders to vehicles and planning their routes has been intensively researched. As only the assignment of order to vehicles and their routes is already an NP-complete problem, the application of these algorithms in practice often fails to take into account the constraints and restrictions that apply in real-world applications, the so called rich VRP (rVRP) and are limited to single aspects. In this work, we incorporate the main relevant real-world constraints and requirements. We propose a two-stage strategy and a Timeline algorithm for time windows and pause times, and apply a Genetic Algorithm (GA) and Ant Colony Optimization (ACO) individually to the problem to find optimal solutions. Our evaluation of eight different problem instances against four state-of-the-art algorithms shows that our approach handles all given constraints in a reasonable time.}, language = {en} } @article{AnkenbrandWeberBeckeretal.2016, author = {Ankenbrand, Markus J. and Weber, Lorenz and Becker, Dirk and F{\"o}rster, Frank and Bemm, Felix}, title = {TBro: visualization and management of de novo transcriptomes}, series = {Database}, volume = {2016}, journal = {Database}, doi = {10.1093/database/baw146}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147954}, pages = {baw146}, year = {2016}, abstract = {RNA sequencing (RNA-seq) has become a powerful tool to understand molecular mechanisms and/or developmental programs. It provides a fast, reliable and cost-effective method to access sets of expressed elements in a qualitative and quantitative manner. Especially for non-model organisms and in absence of a reference genome, RNA-seq data is used to reconstruct and quantify transcriptomes at the same time. Even SNPs, InDels, and alternative splicing events are predicted directly from the data without having a reference genome at hand. A key challenge, especially for non-computational personnal, is the management of the resulting datasets, consisting of different data types and formats. Here, we present TBro, a flexible de novo transcriptome browser, tackling this challenge. TBro aggregates sequences, their annotation, expression levels as well as differential testing results. It provides an easy-to-use interface to mine the aggregated data and generate publication-ready visualizations. Additionally, it supports users with an intuitive cart system, that helps collecting and analysing biological meaningful sets of transcripts. TBro's modular architecture allows easy extension of its functionalities in the future. Especially, the integration of new data types such as proteomic quantifications or array-based gene expression data is straightforward. Thus, TBro is a fully featured yet flexible transcriptome browser that supports approaching complex biological questions and enhances collaboration of numerous researchers.}, language = {en} } @phdthesis{Driewer2008, author = {Driewer, Frauke}, title = {Teleoperation Interfaces in Human-Robot Teams}, isbn = {978-3-923959-57-0}, doi = {10.25972/OPUS-2955}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-36351}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Diese Arbeit besch{\"a}ftigt sich mit der Verbesserung von Mensch-Roboter Interaktion in Mensch-Roboter Teams f{\"u}r Teleoperation Szenarien, wie z.B. robotergest{\"u}tzte Feuerwehreins{\"a}tze. Hierbei wird ein Konzept und eine Architektur f{\"u}r ein System zur Unterst{\"u}tzung von Teleoperation von Mensch-Roboter Teams vorgestellt. Die Anforderungen an Informationsaustausch und -verarbeitung, insbesondere f{\"u}r die Anwendung Rettungseinsatz, werden ausgearbeitet. Weiterhin wird das Design der Benutzerschnittstellen f{\"u}r Mensch-Roboter Teams dargestellt und Prinzipien f{\"u}r Teleoperation-Systeme und Benutzerschnittstellen erarbeitet. Alle Studien und Ans{\"a}tze werden in einem Prototypen-System implementiert und in verschiedenen Benutzertests abgesichert. Erweiterungsm{\"o}glichkeiten zum Einbinden von 3D Sensordaten und die Darstellung auf Stereovisualisierungssystemen werden gezeigt.}, subject = {Robotik}, language = {en} } @techreport{KounevBrosigHuber2014, author = {Kounev, Samuel and Brosig, Fabian and Huber, Nikolaus}, title = {The Descartes Modeling Language}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-104887}, pages = {91}, year = {2014}, abstract = {This technical report introduces the Descartes Modeling Language (DML), a new architecture-level modeling language for modeling Quality-of-Service (QoS) and resource management related aspects of modern dynamic IT systems, infrastructures and services. DML is designed to serve as a basis for self-aware resource management during operation ensuring that system QoS requirements are continuously satisfied while infrastructure resources are utilized as efficiently as possible.}, subject = {Ressourcenmanagement}, language = {en} } @article{KunzLiangNillaetal.2016, author = {Kunz, Meik and Liang, Chunguang and Nilla, Santosh and Cecil, Alexander and Dandekar, Thomas}, title = {The drug-minded protein interaction database (DrumPID) for efficient target analysis and drug development}, series = {Database}, volume = {2016}, journal = {Database}, doi = {10.1093/database/baw041}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147369}, pages = {baw041}, year = {2016}, abstract = {The drug-minded protein interaction database (DrumPID) has been designed to provide fast, tailored information on drugs and their protein networks including indications, protein targets and side-targets. Starting queries include compound, target and protein interactions and organism-specific protein families. Furthermore, drug name, chemical structures and their SMILES notation, affected proteins (potential drug targets), organisms as well as diseases can be queried including various combinations and refinement of searches. Drugs and protein interactions are analyzed in detail with reference to protein structures and catalytic domains, related compound structures as well as potential targets in other organisms. DrumPID considers drug functionality, compound similarity, target structure, interactome analysis and organismic range for a compound, useful for drug development, predicting drug side-effects and structure-activity relationships.}, language = {en} }