@article{ReinhardHelmerichBorasetal.2022, author = {Reinhard, Sebastian and Helmerich, Dominic A. and Boras, Dominik and Sauer, Markus and Kollmannsberger, Philip}, title = {ReCSAI: recursive compressed sensing artificial intelligence for confocal lifetime localization microscopy}, series = {BMC Bioinformatics}, volume = {23}, journal = {BMC Bioinformatics}, number = {1}, doi = {10.1186/s12859-022-05071-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-299768}, year = {2022}, abstract = {Background Localization-based super-resolution microscopy resolves macromolecular structures down to a few nanometers by computationally reconstructing fluorescent emitter coordinates from diffraction-limited spots. The most commonly used algorithms are based on fitting parametric models of the point spread function (PSF) to a measured photon distribution. These algorithms make assumptions about the symmetry of the PSF and thus, do not work well with irregular, non-linear PSFs that occur for example in confocal lifetime imaging, where a laser is scanned across the sample. An alternative method for reconstructing sparse emitter sets from noisy, diffraction-limited images is compressed sensing, but due to its high computational cost it has not yet been widely adopted. Deep neural network fitters have recently emerged as a new competitive method for localization microscopy. They can learn to fit arbitrary PSFs, but require extensive simulated training data and do not generalize well. A method to efficiently fit the irregular PSFs from confocal lifetime localization microscopy combining the advantages of deep learning and compressed sensing would greatly improve the acquisition speed and throughput of this method. Results Here we introduce ReCSAI, a compressed sensing neural network to reconstruct localizations for confocal dSTORM, together with a simulation tool to generate training data. We implemented and compared different artificial network architectures, aiming to combine the advantages of compressed sensing and deep learning. We found that a U-Net with a recursive structure inspired by iterative compressed sensing showed the best results on realistic simulated datasets with noise, as well as on real experimentally measured confocal lifetime scanning data. Adding a trainable wavelet denoising layer as prior step further improved the reconstruction quality. Conclusions Our deep learning approach can reach a similar reconstruction accuracy for confocal dSTORM as frame binning with traditional fitting without requiring the acquisition of multiple frames. In addition, our work offers generic insights on the reconstruction of sparse measurements from noisy experimental data by combining compressed sensing and deep learning. We provide the trained networks, the code for network training and inference as well as the simulation tool as python code and Jupyter notebooks for easy reproducibility.}, language = {en} } @article{WamserSeufertHalletal.2021, author = {Wamser, Florian and Seufert, Anika and Hall, Andrew and Wunderer, Stefan and Hoßfeld, Tobias}, title = {Valid statements by the crowd: statistical measures for precision in crowdsourced mobile measurements}, series = {Network}, volume = {1}, journal = {Network}, number = {2}, issn = {2673-8732}, doi = {10.3390/network1020013}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284154}, pages = {215 -- 232}, year = {2021}, abstract = {Crowdsourced network measurements (CNMs) are becoming increasingly popular as they assess the performance of a mobile network from the end user's perspective on a large scale. Here, network measurements are performed directly on the end-users' devices, thus taking advantage of the real-world conditions end-users encounter. However, this type of uncontrolled measurement raises questions about its validity and reliability. The problem lies in the nature of this type of data collection. In CNMs, mobile network subscribers are involved to a large extent in the measurement process, and collect data themselves for the operator. The collection of data on user devices in arbitrary locations and at uncontrolled times requires means to ensure validity and reliability. To address this issue, our paper defines concepts and guidelines for analyzing the precision of CNMs; specifically, the number of measurements required to make valid statements. In addition to the formal definition of the aspect, we illustrate the problem and use an extensive sample data set to show possible assessment approaches. This data set consists of more than 20.4 million crowdsourced mobile measurements from across France, measured by a commercial data provider.}, language = {en} } @article{BencurovaShityakovSchaacketal.2022, author = {Bencurova, Elena and Shityakov, Sergey and Schaack, Dominik and Kaltdorf, Martin and Sarukhanyan, Edita and Hilgarth, Alexander and Rath, Christin and Montenegro, Sergio and Roth, G{\"u}nter and Lopez, Daniel and Dandekar, Thomas}, title = {Nanocellulose composites as smart devices with chassis, light-directed DNA Storage, engineered electronic properties, and chip integration}, series = {Frontiers in Bioengineering and Biotechnology}, volume = {10}, journal = {Frontiers in Bioengineering and Biotechnology}, issn = {2296-4185}, doi = {10.3389/fbioe.2022.869111}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-283033}, year = {2022}, abstract = {The rapid development of green and sustainable materials opens up new possibilities in the field of applied research. Such materials include nanocellulose composites that can integrate many components into composites and provide a good chassis for smart devices. In our study, we evaluate four approaches for turning a nanocellulose composite into an information storage or processing device: 1) nanocellulose can be a suitable carrier material and protect information stored in DNA. 2) Nucleotide-processing enzymes (polymerase and exonuclease) can be controlled by light after fusing them with light-gating domains; nucleotide substrate specificity can be changed by mutation or pH change (read-in and read-out of the information). 3) Semiconductors and electronic capabilities can be achieved: we show that nanocellulose is rendered electronic by iodine treatment replacing silicon including microstructures. Nanocellulose semiconductor properties are measured, and the resulting potential including single-electron transistors (SET) and their properties are modeled. Electric current can also be transported by DNA through G-quadruplex DNA molecules; these as well as classical silicon semiconductors can easily be integrated into the nanocellulose composite. 4) To elaborate upon miniaturization and integration for a smart nanocellulose chip device, we demonstrate pH-sensitive dyes in nanocellulose, nanopore creation, and kinase micropatterning on bacterial membranes as well as digital PCR micro-wells. Future application potential includes nano-3D printing and fast molecular processors (e.g., SETs) integrated with DNA storage and conventional electronics. This would also lead to environment-friendly nanocellulose chips for information processing as well as smart nanocellulose composites for biomedical applications and nano-factories.}, language = {en} } @article{KrenzerMakowskiHekaloetal.2022, author = {Krenzer, Adrian and Makowski, Kevin and Hekalo, Amar and Fitting, Daniel and Troya, Joel and Zoller, Wolfram G. and Hann, Alexander and Puppe, Frank}, title = {Fast machine learning annotation in the medical domain: a semi-automated video annotation tool for gastroenterologists}, series = {BioMedical Engineering OnLine}, volume = {21}, journal = {BioMedical Engineering OnLine}, number = {1}, doi = {10.1186/s12938-022-01001-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300231}, year = {2022}, abstract = {Background Machine learning, especially deep learning, is becoming more and more relevant in research and development in the medical domain. For all the supervised deep learning applications, data is the most critical factor in securing successful implementation and sustaining the progress of the machine learning model. Especially gastroenterological data, which often involves endoscopic videos, are cumbersome to annotate. Domain experts are needed to interpret and annotate the videos. To support those domain experts, we generated a framework. With this framework, instead of annotating every frame in the video sequence, experts are just performing key annotations at the beginning and the end of sequences with pathologies, e.g., visible polyps. Subsequently, non-expert annotators supported by machine learning add the missing annotations for the frames in-between. Methods In our framework, an expert reviews the video and annotates a few video frames to verify the object's annotations for the non-expert. In a second step, a non-expert has visual confirmation of the given object and can annotate all following and preceding frames with AI assistance. After the expert has finished, relevant frames will be selected and passed on to an AI model. This information allows the AI model to detect and mark the desired object on all following and preceding frames with an annotation. Therefore, the non-expert can adjust and modify the AI predictions and export the results, which can then be used to train the AI model. Results Using this framework, we were able to reduce workload of domain experts on average by a factor of 20 on our data. This is primarily due to the structure of the framework, which is designed to minimize the workload of the domain expert. Pairing this framework with a state-of-the-art semi-automated AI model enhances the annotation speed further. Through a prospective study with 10 participants, we show that semi-automated annotation using our tool doubles the annotation speed of non-expert annotators compared to a well-known state-of-the-art annotation tool. Conclusion In summary, we introduce a framework for fast expert annotation for gastroenterologists, which reduces the workload of the domain expert considerably while maintaining a very high annotation quality. The framework incorporates a semi-automated annotation system utilizing trained object detection models. The software and framework are open-source.}, language = {en} } @article{KaltdorfSchulzeHelmprobstetal.2017, author = {Kaltdorf, Kristin Verena and Schulze, Katja and Helmprobst, Frederik and Kollmannsberger, Philip and Dandekar, Thomas and Stigloher, Christian}, title = {Fiji macro 3D ART VeSElecT: 3D automated reconstruction tool for vesicle structures of electron tomograms}, series = {PLoS Computational Biology}, volume = {13}, journal = {PLoS Computational Biology}, number = {1}, doi = {10.1371/journal.pcbi.1005317}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172112}, year = {2017}, abstract = {Automatic image reconstruction is critical to cope with steadily increasing data from advanced microscopy. We describe here the Fiji macro 3D ART VeSElecT which we developed to study synaptic vesicles in electron tomograms. We apply this tool to quantify vesicle properties (i) in embryonic Danio rerio 4 and 8 days past fertilization (dpf) and (ii) to compare Caenorhabditis elegans N2 neuromuscular junctions (NMJ) wild-type and its septin mutant (unc-59(e261)). We demonstrate development-specific and mutant-specific changes in synaptic vesicle pools in both models. We confirm the functionality of our macro by applying our 3D ART VeSElecT on zebrafish NMJ showing smaller vesicles in 8 dpf embryos then 4 dpf, which was validated by manual reconstruction of the vesicle pool. Furthermore, we analyze the impact of C. elegans septin mutant unc-59(e261) on vesicle pool formation and vesicle size. Automated vesicle registration and characterization was implemented in Fiji as two macros (registration and measurement). This flexible arrangement allows in particular reducing false positives by an optional manual revision step. Preprocessing and contrast enhancement work on image-stacks of 1nm/pixel in x and y direction. Semi-automated cell selection was integrated. 3D ART VeSElecT removes interfering components, detects vesicles by 3D segmentation and calculates vesicle volume and diameter (spherical approximation, inner/outer diameter). Results are collected in color using the RoiManager plugin including the possibility of manual removal of non-matching confounder vesicles. Detailed evaluation considered performance (detected vesicles) and specificity (true vesicles) as well as precision and recall. We furthermore show gain in segmentation and morphological filtering compared to learning based methods and a large time gain compared to manual segmentation. 3D ART VeSElecT shows small error rates and its speed gain can be up to 68 times faster in comparison to manual annotation. Both automatic and semi-automatic modes are explained including a tutorial.}, language = {en} } @article{SteiningerAbelZiegleretal.2023, author = {Steininger, Michael and Abel, Daniel and Ziegler, Katrin and Krause, Anna and Paeth, Heiko and Hotho, Andreas}, title = {ConvMOS: climate model output statistics with deep learning}, series = {Data Mining and Knowledge Discovery}, volume = {37}, journal = {Data Mining and Knowledge Discovery}, number = {1}, issn = {1384-5810}, doi = {10.1007/s10618-022-00877-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324213}, pages = {136-166}, year = {2023}, abstract = {Climate models are the tool of choice for scientists researching climate change. Like all models they suffer from errors, particularly systematic and location-specific representation errors. One way to reduce these errors is model output statistics (MOS) where the model output is fitted to observational data with machine learning. In this work, we assess the use of convolutional Deep Learning climate MOS approaches and present the ConvMOS architecture which is specifically designed based on the observation that there are systematic and location-specific errors in the precipitation estimates of climate models. We apply ConvMOS models to the simulated precipitation of the regional climate model REMO, showing that a combination of per-location model parameters for reducing location-specific errors and global model parameters for reducing systematic errors is indeed beneficial for MOS performance. We find that ConvMOS models can reduce errors considerably and perform significantly better than three commonly used MOS approaches and plain ResNet and U-Net models in most cases. Our results show that non-linear MOS models underestimate the number of extreme precipitation events, which we alleviate by training models specialized towards extreme precipitation events with the imbalanced regression method DenseLoss. While we consider climate MOS, we argue that aspects of ConvMOS may also be beneficial in other domains with geospatial data, such as air pollution modeling or weather forecasts.}, subject = {Klima}, language = {en} } @article{Puppe2022, author = {Puppe, Frank}, title = {Gesellschaftliche Perspektiven einer fachspezifischen KI f{\"u}r automatisierte Entscheidungen}, series = {Informatik Spektrum}, volume = {45}, journal = {Informatik Spektrum}, number = {2}, issn = {0170-6012}, doi = {10.1007/s00287-022-01443-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324197}, pages = {88-95}, year = {2022}, abstract = {Die k{\"u}nstliche Intelligenz (KI) entwickelt sich rasant und hat bereits eindrucksvolle Erfolge zu verzeichnen, darunter {\"u}bermenschliche Kompetenz in den meisten Spielen und vielen Quizshows, intelligente Suchmaschinen, individualisierte Werbung, Spracherkennung, -ausgabe und -{\"u}bersetzung auf sehr hohem Niveau und hervorragende Leistungen bei der Bildverarbeitung, u. a. in der Medizin, der optischen Zeichenerkennung, beim autonomen Fahren, aber auch beim Erkennen von Menschen auf Bildern und Videos oder bei Deep Fakes f{\"u}r Fotos und Videos. Es ist zu erwarten, dass die KI auch in der Entscheidungsfindung Menschen {\"u}bertreffen wird; ein alter Traum der Expertensysteme, der durch Lernverfahren, Big Data und Zugang zu dem gesammelten Wissen im Web in greifbare N{\"a}he r{\"u}ckt. Gegenstand dieses Beitrags sind aber weniger die technischen Entwicklungen, sondern m{\"o}gliche gesellschaftliche Auswirkungen einer spezialisierten, kompetenten KI f{\"u}r verschiedene Bereiche der autonomen, d. h. nicht nur unterst{\"u}tzenden Entscheidungsfindung: als Fußballschiedsrichter, in der Medizin, f{\"u}r richterliche Entscheidungen und sehr spekulativ auch im politischen Bereich. Dabei werden Vor- und Nachteile dieser Szenarien aus gesellschaftlicher Sicht diskutiert.}, subject = {K{\"u}nstliche Intelligenz}, language = {de} } @article{RiedmannSchaperLugrin2022, author = {Riedmann, Anna and Schaper, Philipp and Lugrin, Birgit}, title = {Integration of a social robot and gamification in adult learning and effects on motivation, engagement and performance}, series = {AI \& Society}, journal = {AI \& Society}, issn = {0951-5666}, doi = {10.1007/s00146-022-01514-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324208}, year = {2022}, abstract = {Learning is a central component of human life and essential for personal development. Therefore, utilizing new technologies in the learning context and exploring their combined potential are considered essential to support self-directed learning in a digital age. A learning environment can be expanded by various technical and content-related aspects. Gamification in the form of elements from video games offers a potential concept to support the learning process. This can be supplemented by technology-supported learning. While the use of tablets is already widespread in the learning context, the integration of a social robot can provide new perspectives on the learning process. However, simply adding new technologies such as social robots or gamification to existing systems may not automatically result in a better learning environment. In the present study, game elements as well as a social robot were integrated separately and conjointly into a learning environment for basic Spanish skills, with a follow-up on retained knowledge. This allowed us to investigate the respective and combined effects of both expansions on motivation, engagement and learning effect. This approach should provide insights into the integration of both additions in an adult learning context. We found that the additions of game elements and the robot did not significantly improve learning, engagement or motivation. Based on these results and a literature review, we outline relevant factors for meaningful integration of gamification and social robots in learning environments in adult learning.}, language = {en} } @article{KempfKrugPuppe2023, author = {Kempf, Sebastian and Krug, Markus and Puppe, Frank}, title = {KIETA: Key-insight extraction from scientific tables}, series = {Applied Intelligence}, volume = {53}, journal = {Applied Intelligence}, number = {8}, issn = {0924-669X}, doi = {10.1007/s10489-022-03957-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324180}, pages = {9513-9530}, year = {2023}, abstract = {An important but very time consuming part of the research process is literature review. An already large and nevertheless growing ground set of publications as well as a steadily increasing publication rate continue to worsen the situation. Consequently, automating this task as far as possible is desirable. Experimental results of systems are key-insights of high importance during literature review and usually represented in form of tables. Our pipeline KIETA exploits these tables to contribute to the endeavor of automation by extracting them and their contained knowledge from scientific publications. The pipeline is split into multiple steps to guarantee modularity as well as analyzability, and agnosticim regarding the specific scientific domain up until the knowledge extraction step, which is based upon an ontology. Additionally, a dataset of corresponding articles has been manually annotated with information regarding table and knowledge extraction. Experiments show promising results that signal the possibility of an automated system, while also indicating limits of extracting knowledge from tables without any context.}, language = {en} } @article{MaiwaldBruschkeSchneideretal.2023, author = {Maiwald, Ferdinand and Bruschke, Jonas and Schneider, Danilo and Wacker, Markus and Niebling, Florian}, title = {Giving historical photographs a new perspective: introducing camera orientation parameters as new metadata in a large-scale 4D application}, series = {Remote Sensing}, volume = {15}, journal = {Remote Sensing}, number = {7}, issn = {2072-4292}, doi = {10.3390/rs15071879}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311103}, year = {2023}, abstract = {The ongoing digitization of historical photographs in archives allows investigating the quality, quantity, and distribution of these images. However, the exact interior and exterior camera orientations of these photographs are usually lost during the digitization process. The proposed method uses content-based image retrieval (CBIR) to filter exterior images of single buildings in combination with metadata information. The retrieved photographs are automatically processed in an adapted structure-from-motion (SfM) pipeline to determine the camera parameters. In an interactive georeferencing process, the calculated camera positions are transferred into a global coordinate system. As all image and camera data are efficiently stored in the proposed 4D database, they can be conveniently accessed afterward to georeference newly digitized images by using photogrammetric triangulation and spatial resection. The results show that the CBIR and the subsequent SfM are robust methods for various kinds of buildings and different quantity of data. The absolute accuracy of the camera positions after georeferencing lies in the range of a few meters likely introduced by the inaccurate LOD2 models used for transformation. The proposed photogrammetric method, the database structure, and the 4D visualization interface enable adding historical urban photographs and 3D models from other locations.}, language = {en} }