@phdthesis{Zinner2012, author = {Zinner, Thomas}, title = {Performance Modeling of QoE-Aware Multipath Video Transmission in the Future Internet}, doi = {10.25972/OPUS-6106}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72324}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Internet applications are becoming more and more flexible to support diverge user demands and network conditions. This is reflected by technical concepts, which provide new adaptation mechanisms to allow fine grained adjustment of the application quality and the corresponding bandwidth requirements. For the case of video streaming, the scalable video codec H.264/SVC allows the flexible adaptation of frame rate, video resolution and image quality with respect to the available network resources. In order to guarantee a good user-perceived quality (Quality of Experience, QoE) it is necessary to adjust and optimize the video quality accurately. But not only have the applications of the current Internet changed. Within network and transport, new technologies evolved during the last years providing a more flexible and efficient usage of data transport and network resources. One of the most promising technologies is Network Virtualization (NV) which is seen as an enabler to overcome the ossification of the Internet stack. It provides means to simultaneously operate multiple logical networks which allow for example application-specific addressing, naming and routing, or their individual resource management. New transport mechanisms like multipath transmission on the network and transport layer aim at an efficient usage of available transport resources. However, the simultaneous transmission of data via heterogeneous transport paths and communication technologies inevitably introduces packet reordering. Additional mechanisms and buffers are required to restore the correct packet order and thus to prevent a disturbance of the data transport. A proper buffer dimensioning as well as the classification of the impact of varying path characteristics like bandwidth and delay require appropriate evaluation methods. Additionally, for a path selection mechanism real time evaluation mechanisms are needed. A better application-network interaction and the corresponding exchange of information enable an efficient adaptation of the application to the network conditions and vice versa. This PhD thesis analyzes a video streaming architecture utilizing multipath transmission and scalable video coding and develops the following optimization possibilities and results: Analysis and dimensioning methods for multipath transmission, quantification of the adaptation possibilities to the current network conditions with respect to the QoE for H.264/SVC, and evaluation and optimization of a future video streaming architecture, which allows a better interaction of application and network.}, subject = {Video{\"u}bertragung}, language = {en} } @article{ZimmererFischbachLatoschik2018, author = {Zimmerer, Chris and Fischbach, Martin and Latoschik, Marc Erich}, title = {Semantic Fusion for Natural Multimodal Interfaces using Concurrent Augmented Transition Networks}, series = {Multimodal Technologies and Interaction}, volume = {2}, journal = {Multimodal Technologies and Interaction}, number = {4}, issn = {2414-4088}, doi = {10.3390/mti2040081}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197573}, year = {2018}, abstract = {Semantic fusion is a central requirement of many multimodal interfaces. Procedural methods like finite-state transducers and augmented transition networks have proven to be beneficial to implement semantic fusion. They are compliant with rapid development cycles that are common for the development of user interfaces, in contrast to machine-learning approaches that require time-costly training and optimization. We identify seven fundamental requirements for the implementation of semantic fusion: Action derivation, continuous feedback, context-sensitivity, temporal relation support, access to the interaction context, as well as the support of chronologically unsorted and probabilistic input. A subsequent analysis reveals, however, that there is currently no solution for fulfilling the latter two requirements. As the main contribution of this article, we thus present the Concurrent Cursor concept to compensate these shortcomings. In addition, we showcase a reference implementation, the Concurrent Augmented Transition Network (cATN), that validates the concept's feasibility in a series of proof of concept demonstrations as well as through a comparative benchmark. The cATN fulfills all identified requirements and fills the lack amongst previous solutions. It supports the rapid prototyping of multimodal interfaces by means of five concrete traits: Its declarative nature, the recursiveness of the underlying transition network, the network abstraction constructs of its description language, the utilized semantic queries, and an abstraction layer for lexical information. Our reference implementation was and is used in various student projects, theses, as well as master-level courses. It is openly available and showcases that non-experts can effectively implement multimodal interfaces, even for non-trivial applications in mixed and virtual reality.}, language = {en} } @phdthesis{Zeiger2010, author = {Zeiger, Florian}, title = {Internet Protocol based networking of mobile robots}, isbn = {978-3-923959-59-4}, doi = {10.25972/OPUS-4661}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-54776}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {This work is composed of three main parts: remote control of mobile systems via Internet, ad-hoc networks of mobile robots, and remote control of mobile robots via 3G telecommunication technologies. The first part gives a detailed state of the art and a discussion of the problems to be solved in order to teleoperate mobile robots via the Internet. The focus of the application to be realized is set on a distributed tele-laboratory with remote experiments on mobile robots which can be accessed world-wide via the Internet. Therefore, analyses of the communication link are used in order to realize a robust system. The developed and implemented architecture of this distributed tele-laboratory allows for a smooth access also with a variable or low link quality. The second part covers the application of ad-hoc networks for mobile robots. The networking of mobile robots via mobile ad-hoc networks is a very promising approach to realize integrated telematic systems without relying on preexisting communication infrastructure. Relevant civilian application scenarios are for example in the area of search and rescue operations where first responders are supported by multi-robot systems. Here, mobile robots, humans, and also existing stationary sensors can be connected very fast and efficient. Therefore, this work investigates and analyses the performance of different ad-hoc routing protocols for IEEE 802.11 based wireless networks in relevant scenarios. The analysis of the different protocols allows for an optimization of the parameter settings in order to use these ad-hoc routing protocols for mobile robot teleoperation. Also guidelines for the realization of such telematics systems are given. Also traffic shaping mechanisms of application layer are presented which allow for a more efficient use of the communication link. An additional application scenario, the integration of a small size helicopter into an IP based ad-hoc network, is presented. The teleoperation of mobile robots via 3G telecommunication technologies is addressed in the third part of this work. The high availability, high mobility, and the high bandwidth provide a very interesting opportunity to realize scenarios for the teleoperation of mobile robots or industrial remote maintenance. This work analyses important parameters of the UMTS communication link and investigates also the characteristics for different data streams. These analyses are used to give guidelines which are necessary for the realization of or industrial remote maintenance or mobile robot teleoperation scenarios. All the results and guidelines for the design of telematic systems in this work were derived from analyses and experiments with real hardware.}, subject = {Robotik}, language = {en} } @phdthesis{Wolz2003, author = {Wolz, Frank}, title = {Ein generisches Konzept zur Modellierung und Bewertung feldprogrammierbarer Architekturen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-7944}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Gegenstand der Arbeit stellt eine erstmalig unternommene, architektur{\"u}bergreifende Studie {\"u}ber feldprogrammierbare Logikbausteine zur Implementierung synchroner Schaltkreise dar. Zun{\"a}chst wird ein Modell f{\"u}r allgemeine feldprogrammiebare Architekturen basierend auf periodischen Graphen definiert. Schließlich werden Bewertungsmaße f{\"u}r Architekturen und Schaltkreislayouts angegeben zur Charakterisierung struktureller Eigenschaften hinsichtlich des Verhaltens in Chipfl{\"a}chenverbrauch und Signalverz{\"o}gerung. Ferner wird ein generisches Layout-Werkzeug entwickelt, das f{\"u}r beliebige Architekturen und Schaltkreise Implementierungen berechnen und bewerten kann. Abschließend werden neun ressourcenminimalistische Architekturen mit Maschen- und mit Inselstruktur einander gegen{\"u}bergestellt.}, subject = {Gay-Array-Bauelement}, language = {de} } @article{WolffRutter2012, author = {Wolff, Alexander and Rutter, Iganz}, title = {Augmenting the Connectivity of Planar and Geometric Graphs}, series = {Journal of Graph Algorithms and Applications}, journal = {Journal of Graph Algorithms and Applications}, doi = {10.7155/jgaa.00275}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97587}, year = {2012}, abstract = {In this paper we study connectivity augmentation problems. Given a connected graph G with some desirable property, we want to make G 2-vertex connected (or 2-edge connected) by adding edges such that the resulting graph keeps the property. The aim is to add as few edges as possible. The property that we consider is planarity, both in an abstract graph-theoretic and in a geometric setting, where vertices correspond to points in the plane and edges to straight-line segments. We show that it is NP-hard to � nd a minimum-cardinality augmentation that makes a planar graph 2-edge connected. For making a planar graph 2-vertex connected this was known. We further show that both problems are hard in the geometric setting, even when restricted to trees. The problems remain hard for higher degrees of connectivity. On the other hand we give polynomial-time algorithms for the special case of convex geometric graphs. We also study the following related problem. Given a planar (plane geometric) graph G, two vertices s and t of G, and an integer c, how many edges have to be added to G such that G is still planar (plane geometric) and contains c edge- (or vertex-) disjoint s{t paths? For the planar case we give a linear-time algorithm for c = 2. For the plane geometric case we give optimal worst-case bounds for c = 2; for c = 3 we characterize the cases that have a solution.}, language = {en} } @phdthesis{Wojtkowiak2018, author = {Wojtkowiak, Harald}, title = {Planungssystem zur Steigerung der Autonomie von Kleinstsatelliten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163569}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Der Betrieb von Satelliten wird sich in Zukunft gravierend {\"a}ndern. Die bisher ausge{\"u}bte konventionelle Vorgehensweise, bei der die Planung der vom Satelliten auszuf{\"u}hrenden Aktivit{\"a}ten sowie die Kontrolle hier{\"u}ber ausschließlich vom Boden aus erfolgen, st{\"o}ßt bei heutigen Anwendungen an ihre Grenzen. Im schlimmsten Fall verhindert dieser Umstand sogar die Erschließung bisher ungenutzter M{\"o}glichkeiten. Der Gewinn eines Satelliten, sei es in Form wissenschaftlicher Daten oder der Vermarktung satellitengest{\"u}tzter Dienste, wird daher nicht optimal ausgesch{\"o}pft. Die Ursache f{\"u}r dieses Problem l{\"a}sst sich im Grunde auf eine ausschlaggebende Tatsache zur{\"u}ckf{\"u}hren: Konventionelle Satelliten k{\"o}nnen ihr Verhalten, d.h. die Folge ihrer T{\"a}tigkeiten, nicht eigenst{\"a}ndig anpassen. Stattdessen erstellt das Bedienpersonal am Boden - vor allem die Operatoren - mit Hilfe von Planungssoftware feste Ablaufpl{\"a}ne, die dann in Form von Kommandosequenzen von den Bodenstationen aus an die jeweiligen Satelliten hochgeladen werden. Dort werden die Befehle lediglich {\"u}berpr{\"u}ft, interpretiert und strikt ausgef{\"u}hrt. Die Abarbeitung erfolgt linear. Situationsbedingte {\"A}nderungen, wie sie vergleichsweise bei der Codeausf{\"u}hrung von Softwareprogrammen durch Kontrollkonstrukte, zum Beispiel Schleifen und Verzweigungen, {\"u}blich sind, sind typischerweise nicht vorgesehen. Der Operator ist daher die einzige Instanz, die das Verhalten des Satelliten mittels Kommandierung, per Upload, beeinflussen kann, und auch nur dann, wenn ein direkter Funkkontakt zwischen Satellit und Bodenstation besteht. Die dadurch m{\"o}glichen Reaktionszeiten des Satelliten liegen bestenfalls bei einigen Sekunden, falls er sich im Wirkungsbereich der Bodenstation befindet. Außerhalb des Kontaktfensters kann sich die Zeitschranke, gegeben durch den Orbit und die aktuelle Position des Satelliten, von einigen Minuten bis hin zu einigen Stunden erstrecken. Die Signallaufzeiten der Funk{\"u}bertragung verl{\"a}ngern die Reaktionszeiten um weitere Sekunden im erdnahen Bereich. Im interplanetaren Raum erstrecken sich die Zeitspannen aufgrund der immensen Entfernungen sogar auf mehrere Minuten. Dadurch bedingt liegt die derzeit technologisch m{\"o}gliche, bodengest{\"u}tzte, Reaktionszeit von Satelliten bestenfalls im Bereich von einigen Sekunden. Diese Einschr{\"a}nkung stellt ein schweres Hindernis f{\"u}r neuartige Satellitenmissionen, bei denen insbesondere nichtdeterministische und kurzzeitige Ph{\"a}nomene (z.B. Blitze und Meteoreintritte in die Erdatmosph{\"a}re) Gegenstand der Beobachtungen sind, dar. Die langen Reaktionszeiten des konventionellen Satellitenbetriebs verhindern die Realisierung solcher Missionen, da die verz{\"o}gerte Reaktion erst erfolgt, nachdem das zu beobachtende Ereignis bereits abgeschlossen ist. Die vorliegende Dissertation zeigt eine M{\"o}glichkeit, das durch die langen Reaktionszeiten entstandene Problem zu l{\"o}sen, auf. Im Zentrum des L{\"o}sungsansatzes steht dabei die Autonomie. Im Wesentlichen geht es dabei darum, den Satelliten mit der F{\"a}higkeit auszustatten, sein Verhalten, d.h. die Folge seiner T{\"a}tigkeiten, eigenst{\"a}ndig zu bestimmen bzw. zu {\"a}ndern. Dadurch wird die direkte Abh{\"a}ngigkeit des Satelliten vom Operator bei Reaktionen aufgehoben. Im Grunde wird der Satellit in die Lage versetzt, sich selbst zu kommandieren. Die Idee der Autonomie wurde im Rahmen der zugrunde liegenden Forschungsarbeiten umgesetzt. Das Ergebnis ist ein autonomes Planungssystem. Dabei handelt es sich um ein Softwaresystem, mit dem sich autonomes Verhalten im Satelliten realisieren l{\"a}sst. Es kann an unterschiedliche Satellitenmissionen angepasst werden. Ferner deckt es verschiedene Aspekte des autonomen Satellitenbetriebs, angefangen bei der generellen Entscheidungsfindung der T{\"a}tigkeiten, {\"u}ber die zeitliche Ablaufplanung unter Einbeziehung von Randbedingungen (z.B. Ressourcen) bis hin zur eigentlichen Ausf{\"u}hrung, d.h. Kommandierung, ab. Das Planungssystem kommt als Anwendung in ASAP, einer autonomen Sensorplattform, zum Einsatz. Es ist ein optisches System und dient der Detektion von kurzzeitigen Ph{\"a}nomenen und Ereignissen in der Erdatmosph{\"a}re. Die Forschungsarbeiten an dem autonomen Planungssystem, an ASAP sowie an anderen zu diesen in Bezug stehenden Systemen wurden an der Professur f{\"u}r Raumfahrttechnik des Lehrstuhls Informatik VIII der Julius-Maximilians-Universit{\"a}t W{\"u}rzburg durchgef{\"u}hrt.}, subject = {Planungssystem}, language = {de} } @phdthesis{Wirth2001, author = {Wirth, Hans-Christoph}, title = {Multicriteria Approximation of Network Design and Network Upgrade Problems}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-2845}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {Network planning has come to great importance during the past decades. Today's telecommunication, traffic systems, and logistics would not have been evolved to the current state without careful analysis of the underlying network problems and precise implementation of the results obtained from those examinations. Graphs with node and arc attributes are a very useful tool to model realistic applications, while on the other hand they are well understood in theory. We investigate network design problems which are motivated particularly from applications in communication networks and logistics. Those problems include the search for homogeneous subgraphs in edge labeled graphs where either the total number of labels or the reload cost are subject to optimize. Further, we investigate some variants of the dial a ride problem. On the other hand, we use node and edge upgrade models to deal with the fact that in many cases one prefers to change existing networks rather than implementing a newly computed solution from scratch. We investigate the construction of bottleneck constrained forests under a node upgrade model, as well as several flow cost problems under a edge based upgrade model. All problems are examined within a framework of multi-criteria optimization. Many of the problems can be shown to be NP-hard, with the consequence that, under the widely accepted assumption that P is not equal to NP, there cannot exist efficient algorithms for solving the problems. This motivates the development of approximation algorithms which compute near-optimal solutions with provable performance guarantee in polynomial time.}, subject = {Netzplantechnik}, language = {en} } @article{WienrichLatoschik2021, author = {Wienrich, Carolin and Latoschik, Marc Erich}, title = {eXtended Artificial Intelligence: New Prospects of Human-AI Interaction Research}, series = {Frontiers in Virtual Reality}, volume = {2}, journal = {Frontiers in Virtual Reality}, doi = {10.3389/frvir.2021.686783}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260296}, year = {2021}, abstract = {Artificial Intelligence (AI) covers a broad spectrum of computational problems and use cases. Many of those implicate profound and sometimes intricate questions of how humans interact or should interact with AIs. Moreover, many users or future users do have abstract ideas of what AI is, significantly depending on the specific embodiment of AI applications. Human-centered-design approaches would suggest evaluating the impact of different embodiments on human perception of and interaction with AI. An approach that is difficult to realize due to the sheer complexity of application fields and embodiments in reality. However, here XR opens new possibilities to research human-AI interactions. The article's contribution is twofold: First, it provides a theoretical treatment and model of human-AI interaction based on an XR-AI continuum as a framework for and a perspective of different approaches of XR-AI combinations. It motivates XR-AI combinations as a method to learn about the effects of prospective human-AI interfaces and shows why the combination of XR and AI fruitfully contributes to a valid and systematic investigation of human-AI interactions and interfaces. Second, the article provides two exemplary experiments investigating the aforementioned approach for two distinct AI-systems. The first experiment reveals an interesting gender effect in human-robot interaction, while the second experiment reveals an Eliza effect of a recommender system. Here the article introduces two paradigmatic implementations of the proposed XR testbed for human-AI interactions and interfaces and shows how a valid and systematic investigation can be conducted. In sum, the article opens new perspectives on how XR benefits human-centered AI design and development.}, language = {en} } @article{WienrichKommaVogtetal.2021, author = {Wienrich, Carolin and Komma, Philipp and Vogt, Stephanie and Latoschik, Marc E.}, title = {Spatial Presence in Mixed Realities - Considerations About the Concept, Measures, Design, and Experiments}, series = {Frontiers in Virtual Reality}, volume = {2}, journal = {Frontiers in Virtual Reality}, doi = {10.3389/frvir.2021.694315}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260328}, year = {2021}, abstract = {Plenty of theories, models, measures, and investigations target the understanding of virtual presence, i.e., the sense of presence in immersive Virtual Reality (VR). Other varieties of the so-called eXtended Realities (XR), e.g., Augmented and Mixed Reality (AR and MR) incorporate immersive features to a lesser degree and continuously combine spatial cues from the real physical space and the simulated virtual space. This blurred separation questions the applicability of the accumulated knowledge about the similarities of virtual presence and presence occurring in other varieties of XR, and corresponding outcomes. The present work bridges this gap by analyzing the construct of presence in mixed realities (MR). To achieve this, the following presents (1) a short review of definitions, dimensions, and measurements of presence in VR, and (2) the state of the art views on MR. Additionally, we (3) derived a working definition of MR, extending the Milgram continuum. This definition is based on entities reaching from real to virtual manifestations at one time point. Entities possess different degrees of referential power, determining the selection of the frame of reference. Furthermore, we (4) identified three research desiderata, including research questions about the frame of reference, the corresponding dimension of transportation, and the dimension of realism in MR. Mainly the relationship between the main aspects of virtual presence of immersive VR, i.e., the place-illusion, and the plausibility-illusion, and of the referential power of MR entities are discussed regarding the concept, measures, and design of presence in MR. Finally, (5) we suggested an experimental setup to reveal the research heuristic behind experiments investigating presence in MR. The present work contributes to the theories and the meaning of and approaches to simulate and measure presence in MR. We hypothesize that research about essential underlying factors determining user experience (UX) in MR simulations and experiences is still in its infancy and hopes this article provides an encouraging starting point to tackle related questions.}, language = {en} } @article{WienrichCarolusMarkusetal.2023, author = {Wienrich, Carolin and Carolus, Astrid and Markus, Andr{\´e} and Augustin, Yannik and Pfister, Jan and Hotho, Andreas}, title = {Long-term effects of perceived friendship with intelligent voice assistants on usage behavior, user experience, and social perceptions}, series = {Computers}, volume = {12}, journal = {Computers}, number = {4}, issn = {2073-431X}, doi = {10.3390/computers12040077}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313552}, year = {2023}, abstract = {Social patterns and roles can develop when users talk to intelligent voice assistants (IVAs) daily. The current study investigates whether users assign different roles to devices and how this affects their usage behavior, user experience, and social perceptions. Since social roles take time to establish, we equipped 106 participants with Alexa or Google assistants and some smart home devices and observed their interactions for nine months. We analyzed diverse subjective (questionnaire) and objective data (interaction data). By combining social science and data science analyses, we identified two distinct clusters—users who assigned a friendship role to IVAs over time and users who did not. Interestingly, these clusters exhibited significant differences in their usage behavior, user experience, and social perceptions of the devices. For example, participants who assigned a role to IVAs attributed more friendship to them used them more frequently, reported more enjoyment during interactions, and perceived more empathy for IVAs. In addition, these users had distinct personal requirements, for example, they reported more loneliness. This study provides valuable insights into the role-specific effects and consequences of voice assistants. Recent developments in conversational language models such as ChatGPT suggest that the findings of this study could make an important contribution to the design of dialogic human-AI interactions.}, language = {en} } @article{WickHarteltPuppe2019, author = {Wick, Christoph and Hartelt, Alexander and Puppe, Frank}, title = {Staff, symbol and melody detection of Medieval manuscripts written in square notation using deep Fully Convolutional Networks}, series = {Applied Sciences}, volume = {9}, journal = {Applied Sciences}, number = {13}, issn = {2076-3417}, doi = {10.3390/app9132646}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197248}, year = {2019}, abstract = {Even today, the automatic digitisation of scanned documents in general, but especially the automatic optical music recognition (OMR) of historical manuscripts, still remains an enormous challenge, since both handwritten musical symbols and text have to be identified. This paper focuses on the Medieval so-called square notation developed in the 11th-12th century, which is already composed of staff lines, staves, clefs, accidentals, and neumes that are roughly spoken connected single notes. The aim is to develop an algorithm that captures both the neumes, and in particular its melody, which can be used to reconstruct the original writing. Our pipeline is similar to the standard OMR approach and comprises a novel staff line and symbol detection algorithm based on deep Fully Convolutional Networks (FCN), which perform pixel-based predictions for either staff lines or symbols and their respective types. Then, the staff line detection combines the extracted lines to staves and yields an F\(_1\) -score of over 99\% for both detecting lines and complete staves. For the music symbol detection, we choose a novel approach that skips the step to identify neumes and instead directly predicts note components (NCs) and their respective affiliation to a neume. Furthermore, the algorithm detects clefs and accidentals. Our algorithm predicts the symbol sequence of a staff with a diplomatic symbol accuracy rate (dSAR) of about 87\%, which includes symbol type and location. If only the NCs without their respective connection to a neume, all clefs and accidentals are of interest, the algorithm reaches an harmonic symbol accuracy rate (hSAR) of approximately 90\%. In general, the algorithm recognises a symbol in the manuscript with an F\(_1\) -score of over 96\%.}, language = {en} } @article{WamserSeufertHalletal.2021, author = {Wamser, Florian and Seufert, Anika and Hall, Andrew and Wunderer, Stefan and Hoßfeld, Tobias}, title = {Valid statements by the crowd: statistical measures for precision in crowdsourced mobile measurements}, series = {Network}, volume = {1}, journal = {Network}, number = {2}, issn = {2673-8732}, doi = {10.3390/network1020013}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284154}, pages = {215 -- 232}, year = {2021}, abstract = {Crowdsourced network measurements (CNMs) are becoming increasingly popular as they assess the performance of a mobile network from the end user's perspective on a large scale. Here, network measurements are performed directly on the end-users' devices, thus taking advantage of the real-world conditions end-users encounter. However, this type of uncontrolled measurement raises questions about its validity and reliability. The problem lies in the nature of this type of data collection. In CNMs, mobile network subscribers are involved to a large extent in the measurement process, and collect data themselves for the operator. The collection of data on user devices in arbitrary locations and at uncontrolled times requires means to ensure validity and reliability. To address this issue, our paper defines concepts and guidelines for analyzing the precision of CNMs; specifically, the number of measurements required to make valid statements. In addition to the formal definition of the aspect, we illustrate the problem and use an extensive sample data set to show possible assessment approaches. This data set consists of more than 20.4 million crowdsourced mobile measurements from across France, measured by a commercial data provider.}, language = {en} } @techreport{VomhoffGeisslerHossfeld2022, type = {Working Paper}, author = {Vomhoff, Viktoria and Geißler, Stefan and Hoßfeld, Tobias}, title = {Identification of Signaling Patterns in Mobile IoT Signaling Traffic}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28081}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280819}, pages = {4}, year = {2022}, abstract = {We attempt to identify sequences of signaling dialogs, to strengthen our understanding of the signaling behavior of IoT devices by examining a dataset containing over 270.000 distinct IoT devices whose signaling traffic has been observed over a 31-day period in a 2G network [4]. We propose a set of rules that allows the assembly of signaling dialogs into so-called sessions in order to identify common patterns and lay the foundation for future research in the areas of traffic modeling and anomaly detection.}, subject = {Datennetz}, language = {en} } @techreport{VomhoffGeisslerGebertetal.2023, type = {Working Paper}, author = {Vomhoff, Viktoria and Geissler, Stefan and Gebert, Steffen and Hossfeld, Tobias}, title = {Towards Understanding the Global IPX Network from an MVNO Perspective}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32212}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322121}, pages = {4}, year = {2023}, abstract = {In this paper, we work to understand the global IPX network from the perspective of an MVNO. In order to do this, we provide a brief description of the global architecture of mobile carriers. We provide initial results with respect to mapping the vast and complex interconnection network enabling global roaming from the point of view of a single MVNO. Finally, we provide preliminary results regarding the quality of service observed under global roaming conditions.}, language = {en} } @article{UnruhLandeckOberdoerferetal.2021, author = {Unruh, Fabian and Landeck, Maximilian and Oberd{\"o}rfer, Sebastian and Lugrin, Jean-Luc and Latoschik, Marc Erich}, title = {The Influence of Avatar Embodiment on Time Perception - Towards VR for Time-Based Therapy}, series = {Frontiers in Virtual Reality}, volume = {2}, journal = {Frontiers in Virtual Reality}, doi = {10.3389/frvir.2021.658509}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259076}, pages = {658509}, year = {2021}, abstract = {Psycho-pathological conditions, such as depression or schizophrenia, are often accompanied by a distorted perception of time. People suffering from this conditions often report that the passage of time slows down considerably and that they are "stuck in time." Virtual Reality (VR) could potentially help to diagnose and maybe treat such mental conditions. However, the conditions in which a VR simulation could correctly diagnose a time perception deviation are still unknown. In this paper, we present an experiment investigating the difference in time experience with and without a virtual body in VR, also known as avatar. The process of substituting a person's body with a virtual body is called avatar embodiment. Numerous studies demonstrated interesting perceptual, emotional, behavioral, and psychological effects caused by avatar embodiment. However, the relations between time perception and avatar embodiment are still unclear. Whether or not the presence or absence of an avatar is already influencing time perception is still open to question. Therefore, we conducted a between-subjects design with and without avatar embodiment as well as a real condition (avatar vs. no-avatar vs. real). A group of 105 healthy subjects had to wait for seven and a half minutes in a room without any distractors (e.g., no window, magazine, people, decoration) or time indicators (e.g., clocks, sunlight). The virtual environment replicates the real physical environment. Participants were unaware that they will be asked to estimate their waiting time duration as well as describing their experience of the passage of time at a later stage. Our main finding shows that the presence of an avatar is leading to a significantly faster perceived passage of time. It seems to be promising to integrate avatar embodiment in future VR time-based therapy applications as they potentially could modulate a user's perception of the passage of time. We also found no significant difference in time perception between the real and the VR conditions (avatar, no-avatar), but further research is needed to better understand this outcome.}, language = {en} } @article{TsouliasJoerissenNuechter2022, author = {Tsoulias, Nikos and J{\"o}rissen, Sven and N{\"u}chter, Andreas}, title = {An approach for monitoring temperature on fruit surface by means of thermal point cloud}, series = {MethodsX}, volume = {9}, journal = {MethodsX}, issn = {2215-0161}, doi = {10.1016/j.mex.2022.101712}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300270}, year = {2022}, abstract = {Heat and excessive solar radiation can produce abiotic stresses during apple maturation, resulting fruit quality. Therefore, the monitoring of temperature on fruit surface (FST) over the growing period can allow to identify thresholds, above of which several physiological disorders such as sunburn may occur in apple. The current approaches neglect spatial variation of FST and have reduced repeatability, resulting in unreliable predictions. In this study, LiDAR laser scanning and thermal imaging were employed to detect the temperature on fruit surface by means of 3D point cloud. A process for calibrating the two sensors based on an active board target and producing a 3D thermal point cloud was suggested. After calibration, the sensor system was utilised to scan the fruit trees, while temperature values assigned in the corresponding 3D point cloud were based on the extrinsic calibration. Whereas a fruit detection algorithm was performed to segment the FST from each apple. • The approach allows the calibration of LiDAR laser scanner with thermal camera in order to produce a 3D thermal point cloud. • The method can be applied in apple trees for segmenting FST in 3D. Whereas the approach can be utilised to predict several physiological disorders including sunburn on fruit surface.}, language = {en} } @inproceedings{TrumanvonMammen2021, author = {Truman, Samuel and von Mammen, Sebastian}, title = {Interactive Self-Assembling Agent Ensembles}, series = {Proceedings of the 1st Games Technology Summit}, booktitle = {Proceedings of the 1st Games Technology Summit}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246032}, pages = {29-36}, year = {2021}, abstract = {In this paper, we bridge the gap between procedural content generation (PCG) and user-generated content (UGC) by proposing and demonstrating an interactive agent-based model of self-assembling ensembles that can be directed though user input. We motivate these efforts by considering the opportunities technology provides to pursue game designs based on according game design frameworks. We present three different use cases of the proposed model that emphasize its potential to (1) self-assemble into predefined 3D graphical assets, (2) define new structures in the context of virtual environments by self-assembling layers on the surfaces of arbitrary 3D objects, and (3) allow novel structures to self-assemble only considering the model's configuration and no external dependencies. To address the performance restrictions in computer games, we realized the prototypical model implementation by means of an efficient entity component system (ECS). We conclude the paper with an outlook on future steps to further explore novel interactive, dynamic PCG mechanics and to ensure their efficiency.}, language = {en} } @phdthesis{Travers2007, author = {Travers, Stephen}, title = {Structural Properties of NP-Hard Sets and Uniform Characterisations of Complexity Classes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-27124}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {This thesis is devoted to the study of computational complexity theory, a branch of theoretical computer science. Computational complexity theory investigates the inherent difficulty in designing efficient algorithms for computational problems. By doing so, it analyses the scalability of computational problems and algorithms and places practical limits on what computers can actually accomplish. Computational problems are categorised into complexity classes. Among the most important complexity classes are the class NP and the subclass of NP-complete problems, which comprises many important optimisation problems in the field of operations research. Moreover, with the P-NP-problem, the class NP represents the most important unsolved question in computer science. The first part of this thesis is devoted to the study of NP-complete-, and more generally, NP-hard problems. It aims at improving our understanding of this important complexity class by systematically studying how altering NP-hard sets affects their NP-hardness. This research is related to longstanding open questions concerning the complexity of unions of disjoint NP-complete sets, and the existence of sparse NP-hard sets. The second part of the thesis is also dedicated to complexity classes but takes a different perspective: In a sense, after investigating the interior of complexity classes in the first part, the focus shifts to the description of complexity classes and thereby to the exterior in the second part. It deals with the description of complexity classes through leaf languages, a uniform framework which allows us to characterise a great variety of important complexity classes. The known concepts are complemented by a new leaf-language model. To a certain extent, this new approach combines the advantages of the known models. The presented results give evidence that the connection between the theory of formal languages and computational complexity theory might be closer than formerly known.}, subject = {Berechnungskomplexit{\"a}t}, language = {en} } @article{ToepferCorovicFetteetal.2015, author = {Toepfer, Martin and Corovic, Hamo and Fette, Georg and Kl{\"u}gl, Peter and St{\"o}rk, Stefan and Puppe, Frank}, title = {Fine-grained information extraction from German transthoracic echocardiography reports}, series = {BMC Medical Informatics and Decision Making}, volume = {15}, journal = {BMC Medical Informatics and Decision Making}, number = {91}, doi = {doi:10.1186/s12911-015-0215-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125509}, year = {2015}, abstract = {Background Information extraction techniques that get structured representations out of unstructured data make a large amount of clinically relevant information about patients accessible for semantic applications. These methods typically rely on standardized terminologies that guide this process. Many languages and clinical domains, however, lack appropriate resources and tools, as well as evaluations of their applications, especially if detailed conceptualizations of the domain are required. For instance, German transthoracic echocardiography reports have not been targeted sufficiently before, despite of their importance for clinical trials. This work therefore aimed at development and evaluation of an information extraction component with a fine-grained terminology that enables to recognize almost all relevant information stated in German transthoracic echocardiography reports at the University Hospital of W{\"u}rzburg. Methods A domain expert validated and iteratively refined an automatically inferred base terminology. The terminology was used by an ontology-driven information extraction system that outputs attribute value pairs. The final component has been mapped to the central elements of a standardized terminology, and it has been evaluated according to documents with different layouts. Results The final system achieved state-of-the-art precision (micro average.996) and recall (micro average.961) on 100 test documents that represent more than 90 \% of all reports. In particular, principal aspects as defined in a standardized external terminology were recognized with f 1=.989 (micro average) and f 1=.963 (macro average). As a result of keyword matching and restraint concept extraction, the system obtained high precision also on unstructured or exceptionally short documents, and documents with uncommon layout. Conclusions The developed terminology and the proposed information extraction system allow to extract fine-grained information from German semi-structured transthoracic echocardiography reports with very high precision and high recall on the majority of documents at the University Hospital of W{\"u}rzburg. Extracted results populate a clinical data warehouse which supports clinical research.}, language = {en} } @phdthesis{Tischler2008, author = {Tischler, German}, title = {Theory and Applications of Parametric Weighted Finite Automata}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-28145}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Parametric weighted finite automata (PWFA) are a multi-dimensional generalization of weighted finite automata. The expressiveness of PWFA contains the expressiveness of weighted finite automata as well as the expressiveness of affine iterated function system. The thesis discusses theory and applications of PWFA. The properties of PWFA definable sets are studied and it is shown that some fractal generator systems can be simulated using PWFA and that various real and complex functions can be represented by PWFA. Furthermore, the decoding of PWFA and the interpretation of PWFA definable sets is discussed.}, subject = {Automat }, language = {en} } @article{SirbuBeckerCaminitietal.2015, author = {S{\^i}rbu, Alina and Becker, Martin and Caminiti, Saverio and De Baets, Bernard and Elen, Bart and Francis, Louise and Gravino, Pietro and Hotho, Andreas and Ingarra, Stefano and Loreto, Vittorio and Molino, Andrea and Mueller, Juergen and Peters, Jan and Ricchiuti, Ferdinando and Saracino, Fabio and Servedio, Vito D.P. and Stumme, Gerd and Theunis, Jan and Tria, Francesca and Van den Bossche, Joris}, title = {Participatory Patterns in an International Air Quality Monitoring Initiative}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {8}, doi = {10.1371/journal. pone.0136763}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151379}, pages = {e0136763}, year = {2015}, abstract = {The issue of sustainability is at the top of the political and societal agenda, being considered of extreme importance and urgency. Human individual action impacts the environment both locally (e.g., local air/water quality, noise disturbance) and globally (e.g., climate change, resource use). Urban environments represent a crucial example, with an increasing realization that the most effective way of producing a change is involving the citizens themselves in monitoring campaigns (a citizen science bottom-up approach). This is possible by developing novel technologies and IT infrastructures enabling large citizen participation. Here, in the wider framework of one of the first such projects, we show results from an international competition where citizens were involved in mobile air pollution monitoring using low cost sensing devices, combined with a web-based game to monitor perceived levels of pollution. Measures of shift in perceptions over the course of the campaign are provided, together with insights into participatory patterns emerging from this study. Interesting effects related to inertia and to direct involvement in measurement activities rather than indirect information exposure are also highlighted, indicating that direct involvement can enhance learning and environmental awareness. In the future, this could result in better adoption of policies towards decreasing pollution.}, language = {en} } @phdthesis{Sun2014, author = {Sun, Kaipeng}, title = {Six Degrees of Freedom Object Pose Estimation with Fusion Data from a Time-of-flight Camera and a Color Camera}, isbn = {978-3-923959-97-6}, doi = {10.25972/OPUS-10508}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-105089}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Object six Degrees of Freedom (6DOF) pose estimation is a fundamental problem in many practical robotic applications, where the target or an obstacle with a simple or complex shape can move fast in cluttered environments. In this thesis, a 6DOF pose estimation algorithm is developed based on the fused data from a time-of-flight camera and a color camera. The algorithm is divided into two stages, an annealed particle filter based coarse pose estimation stage and a gradient decent based accurate pose optimization stage. In the first stage, each particle is evaluated with sparse representation. In this stage, the large inter-frame motion of the target can be well handled. In the second stage, the range data based conventional Iterative Closest Point is extended by incorporating the target appearance information and used for calculating the accurate pose by refining the coarse estimate from the first stage. For dealing with significant illumination variations during the tracking, spherical harmonic illumination modeling is investigated and integrated into both stages. The robustness and accuracy of the proposed algorithm are demonstrated through experiments on various objects in both indoor and outdoor environments. Moreover, real-time performance can be achieved with graphics processing unit acceleration.}, subject = {Mustererkennung}, language = {en} } @article{SteiningerKobsDavidsonetal.2021, author = {Steininger, Michael and Kobs, Konstantin and Davidson, Padraig and Krause, Anna and Hotho, Andreas}, title = {Density-based weighting for imbalanced regression}, series = {Machine Learning}, volume = {110}, journal = {Machine Learning}, number = {8}, issn = {1573-0565}, doi = {10.1007/s10994-021-06023-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-269177}, pages = {2187-2211}, year = {2021}, abstract = {In many real world settings, imbalanced data impedes model performance of learning algorithms, like neural networks, mostly for rare cases. This is especially problematic for tasks focusing on these rare occurrences. For example, when estimating precipitation, extreme rainfall events are scarce but important considering their potential consequences. While there are numerous well studied solutions for classification settings, most of them cannot be applied to regression easily. Of the few solutions for regression tasks, barely any have explored cost-sensitive learning which is known to have advantages compared to sampling-based methods in classification tasks. In this work, we propose a sample weighting approach for imbalanced regression datasets called DenseWeight and a cost-sensitive learning approach for neural network regression with imbalanced data called DenseLoss based on our weighting scheme. DenseWeight weights data points according to their target value rarities through kernel density estimation (KDE). DenseLoss adjusts each data point's influence on the loss according to DenseWeight, giving rare data points more influence on model training compared to common data points. We show on multiple differently distributed datasets that DenseLoss significantly improves model performance for rare data points through its density-based weighting scheme. Additionally, we compare DenseLoss to the state-of-the-art method SMOGN, finding that our method mostly yields better performance. Our approach provides more control over model training as it enables us to actively decide on the trade-off between focusing on common or rare cases through a single hyperparameter, allowing the training of better models for rare data points.}, language = {en} } @article{SteiningerAbelZiegleretal.2023, author = {Steininger, Michael and Abel, Daniel and Ziegler, Katrin and Krause, Anna and Paeth, Heiko and Hotho, Andreas}, title = {ConvMOS: climate model output statistics with deep learning}, series = {Data Mining and Knowledge Discovery}, volume = {37}, journal = {Data Mining and Knowledge Discovery}, number = {1}, issn = {1384-5810}, doi = {10.1007/s10618-022-00877-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324213}, pages = {136-166}, year = {2023}, abstract = {Climate models are the tool of choice for scientists researching climate change. Like all models they suffer from errors, particularly systematic and location-specific representation errors. One way to reduce these errors is model output statistics (MOS) where the model output is fitted to observational data with machine learning. In this work, we assess the use of convolutional Deep Learning climate MOS approaches and present the ConvMOS architecture which is specifically designed based on the observation that there are systematic and location-specific errors in the precipitation estimates of climate models. We apply ConvMOS models to the simulated precipitation of the regional climate model REMO, showing that a combination of per-location model parameters for reducing location-specific errors and global model parameters for reducing systematic errors is indeed beneficial for MOS performance. We find that ConvMOS models can reduce errors considerably and perform significantly better than three commonly used MOS approaches and plain ResNet and U-Net models in most cases. Our results show that non-linear MOS models underestimate the number of extreme precipitation events, which we alleviate by training models specialized towards extreme precipitation events with the imbalanced regression method DenseLoss. While we consider climate MOS, we argue that aspects of ConvMOS may also be beneficial in other domains with geospatial data, such as air pollution modeling or weather forecasts.}, subject = {Klima}, language = {en} } @article{SteinhaeusserOberdoerfervonMammenetal.2022, author = {Steinhaeusser, Sophia C. and Oberd{\"o}rfer, Sebastian and von Mammen, Sebastian and Latoschik, Marc Erich and Lugrin, Birgit}, title = {Joyful adventures and frightening places - designing emotion-inducing virtual environments}, series = {Frontiers in Virtual Reality}, volume = {3}, journal = {Frontiers in Virtual Reality}, issn = {2673-4192}, doi = {10.3389/frvir.2022.919163}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284831}, year = {2022}, abstract = {Virtual environments (VEs) can evoke and support emotions, as experienced when playing emotionally arousing games. We theoretically approach the design of fear and joy evoking VEs based on a literature review of empirical studies on virtual and real environments as well as video games' reviews and content analyses. We define the design space and identify central design elements that evoke specific positive and negative emotions. Based on that, we derive and present guidelines for emotion-inducing VE design with respect to design themes, colors and textures, and lighting configurations. To validate our guidelines in two user studies, we 1) expose participants to 360° videos of VEs designed following the individual guidelines and 2) immerse them in a neutral, positive and negative emotion-inducing VEs combining all respective guidelines in Virtual Reality. The results support our theoretically derived guidelines by revealing significant differences in terms of fear and joy induction.}, language = {en} } @phdthesis{Staehle2011, author = {Staehle, Barbara}, title = {Modeling and Optimization Methods for Wireless Sensor and Mesh Networks}, doi = {10.25972/OPUS-4967}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-64884}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Im Internet der Zukunft werden Menschen nicht nur mit Menschen, sondern auch mit „Dingen", und sogar „Dinge" mit „Dingen" kommunizieren. Zus{\"a}tzlich wird das Bed{\"u}rfnis steigen, immer und {\"u}berall Zugang zum Internet zu haben. Folglich gewinnen drahtlose Sensornetze (WSNs) und drahtlose Mesh-Netze (WMNs) an Bedeutung, da sie Daten {\"u}ber die Umwelt ins Internet liefern, beziehungsweise einfache Internet-Zugangsm{\"o}glichkeiten schaffen. In den vier Teilen dieser Arbeit werden unterschiedliche Modellierungs- und Optimierungsmethoden f{\"u}r WSNs und WMNs vorgestellt. Der Energieverbrauch ist die wichtigste Metrik, wenn es darum geht die Kommunikation in einem WSN zu optimieren. Da sich in der Literatur sehr viele unterschiedliche Energiemodelle finden, untersucht der erste Teil der Arbeit welchen Einfluss unterschiedliche Energiemodelle auf die Optimierung von WSNs haben. Aufbauend auf diesen {\"U}berlegungen besch{\"a}ftigt sich der zweite Teil der Arbeit mit drei Problemen, die {\"u}berwunden werden m{\"u}ssen um eine standardisierte energieeffiziente Kommunikations-L{\"o}sung f{\"u}r WSNs basierend auf IEEE 802.15.4 und ZigBee zu realisieren. F{\"u}r WMNs sind beide Probleme von geringem Interesse, die Leistung des Netzes jedoch umso mehr. Der dritte Teil der Arbeit f{\"u}hrt daher Algorithmen f{\"u}r die Berechnung des Max-Min fairen (MMF) Netzwerk-Durchsatzes in WMNs mit mehreren Linkraten und Internet-Gateways ein. Der letzte Teil der Arbeit untersucht die Auswirkungen des LRA-Konzeptes. Dessen grundlegende Idee ist die folgende. Falls f{\"u}r einen Link eine niedrigere Datenrate als theoretisch m{\"o}glich verwendet wird, sinkt zwar der Link-Durchsatz, jedoch ist unter Umst{\"a}nden eine gr{\"o}ßere Anzahl von gleichzeitigen {\"U}bertragungen m{\"o}glich und der Gesamt-Durchsatz des Netzes kann sich erh{\"o}hen. Mithilfe einer analytischen LRA Formulierung und einer systematischen Studie kann gezeigt werden, dass eine netzwerkweite Zuordnung robusterer Datenraten als n{\"o}tig zu einer Erh{\"o}hung des MMF Netzwerk-Durchsatzes f{\"u}hrt. Desweitern kann gezeigt werden, dass sich LRA positiv auf die Leistungsf{\"a}higkeit eines IEEE 802.11 WMNs auswirkt und f{\"u}r die Optimierung des Netzes genutzt werden kann.}, subject = {Drahtloses Sensorsystem}, language = {en} } @phdthesis{Spoerhase2009, author = {Spoerhase, Joachim}, title = {Competitive and Voting Location}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-52978}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {We consider competitive location problems where two competing providers place their facilities sequentially and users can decide between the competitors. We assume that both competitors act non-cooperatively and aim at maximizing their own benefits. We investigate the complexity and approximability of such problems on graphs, in particular on simple graph classes such as trees and paths. We also develop fast algorithms for single competitive location problems where each provider places a single facilty. Voting location, in contrast, aims at identifying locations that meet social criteria. The provider wants to satisfy the users (customers) of the facility to be opened. In general, there is no location that is favored by all users. Therefore, a satisfactory compromise has to be found. To this end, criteria arising from voting theory are considered. The solution of the location problem is understood as the winner of a virtual election among the users of the facilities, in which the potential locations play the role of the candidates and the users represent the voters. Competitive and voting location problems turn out to be closely related.}, subject = {Standortproblem}, language = {en} } @techreport{SimonGallenmuellerCarle2023, type = {Working Paper}, author = {Simon, Manuel and Gallenm{\"u}ller, Sebastian and Carle, Georg}, title = {Never Miss Twice - Add-On-Miss Table Updates in Software Data Planes}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32207}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322071}, pages = {5}, year = {2023}, abstract = {State Management at line rate is crucial for critical applications in next-generation networks. P4 is a language used in software-defined networking to program the data plane. The data plane can profit in many circumstances when it is allowed to manage its state without any detour over a controller. This work is based on a previous study by investigating the potential and performance of add-on-miss insertions of state by the data plane. The state keeping capabilities of P4 are limited regarding the amount of data and the update frequency. We follow the tentative specification of an upcoming portable-NIC-architecture and implement these changes into the software P4 target T4P4S. We show that insertions are possible with only a slight overhead compared to lookups and evaluate the influence of the rate of insertions on their latency.}, language = {en} } @article{SeufertSchroederSeufert2021, author = {Seufert, Anika and Schr{\"o}der, Svenja and Seufert, Michael}, title = {Delivering User Experience over Networks: Towards a Quality of Experience Centered Design Cycle for Improved Design of Networked Applications}, series = {SN Computer Science}, volume = {2}, journal = {SN Computer Science}, number = {6}, issn = {2661-8907}, doi = {10.1007/s42979-021-00851-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-271762}, year = {2021}, abstract = {To deliver the best user experience (UX), the human-centered design cycle (HCDC) serves as a well-established guideline to application developers. However, it does not yet cover network-specific requirements, which become increasingly crucial, as most applications deliver experience over the Internet. The missing network-centric view is provided by Quality of Experience (QoE), which could team up with UX towards an improved overall experience. By considering QoE aspects during the development process, it can be achieved that applications become network-aware by design. In this paper, the Quality of Experience Centered Design Cycle (QoE-CDC) is proposed, which provides guidelines on how to design applications with respect to network-specific requirements and QoE. Its practical value is showcased for popular application types and validated by outlining the design of a new smartphone application. We show that combining HCDC and QoE-CDC will result in an application design, which reaches a high UX and avoids QoE degradation.}, language = {en} } @article{SeufertPoigneeSeufertetal.2023, author = {Seufert, Anika and Poign{\´e}e, Fabian and Seufert, Michael and Hoßfeld, Tobias}, title = {Share and multiply: modeling communication and generated traffic in private WhatsApp groups}, series = {IEEE Access}, volume = {11}, journal = {IEEE Access}, doi = {10.1109/ACCESS.2023.3254913}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349430}, pages = {25401-25414}, year = {2023}, abstract = {Group-based communication is a highly popular communication paradigm, which is especially prominent in mobile instant messaging (MIM) applications, such as WhatsApp. Chat groups in MIM applications facilitate the sharing of various types of messages (e.g., text, voice, image, video) among a large number of participants. As each message has to be transmitted to every other member of the group, which multiplies the traffic, this has a massive impact on the underlying communication networks. However, most chat groups are private and network operators cannot obtain deep insights into MIM communication via network measurements due to end-to-end encryption. Thus, the generation of traffic is not well understood, given that it depends on sizes of communication groups, speed of communication, and exchanged message types. In this work, we provide a huge data set of 5,956 private WhatsApp chat histories, which contains over 76 million messages from more than 117,000 users. We describe and model the properties of chat groups and users, and the communication within these chat groups, which gives unprecedented insights into private MIM communication. In addition, we conduct exemplary measurements for the most popular message types, which empower the provided models to estimate the traffic over time in a chat group.}, language = {en} } @article{SeufertPoigneeHossfeldetal.2022, author = {Seufert, Anika and Poign{\´e}e, Fabian and Hoßfeld, Tobias and Seufert, Michael}, title = {Pandemic in the digital age: analyzing WhatsApp communication behavior before, during, and after the COVID-19 lockdown}, series = {Humanities and Social Sciences Communications}, volume = {9}, journal = {Humanities and Social Sciences Communications}, doi = {10.1057/s41599-022-01161-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300261}, year = {2022}, abstract = {The strict restrictions introduced by the COVID-19 lockdowns, which started from March 2020, changed people's daily lives and habits on many different levels. In this work, we investigate the impact of the lockdown on the communication behavior in the mobile instant messaging application WhatsApp. Our evaluations are based on a large dataset of 2577 private chat histories with 25,378,093 messages from 51,973 users. The analysis of the one-to-one and group conversations confirms that the lockdown severely altered the communication in WhatsApp chats compared to pre-pandemic time ranges. In particular, we observe short-term effects, which caused an increased message frequency in the first lockdown months and a shifted communication activity during the day in March and April 2020. Moreover, we also see long-term effects of the ongoing pandemic situation until February 2021, which indicate a change of communication behavior towards more regular messaging, as well as a persisting change in activity during the day. The results of our work show that even anonymized chat histories can tell us a lot about people's behavior and especially behavioral changes during the COVID-19 pandemic and thus are of great relevance for behavioral researchers. Furthermore, looking at the pandemic from an Internet provider perspective, these insights can be used during the next pandemic, or if the current COVID-19 situation worsens, to adapt communication networks to the changed usage behavior early on and thus avoid network congestion.}, language = {en} } @techreport{SertbasBuelbuelErgencFischer2022, type = {Working Paper}, author = {Sertbas B{\"u}lb{\"u}l, Nurefsan and Ergenc, Doganalp and Fischer, Mathias}, title = {Evaluating Dynamic Path Reconfiguration for Time Sensitive Networks}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28074}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280743}, pages = {5}, year = {2022}, abstract = {In time-sensitive networks (TSN) based on 802.1Qbv, i.e., the time-aware Shaper (TAS) protocol, precise transmission schedules and, paths are used to ensure end-to-end deterministic communication. Such resource reservations for data flows are usually established at the startup time of an application and remain untouched until the flow ends. There is no way to migrate existing flows easily to alternative paths without inducing additional delay or wasting resources. Therefore, some of the new flows cannot be embedded due to capacity limitations on certain links which leads to sub-optimal flow assignment. As future networks will need to support a large number of lowlatency flows, accommodating new flows at runtime and adapting existing flows accordingly becomes a challenging problem. In this extended abstract we summarize a previously published paper of us [1]. We combine software-defined networking (SDN), which provides better control of network flows, with TSN to be able to seamlessly migrate time-sensitive flows. For that, we formulate an optimization problem and propose different dynamic path configuration strategies under deterministic communication requirements. Our simulation results indicate that regularly reconfiguring the flow assignments can improve the latency of time-sensitive flows and can increase the number of flows embedded in the network around 4\% in worst-case scenarios while still satisfying individual flow deadlines.}, subject = {Datennetz}, language = {en} } @phdthesis{Selbach2011, author = {Selbach, Stefan}, title = {Hybride bitparallele Volltextsuche}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-66476}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Der große Vorteil eines q-Gramm Indexes liegt darin, dass es m{\"o}glich ist beliebige Zeichenketten in einer Dokumentensammlung zu suchen. Ein Nachteil jedoch liegt darin, dass bei gr{\"o}ßer werdenden Datenmengen dieser Index dazu neigt, sehr groß zu werden, was mit einem deutlichem Leistungsabfall verbunden ist. In dieser Arbeit wird eine neuartige Technik vorgestellt, die die Leistung eines q-Gramm Indexes mithilfe zus{\"a}tzlicher M-Matrizen f{\"u}r jedes q-Gramm und durch die Kombination mit einem invertierten Index erh{\"o}ht. Eine M-Matrix ist eine Bit-Matrix, die Informationen {\"u}ber die Positionen eines q-Gramms enth{\"a}lt. Auch bei der Kombination von zwei oder mehreren Q-Grammen bieten diese M-Matrizen Informationen {\"u}ber die Positionen der Kombination. Dies kann verwendet werden, um die Komplexit{\"a}t der Zusammenf{\"u}hrung der q-Gramm Trefferlisten f{\"u}r eine gegebene Suchanfrage zu reduzieren und verbessert die Leistung des n-Gramm-invertierten Index. Die Kombination mit einem termbasierten invertierten Index beschleunigt die durchschnittliche Suchzeit zus{\"a}tzlich und vereint die Vorteile beider Index-Formate. Redundante Informationen werden in dem q-Gramm Index reduziert und weitere Funktionalit{\"a}t hinzugef{\"u}gt, wie z.B. die Bewertung von Treffern nach Relevanz, die M{\"o}glichkeit, nach Konzepten zu suchen oder Indexpartitionierungen nach Wichtigkeit der enthaltenen Terme zu erstellen.}, subject = {Information Retrieval}, language = {de} } @phdthesis{Schaefer2003, author = {Sch{\"a}fer, Dirk}, title = {Globale Selbstlokalisation autonomer mobiler Roboter - Ein Schl{\"u}sselproblem der Service-Robotik}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-7601}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Die Dissertation behandelt die Problemstellung der globalen Selbstlokalisation autonomer mobiler Roboter, welche folgendermaßen beschrieben werden kann: Ein mobiler Roboter, eingesetzt in einem Geb{\"a}ude, kann unter Umst{\"a}nden das Wissen {\"u}ber seinen Standort verlieren. Man geht nun davon aus, dass dem Roboter eine Geb{\"a}udekarte als Modell zur Verf{\"u}gung steht. Mit Hilfe eines Laser-Entfernungsmessers kann das mobile Ger{\"a}t neue Informationen aufnehmen und damit bei korrekter Zuordnung zur Modellkarte geeignete hypothetische Standorte ermitteln. In der Regel werden diese Positionen aber mehrdeutig sein. Indem sich der Roboter intelligent in seiner Einsatzumgebung bewegt, kann er die urspr{\"u}nglichen Sensordaten verifizieren und ermittelt im besten Fall seine tats{\"a}chliche Position.F{\"u}r diese Problemstellung wird ein neuer L{\"o}sungsansatz in Theorie und Praxis pr{\"a}sentiert, welcher die jeweils aktuelle lokale Karte und damit alle Sensordaten mittels feature-basierter Matchingverfahren auf das Modell der Umgebung abbildet. Ein Explorationsalgorithmus bewegt den Roboter w{\"a}hrend der Bewegungsphase autonom zu Sensorpunkten, welche neue Informationen bereitstellen. W{\"a}hrend der Bewegungsphase werden dabei die bisherigen hypothetischen Positionen best{\"a}rkt oder geschw{\"a}cht, sodaß nach kurzer Zeit eine dominante Position, die tats{\"a}chliche Roboterposition,{\"u}brigbleibt.}, subject = {Mobiler Roboter}, language = {de} } @phdthesis{Schmitz2000, author = {Schmitz, Heinz}, title = {The Forbidden Pattern Approach to Concatenation Hierarchies}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-2832}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2000}, abstract = {The thesis looks at the question asking for the computability of the dot-depth of star-free regular languages. Here one has to determine for a given star-free regular language the minimal number of alternations between concatenation on one hand, and intersection, union, complement on the other hand. This question was first raised in 1971 (Brzozowski/Cohen) and besides the extended star-heights problem usually refered to as one of the most difficult open questions on regular languages. The dot-depth problem can be captured formally by hierarchies of classes of star-free regular languages B(0), B(1/2), B(1), B(3/2),... and L(0), L(1/2), L(1), L(3/2),.... which are defined via alternating the closure under concatenation and Boolean operations, beginning with single alphabet letters. Now the question of dot-depth is the question whether these hierarchy classes have decidable membership problems. The thesis makes progress on this question using the so-called forbidden pattern approach: Classes of regular languages are characterized in terms of patterns in finite automata (subgraphs in the transition graph) that are not allowed. Such a characterization immediately implies the decidability of the respective class, since the absence of a certain pattern in a given automaton can be effectively verified. Before this work, the decidability of B(0), B(1/2), B(1) and L(0), L(1/2), L(1), L(3/2) were known. Here a detailed study of these classes with help of forbidden patterns is given which leads to new insights into their inner structure. Furthermore, the decidability of B(3/2) is proven. Based on these results a theory of pattern iteration is developed which leads to the introduction of two new hierarchies of star-free regular languages. These hierarchies are decidable on one hand, on the other hand they are in close connection to the classes B(n) and L(n). It remains an open question here whether they may in fact coincide. Some evidence is given in favour of this conjecture which opens a new way to attack the dot-depth problem. Moreover, it is shown that the class L(5/2) is decidable in the restricted case of a two-letter alphabet.}, subject = {Sternfreie Sprache}, language = {en} } @phdthesis{Schmidt2011, author = {Schmidt, Marco}, title = {Ground Station Networks for Efficient Operation of Distributed Small Satellite Systems}, isbn = {978-3-923959-77-8}, doi = {10.25972/OPUS-4984}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-64999}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {The field of small satellite formations and constellations attracted growing attention, based on recent advances in small satellite engineering. The utilization of distributed space systems allows the realization of innovative applications and will enable improved temporal and spatial resolution in observation scenarios. On the other side, this new paradigm imposes a variety of research challenges. In this monograph new networking concepts for space missions are presented, using networks of ground stations. The developed approaches combine ground station resources in a coordinated way to achieve more robust and efficient communication links. Within this thesis, the following topics were elaborated to improve the performance in distributed space missions: Appropriate scheduling of contact windows in a distributed ground system is a necessary process to avoid low utilization of ground stations. The theoretical basis for the novel concept of redundant scheduling was elaborated in detail. Additionally to the presented algorithm was a scheduling system implemented, its performance was tested extensively with real world scheduling problems. In the scope of data management, a system was developed which autonomously synchronizes data frames in ground station networks and uses this information to detect and correct transmission errors. The system was validated with hardware in the loop experiments, demonstrating the benefits of the developed approach.}, subject = {Kleinsatellit}, language = {en} } @article{SchloerRingHotho2020, author = {Schl{\"o}r, Daniel and Ring, Markus and Hotho, Andreas}, title = {iNALU: Improved Neural Arithmetic Logic Unit}, series = {Frontiers in Artificial Intelligence}, volume = {3}, journal = {Frontiers in Artificial Intelligence}, issn = {2624-8212}, doi = {10.3389/frai.2020.00071}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212301}, year = {2020}, abstract = {Neural networks have to capture mathematical relationships in order to learn various tasks. They approximate these relations implicitly and therefore often do not generalize well. The recently proposed Neural Arithmetic Logic Unit (NALU) is a novel neural architecture which is able to explicitly represent the mathematical relationships by the units of the network to learn operations such as summation, subtraction or multiplication. Although NALUs have been shown to perform well on various downstream tasks, an in-depth analysis reveals practical shortcomings by design, such as the inability to multiply or divide negative input values or training stability issues for deeper networks. We address these issues and propose an improved model architecture. We evaluate our model empirically in various settings from learning basic arithmetic operations to more complex functions. Our experiments indicate that our model solves stability issues and outperforms the original NALU model in means of arithmetic precision and convergence.}, language = {en} } @inproceedings{SchlosserJarschelDuellietal.2010, author = {Schlosser, Daniel and Jarschel, Michael and Duelli, Michael and Hoßfeld, Tobias and Hoffmann, Klaus and Hoffmann, Marco and Morper, Hans Jochen and Jurca, Dan and Khan, Ashiq}, title = {A Use Case Driven Approach to Network Virtualization}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-55611}, year = {2010}, abstract = {In today's Internet, services are very different in their requirements on the underlying transport network. In the future, this diversity will increase and it will be more difficult to accommodate all services in a single network. A possible approach to cope with this diversity within future networks is the introduction of support for running isolated networks for different services on top of a single shared physical substrate. This would also enable easy network management and ensure an economically sound operation. End-customers will readily adopt this approach as it enables new and innovative services without being expensive. In order to arrive at a concept that enables this kind of network, it needs to be designed around and constantly checked against realistic use cases. In this contribution, we present three use cases for future networks. We describe functional blocks of a virtual network architecture, which are necessary to support these use cases within the network. Furthermore, we discuss the interfaces needed between the functional blocks and consider standardization issues that arise in order to achieve a global consistent control and management structure of virtual networks.}, subject = {Virtualisierung}, language = {en} } @phdthesis{Schlosser2011, author = {Schlosser, Daniel}, title = {Quality of Experience Management in Virtual Future Networks}, doi = {10.25972/OPUS-5719}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69986}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Aktuell beobachten wir eine drastische Vervielf{\"a}ltigung der Dienste und Anwendungen, die das Internet f{\"u}r den Datentransport nutzen. Dabei unterscheiden sich die Anforderungen dieser Dienste an das Netzwerk deutlich. Das Netzwerkmanagement wird durch diese Diversit{\"a}t der nutzenden Dienste aber deutlich erschwert, da es einem Datentransportdienstleister kaum m{\"o}glich ist, die unterschiedlichen Verbindungen zu unterscheiden, ohne den Inhalt der transportierten Daten zu analysieren. Netzwerkvirtualisierung ist eine vielversprechende L{\"o}sung f{\"u}r dieses Problem, da sie es erm{\"o}glicht f{\"u}r verschiedene Dienste unterschiedliche virtuelle Netze auf dem gleichen physikalischen Substrat zu betreiben. Diese Diensttrennung erm{\"o}glicht es, jedes einzelne Netz anwendungsspezifisch zu steuern. Ziel einer solchen Netzsteuerung ist es, sowohl die vom Nutzer erfahrene Dienstg{\"u}te als auch die Kosteneffizienz des Datentransports zu optimieren. Dar{\"u}ber hinaus wird es mit Netzwerkvirtualisierung m{\"o}glich das physikalische Netz so weit zu abstrahieren, dass die aktuell fest verzahnten Rollen von Netzwerkbesitzer und Netzwerkbetreiber entkoppelt werden k{\"o}nnen. Dar{\"u}ber hinaus stellt Netzwerkvirtualisierung sicher, dass unterschiedliche Datennetze, die gleichzeitig auf dem gleichen physikalischen Netz betrieben werden, sich gegenseitig weder beeinflussen noch st{\"o}ren k{\"o}nnen. Diese Arbeit  besch{\"a}ftigt sich mit ausgew{\"a}hlten Aspekten dieses Themenkomplexes und fokussiert sich darauf, ein virtuelles Netzwerk mit bestm{\"o}glicher Dienstqualit{\"a}t f{\"u}r den Nutzer zu betreiben und zu steuern. Daf{\"u}r wird ein Top-down-Ansatz gew{\"a}hlt, der von den Anwendungsf{\"a}llen, einer m{\"o}glichen Netzwerkvirtualisierungs-Architektur und aktuellen M{\"o}glichkeiten der Hardwarevirtualisierung ausgeht. Im Weiteren fokussiert sich die Arbeit dann in Richtung Bestimmung und Optimierung der vom Nutzer erfahrenen Dienstqualit{\"a}t (QoE) auf Applikationsschicht und diskutiert M{\"o}glichkeiten zur Messung und {\"U}berwachung von wesentlichen Netzparametern in virtualisierten Netzen.}, subject = {Netzwerkmanagement}, language = {en} } @techreport{SavvidisRothTutsch2022, type = {Working Paper}, author = {Savvidis, Dimitrios and Roth, Robert and Tutsch, Dietmar}, title = {Static Evaluation of a Wheel-Topology for an SDN-based Network Usecase}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28071}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280715}, pages = {3}, year = {2022}, abstract = {The increased occurrence of Software-Defined-Networking (SDN) not only improves the dynamics and maintenance of network architectures, but also opens up new use cases and application possibilities. Based on these observations, we propose a new network topology consisting of a star and a ring topology. This hybrid topology will be called wheel topology in this paper. We have considered the static characteristics of the wheel topology and compare them with known other topologies.}, subject = {Datennetz}, language = {en} } @phdthesis{Sauer2010, author = {Sauer, Markus}, title = {Mixed-Reality for Enhanced Robot Teleoperation}, isbn = {978-3-923959-67-9}, doi = {10.25972/OPUS-4666}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-55083}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {In den letzten Jahren ist die Forschung in der Robotik soweit fortgeschritten, dass die Mensch-Maschine Schnittstelle zunehmend die kritischste Komponente f{\"u}r eine hohe Gesamtperformanz von Systemen zur Navigation und Koordination von Robotern wird. In dieser Dissertation wird untersucht wie Mixed-Reality Technologien f{\"u}r Nutzerschnittstellen genutzt werden k{\"o}nnen, um diese Gesamtperformanz zu erh{\"o}hen. Hierzu werden Konzepte und Technologien entwickelt, die durch Evaluierung mit Nutzertest ein optimiertes und anwenderbezogenes Design von Mixed-Reality Nutzerschnittstellen erm{\"o}glichen. Er werden somit sowohl die technische Anforderungen als auch die menschlichen Faktoren f{\"u}r ein konsistentes Systemdesign ber{\"u}cksichtigt. Nach einer detaillierten Problemanalyse und der Erstellung eines Systemmodels, das den Menschen als Schl{\"u}sselkomponente mit einbezieht, wird zun{\"a}chst die Anwendung der neuartigen 3D-Time-of-Flight Kamera zur Navigation von Robotern, aber auch f{\"u}r den Einsatz in Mixed-Reality Schnittstellen analysiert und optimiert. Weiterhin wird gezeigt, wie sich der Netzwerkverkehr des Videostroms als wichtigstes Informationselement der meisten Nutzerschnittstellen f{\"u}r die Navigationsaufgabe auf der Netzwerk Applikationsebene in typischen Multi-Roboter Netzwerken mit dynamischen Topologien und Lastsituation optimieren l{\"a}sst. Hierdurch ist es m{\"o}glich in sonst in sonst typischen Ausfallszenarien den Videostrom zu erhalten und die Bildrate zu stabilisieren. Diese fortgeschrittenen Technologien werden dann auch dem entwickelten Konzept der generischen 3D Mixed Reality Schnittselle eingesetzt. Dieses Konzept erm{\"o}glicht eine integrierte 3D Darstellung der verf{\"u}gbaren Information, so dass r{\"a}umliche Beziehungen von Informationen aufrechterhalten werden und somit die Anzahl der mentalen Transformationen beim menschlichen Bediener reduziert wird. Gleichzeitig werden durch diesen Ansatz auch immersive Stereo Anzeigetechnologien unterst{\"u}tzt, welche zus{\"a}tzlich das r{\"a}umliche Verst{\"a}ndnis der entfernten Situation f{\"o}rdern. Die in der Dissertation vorgestellten und evaluierten Ans{\"a}tze nutzen auch die Tatsache, dass sich eine lokale Autonomie von Robotern heute sehr robust realisieren l{\"a}sst. Dies wird zum Beispiel zur Realisierung eines Assistenzsystems mit variabler Autonomie eingesetzt. Hierbei erh{\"a}lt der Fernbediener {\"u}ber eine Kraftr{\"u}ckkopplung kombiniert mit einer integrierten Augmented Reality Schnittstelle, einen Eindruck {\"u}ber die Situation am entfernten Arbeitsbereich, aber auch {\"u}ber die aktuelle Navigationsintention des Roboters. Die durchgef{\"u}hrten Nutzertests belegen die signifikante Steigerung der Navigationsperformanz durch den entwickelten Ansatz. Die robuste lokale Autonomie erm{\"o}glicht auch den in der Dissertation eingef{\"u}hrten Ansatz der pr{\"a}diktiven Mixed-Reality Schnittstelle. Die durch diesen Ansatz entkoppelte Regelschleife {\"u}ber den Menschen erm{\"o}glicht es die Sichtbarkeit von unvermeidbaren Systemverz{\"o}gerungen signifikant zu reduzieren. Zus{\"a}tzlich k{\"o}nnen durch diesen Ansatz beide f{\"u}r die Navigation hilfreichen Blickwinkel in einer 3D-Nutzerschnittstelle kombiniert werden - der exozentrische Blickwinkel und der egozentrische Blickwinkel als Augmented Reality Sicht.}, subject = {Mobiler Roboter}, language = {en} } @phdthesis{Saska2009, author = {Saska, Martin}, title = {Trajectory planning and optimal control for formations of autonomous robots}, isbn = {978-3-923959-56-3}, doi = {10.25972/OPUS-4622}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-53175}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {In this thesis, we present novel approaches for formation driving of nonholonomic robots and optimal trajectory planning to reach a target region. The methods consider a static known map of the environment as well as unknown and dynamic obstacles detected by sensors of the formation. The algorithms are based on leader following techniques, where the formation of car-like robots is maintained in a shape determined by curvilinear coordinates. Beyond this, the general methods of formation driving are specialized and extended for an application of airport snow shoveling. Detailed descriptions of the algorithms complemented by relevant stability and convergence studies will be provided in the following chapters. Furthermore, discussions of the applicability will be verified by various simulations in existing robotic environments and also by a hardware experiment.}, subject = {Autonomer Roboter}, language = {en} } @inproceedings{SanusiKlemke2021, author = {Sanusi, Khaleel Asyraaf Mat and Klemke, Roland}, title = {Immersive Multimodal Environments for Psychomotor Skills Training}, series = {Proceedings of the 1st Games Technology Summit}, booktitle = {Proceedings of the 1st Games Technology Summit}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246016}, pages = {9-15}, year = {2021}, abstract = {Modern immersive multimodal technologies enable the learners to completely get immersed in various learning situations in a way that feels like experiencing an authentic learning environment. These environments also allow the collection of multimodal data, which can be used with artificial intelligence to further improve the immersion and learning outcomes. The use of artificial intelligence has been widely explored for the interpretation of multimodal data collected from multiple sensors, thus giving insights to support learners' performance by providing personalised feedback. In this paper, we present a conceptual approach for creating immersive learning environments, integrated with multi-sensor setup to help learners improve their psychomotor skills in a remote setting.}, language = {en} } @techreport{RossiMaurelliUnnithanetal.2021, author = {Rossi, Angelo Pio and Maurelli, Francesco and Unnithan, Vikram and Dreger, Hendrik and Mathewos, Kedus and Pradhan, Nayan and Corbeanu, Dan-Andrei and Pozzobon, Riccardo and Massironi, Matteo and Ferrari, Sabrina and Pernechele, Claudia and Paoletti, Lorenzo and Simioni, Emanuele and Maurizio, Pajola and Santagata, Tommaso and Borrmann, Dorit and N{\"u}chter, Andreas and Bredenbeck, Anton and Zevering, Jasper and Arzberger, Fabian and Reyes Mantilla, Camilo Andr{\´e}s}, title = {DAEDALUS - Descent And Exploration in Deep Autonomy of Lava Underground Structures}, isbn = {978-3-945459-33-1}, issn = {1868-7466}, doi = {10.25972/OPUS-22791}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227911}, pages = {188}, year = {2021}, abstract = {The DAEDALUS mission concept aims at exploring and characterising the entrance and initial part of Lunar lava tubes within a compact, tightly integrated spherical robotic device, with a complementary payload set and autonomous capabilities. The mission concept addresses specifically the identification and characterisation of potential resources for future ESA exploration, the local environment of the subsurface and its geologic and compositional structure. A sphere is ideally suited to protect sensors and scientific equipment in rough, uneven environments. It will house laser scanners, cameras and ancillary payloads. The sphere will be lowered into the skylight and will explore the entrance shaft, associated caverns and conduits. Lidar (light detection and ranging) systems produce 3D models with high spatial accuracy independent of lighting conditions and visible features. Hence this will be the primary exploration toolset within the sphere. The additional payload that can be accommodated in the robotic sphere consists of camera systems with panoramic lenses and scanners such as multi-wavelength or single-photon scanners. A moving mass will trigger movements. The tether for lowering the sphere will be used for data communication and powering the equipment during the descending phase. Furthermore, the connector tether-sphere will host a WIFI access point, such that data of the conduit can be transferred to the surface relay station. During the exploration phase, the robot will be disconnected from the cable, and will use wireless communication. Emergency autonomy software will ensure that in case of loss of communication, the robot will continue the nominal mission.}, subject = {Mond}, language = {en} } @techreport{RieglerWernerKayal2022, type = {Working Paper}, author = {Riegler, Clemens and Werner, Lennart and Kayal, Hakan}, title = {MAPLE: Marsian Autorotation Probe Lander Experiment}, doi = {10.25972/OPUS-28239}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-282390}, pages = {7}, year = {2022}, abstract = {The first step towards aerial planetary exploration has been made. Ingenuity shows extremely promising results, and new missions are already underway. Rotorcraft are capable of flight. This capability could be utilized to support the last stages of Entry, Descent, and Landing. Thus, mass and complexity could be scaled down. Autorotation is one method of descent. It describes unpowered descent and landing, typically performed by helicopters in case of an engine failure. MAPLE is suggested to test these procedures and understand autorotation on other planets. In this series of experiments, the Ingenuity helicopter is utilized. Ingenuity would autorotate a "mid-air-landing" before continuing with normal flight. Ultimately, the collected data shall help to understand autorotation on Mars and its utilization for interplanetary exploration.}, language = {en} } @techreport{RieglerKayal2022, type = {Working Paper}, author = {Riegler, Clemens and Kayal, Hakan}, title = {VELEX: Venus Lightning Experiment}, doi = {10.25972/OPUS-28248}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-282481}, pages = {6}, year = {2022}, abstract = {Lightning has fascinated humanity since the beginning of our existence. Different types of lightning like sprites and blue jets were discovered, and many more are theorized. However, it is very likely that these phenomena are not exclusive to our home planet. Venus's dense and active atmosphere is a place where lightning is to be expected. Missions like Venera, Pioneer, and Galileo have carried instruments to measure electromagnetic activity. These measurements have indeed delivered results. However, these results are not clear. They could be explained by other effects like cosmic rays, plasma noise, or spacecraft noise. Furthermore, these lightning seem different from those we know from our home planet. In order to tackle these issues, a different approach to measurement is proposed. When multiple devices in different spacecraft or locations can measure the same atmospheric discharge, most other explanations become increasingly less likely. Thus, the suggested instrument and method of VELEX incorporates multiple spacecraft. With this approach, the question about the existence of lightning on Venus could be settled.}, language = {en} } @article{RiedmannSchaperLugrin2022, author = {Riedmann, Anna and Schaper, Philipp and Lugrin, Birgit}, title = {Integration of a social robot and gamification in adult learning and effects on motivation, engagement and performance}, series = {AI \& Society}, journal = {AI \& Society}, issn = {0951-5666}, doi = {10.1007/s00146-022-01514-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324208}, year = {2022}, abstract = {Learning is a central component of human life and essential for personal development. Therefore, utilizing new technologies in the learning context and exploring their combined potential are considered essential to support self-directed learning in a digital age. A learning environment can be expanded by various technical and content-related aspects. Gamification in the form of elements from video games offers a potential concept to support the learning process. This can be supplemented by technology-supported learning. While the use of tablets is already widespread in the learning context, the integration of a social robot can provide new perspectives on the learning process. However, simply adding new technologies such as social robots or gamification to existing systems may not automatically result in a better learning environment. In the present study, game elements as well as a social robot were integrated separately and conjointly into a learning environment for basic Spanish skills, with a follow-up on retained knowledge. This allowed us to investigate the respective and combined effects of both expansions on motivation, engagement and learning effect. This approach should provide insights into the integration of both additions in an adult learning context. We found that the additions of game elements and the robot did not significantly improve learning, engagement or motivation. Based on these results and a literature review, we outline relevant factors for meaningful integration of gamification and social robots in learning environments in adult learning.}, language = {en} } @phdthesis{Reitwiessner2011, author = {Reitwießner, Christian}, title = {Multiobjective Optimization and Language Equations}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-70146}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Praktische Optimierungsprobleme beinhalten oft mehrere gleichberechtigte, sich jedoch widersprechende Kriterien. Beispielsweise will man bei einer Reise zugleich m{\"o}glichst schnell ankommen, sie soll aber auch nicht zu teuer sein. Im ersten Teil dieser Arbeit wird die algorithmische Beherrschbarkeit solcher mehrkriterieller Optimierungsprobleme behandelt. Es werden zun{\"a}chst verschiedene L{\"o}sungsbegriffe diskutiert und auf ihre Schwierigkeit hin verglichen. Interessanterweise stellt sich heraus, dass diese Begriffe f{\"u}r ein einkriterielles Problem stets gleich schwer sind, sie sich ab zwei Kriterien allerdings stark unterscheiden k{\"o}nen (außer es gilt P = NP). In diesem Zusammenhang wird auch die Beziehung zwischen Such- und Entscheidungsproblemen im Allgemeinen untersucht. Schließlich werden neue und verbesserte Approximationsalgorithmen f{\"u}r verschieden Varianten des Problems des Handlungsreisenden gefunden. Dabei wird mit Mitteln der Diskrepanztheorie eine Technik entwickelt, die ein grundlegendes Hindernis der Mehrkriteriellen Optimierung aus dem Weg schafft: Gegebene L{\"o}sungen so zu kombinieren, dass die neue L{\"o}sung in allen Kriterien m{\"o}glichst ausgewogen ist und gleichzeitig die Struktur der L{\"o}sungen nicht zu stark zerst{\"o}rt wird. Der zweite Teil der Arbeit widmet sich verschiedenen Aspekten von Gleichungssystemen f{\"u}r (formale) Sprachen. Einerseits werden konjunktive und Boolesche Grammatiken untersucht. Diese sind Erweiterungen der kontextfreien Grammatiken um explizite Durchschnitts- und Komplementoperationen. Es wird unter anderem gezeigt, dass man bei konjunktiven Grammatiken die Vereinigungsoperation stark einschr{\"a}nken kann, ohne dabei die erzeugte Sprache zu {\"a}ndern. Außerdem werden bestimmte Schaltkreise untersucht, deren Gatter keine Wahrheitswerte sondern Mengen von Zahlen berechnen. F{\"u}r diese Schaltkreise wird das {\"A}quivalenzproblem betrachtet, also die Frage ob zwei gegebene Schaltkreise die gleiche Menge berechnen oder nicht. Es stellt sich heraus, dass, abh{\"a}ngig von den erlaubten Gattertypen, die Komplexit{\"a}t des {\"A}quivalenzproblems stark variiert und f{\"u}r verschiedene Komplexit{\"a}tsklassen vollst{\"a}ndig ist, also als (parametrisierter) Vertreter f{\"u}r diese Klassen stehen kann.}, subject = {Mehrkriterielle Optimierung}, language = {en} } @phdthesis{Reith2001, author = {Reith, Steffen}, title = {Generalized Satisfiability Problems}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-74}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {In the last 40 years, complexity theory has grown to a rich and powerful field in theoretical computer science. The main task of complexity theory is the classification of problems with respect to their consumption of resources (e.g., running time or required memory). To study the computational complexity (i.e., consumption of resources) of problems, similar problems are grouped into so called complexity classes. During the systematic study of numerous problems of practical relevance, no efficient algorithm for a great number of studied problems was found. Moreover, it was unclear whether such algorithms exist. A major breakthrough in this situation was the introduction of the complexity classes P and NP and the identification of hardest problems in NP. These hardest problems of NP are nowadays known as NP-complete problems. One prominent example of an NP-complete problem is the satisfiability problem of propositional formulas (SAT). Here we get a propositional formula as an input and it must be decided whether an assignment for the propositional variables exists, such that this assignment satisfies the given formula. The intensive study of NP led to numerous related classes, e.g., the classes of the polynomial-time hierarchy PH, P, \#P, PP, NL, L and \#L. During the study of these classes, problems related to propositional formulas were often identified to be complete problems for these classes. Hence some questions arise: Why is SAT so hard to solve? Are there modifications of SAT which are complete for other well-known complexity classes? In the context of these questions a result by E. Post is extremely useful. He identified and characterized all classes of Boolean functions being closed under superposition. It is possible to study problems which are connected to generalized propositional logic by using this result, which was done in this thesis. Hence, many different problems connected to propositional logic were studied and classified with respect to their computational complexity, clearing the borderline between easy and hard problems.}, subject = {Erf{\"u}llbarkeitsproblem}, language = {en} } @techreport{RauberBrechtelSchotten2023, type = {Working Paper}, author = {Rauber, Christof A. O. and Brechtel, Lukas and Schotten, Hans D.}, title = {JCAS-Enabled Sensing as a Service in 6th-Generation Mobile Communication Networks}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32213}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322135}, pages = {4}, year = {2023}, abstract = {The introduction of new types of frequency spectrum in 6G technology facilitates the convergence of conventional mobile communications and radar functions. Thus, the mobile network itself becomes a versatile sensor system. This enables mobile network operators to offer a sensing service in addition to conventional data and telephony services. The potential benefits are expected to accrue to various stakeholders, including individuals, the environment, and society in general. The paper discusses technological development, possible integration, and use cases, as well as future development areas.}, language = {en} } @techreport{RaffeckGeisslerHossfeld2023, type = {Working Paper}, author = {Raffeck, Simon and Geißler, Stefan and Hoßfeld, Tobias}, title = {Towards Understanding the Signaling Traffic in 5G Core Networks}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32210}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322106}, pages = {4}, year = {2023}, abstract = {The Fifth Generation (5G) communication technology, its infrastructure and architecture, though already deployed in campus and small scale networks, is still undergoing continuous changes and research. Especially, in the light of future large scale deployments and industrial use cases, a detailed analysis of the performance and utilization with regard to latency and service times constraints is crucial. To this end, a fine granular investigation of the Network Function (NF) based core system and the duration for all the tasks performed by these services is necessary. This work presents the first steps towards analyzing the signaling traffic in 5G core networks, and introduces a tool to automatically extract sequence diagrams and service times for NF tasks from traffic traces.}, language = {en} } @techreport{RaffeckGeisslerHossfeld2022, type = {Working Paper}, author = {Raffeck, Simon and Geißler, Stefan and Hoßfeld, Tobias}, title = {DBM: Decentralized Burst Mitigation for Self-Organizing LoRa Deployments}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28080}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280809}, pages = {4}, year = {2022}, abstract = {This work proposes a novel approach to disperse dense transmission intervals and reduce bursty traffic patterns without the need for centralized control. Furthermore, by keeping the mechanism as close to the Long Range Wide Area Network (LoRaWAN) standard as possible the suggested mechanism can be deployed within existing networks and can even be co-deployed with other devices.}, subject = {Datennetz}, language = {en} } @article{Puppe2022, author = {Puppe, Frank}, title = {Gesellschaftliche Perspektiven einer fachspezifischen KI f{\"u}r automatisierte Entscheidungen}, series = {Informatik Spektrum}, volume = {45}, journal = {Informatik Spektrum}, number = {2}, issn = {0170-6012}, doi = {10.1007/s00287-022-01443-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324197}, pages = {88-95}, year = {2022}, abstract = {Die k{\"u}nstliche Intelligenz (KI) entwickelt sich rasant und hat bereits eindrucksvolle Erfolge zu verzeichnen, darunter {\"u}bermenschliche Kompetenz in den meisten Spielen und vielen Quizshows, intelligente Suchmaschinen, individualisierte Werbung, Spracherkennung, -ausgabe und -{\"u}bersetzung auf sehr hohem Niveau und hervorragende Leistungen bei der Bildverarbeitung, u. a. in der Medizin, der optischen Zeichenerkennung, beim autonomen Fahren, aber auch beim Erkennen von Menschen auf Bildern und Videos oder bei Deep Fakes f{\"u}r Fotos und Videos. Es ist zu erwarten, dass die KI auch in der Entscheidungsfindung Menschen {\"u}bertreffen wird; ein alter Traum der Expertensysteme, der durch Lernverfahren, Big Data und Zugang zu dem gesammelten Wissen im Web in greifbare N{\"a}he r{\"u}ckt. Gegenstand dieses Beitrags sind aber weniger die technischen Entwicklungen, sondern m{\"o}gliche gesellschaftliche Auswirkungen einer spezialisierten, kompetenten KI f{\"u}r verschiedene Bereiche der autonomen, d. h. nicht nur unterst{\"u}tzenden Entscheidungsfindung: als Fußballschiedsrichter, in der Medizin, f{\"u}r richterliche Entscheidungen und sehr spekulativ auch im politischen Bereich. Dabei werden Vor- und Nachteile dieser Szenarien aus gesellschaftlicher Sicht diskutiert.}, subject = {K{\"u}nstliche Intelligenz}, language = {de} } @phdthesis{Pries2010, author = {Pries, Jan Rastin}, title = {Performance Optimization of Wireless Infrastructure and Mesh Networks}, doi = {10.25972/OPUS-3723}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-46097}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Future broadband wireless networks should be able to support not only best effort traffic but also real-time traffic with strict Quality of Service (QoS) constraints. In addition, their available resources are scare and limit the number of users. To facilitate QoS guarantees and increase the maximum number of concurrent users, wireless networks require careful planning and optimization. In this monograph, we studied three aspects of performance optimization in wireless networks: resource optimization in WLAN infrastructure networks, quality of experience control in wireless mesh networks, and planning and optimization of wireless mesh networks. An adaptive resource management system is required to effectively utilize the limited resources on the air interface and to guarantee QoS for real-time applications. Thereby, both WLAN infrastructure and WLAN mesh networks have to be considered. An a-priori setting of the access parameters is not meaningful due to the contention-based medium access and the high dynamics of the system. Thus, a management system is required which dynamically adjusts the channel access parameters based on the network load. While this is sufficient for wireless infrastructure networks, interferences on neighboring paths and self-interferences have to be considered for wireless mesh networks. In addition, a careful channel allocation and route assignment is needed. Due to the large parameter space, standard optimization techniques fail for optimizing large wireless mesh networks. In this monograph, we reveal that biology-inspired optimization techniques, namely genetic algorithms, are well-suitable for the planning and optimization of wireless mesh networks. Although genetic algorithms generally do not always find the optimal solution, we show that with a good parameter set for the genetic algorithm, the overall throughput of the wireless mesh network can be significantly improved while still sharing the resources fairly among the users.}, subject = {IEEE 802.11}, language = {en} } @article{PrantlZeckBaueretal.2022, author = {Prantl, Thomas and Zeck, Timo and Bauer, Andre and Ten, Peter and Prantl, Dominik and Yahya, Ala Eddine Ben and Ifflaender, Lukas and Dmitrienko, Alexandra and Krupitzer, Christian and Kounev, Samuel}, title = {A Survey on Secure Group Communication Schemes With Focus on IoT Communication}, series = {IEEE Access}, volume = {10}, journal = {IEEE Access}, doi = {10.1109/ACCESS.2022.3206451}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300257}, pages = {99944 -- 99962}, year = {2022}, abstract = {A key feature for Internet of Things (IoT) is to control what content is available to each user. To handle this access management, encryption schemes can be used. Due to the diverse usage of encryption schemes, there are various realizations of 1-to-1, 1-to-n, and n-to-n schemes in the literature. This multitude of encryption methods with a wide variety of properties presents developers with the challenge of selecting the optimal method for a particular use case, which is further complicated by the fact that there is no overview of existing encryption schemes. To fill this gap, we envision a cryptography encyclopedia providing such an overview of existing encryption schemes. In this survey paper, we take a first step towards such an encyclopedia by creating a sub-encyclopedia for secure group communication (SGC) schemes, which belong to the n-to-n category. We extensively surveyed the state-of-the-art and classified 47 different schemes. More precisely, we provide (i) a comprehensive overview of the relevant security features, (ii) a set of relevant performance metrics, (iii) a classification for secure group communication schemes, and (iv) workflow descriptions of the 47 schemes. Moreover, we perform a detailed performance and security evaluation of the 47 secure group communication schemes. Based on this evaluation, we create a guideline for the selection of secure group communication schemes.}, language = {en} } @article{PfitznerMayNuechter2018, author = {Pfitzner, Christian and May, Stefan and N{\"u}chter, Andreas}, title = {Body weight estimation for dose-finding and health monitoring of lying, standing and walking patients based on RGB-D data}, series = {Sensors}, volume = {18}, journal = {Sensors}, number = {5}, doi = {10.3390/s18051311}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176642}, pages = {1311}, year = {2018}, abstract = {This paper describes the estimation of the body weight of a person in front of an RGB-D camera. A survey of different methods for body weight estimation based on depth sensors is given. First, an estimation of people standing in front of a camera is presented. Second, an approach based on a stream of depth images is used to obtain the body weight of a person walking towards a sensor. The algorithm first extracts features from a point cloud and forwards them to an artificial neural network (ANN) to obtain an estimation of body weight. Besides the algorithm for the estimation, this paper further presents an open-access dataset based on measurements from a trauma room in a hospital as well as data from visitors of a public event. In total, the dataset contains 439 measurements. The article illustrates the efficiency of the approach with experiments with persons lying down in a hospital, standing persons, and walking persons. Applicable scenarios for the presented algorithm are body weight-related dosing of emergency patients.}, language = {en} } @phdthesis{Peng2019, author = {Peng, Dongliang}, title = {An Optimization-Based Approach for Continuous Map Generalization}, edition = {1. Auflage}, publisher = {W{\"u}rzburg University Press}, address = {W{\"u}rzburg}, isbn = {978-3-95826-104-4}, doi = {10.25972/WUP-978-3-95826-105-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-174427}, school = {W{\"u}rzburg University Press}, pages = {xv, 132}, year = {2019}, abstract = {Maps are the main tool to represent geographical information. Geographical information is usually scale-dependent, so users need to have access to maps at different scales. In our digital age, the access is realized by zooming. As discrete changes during the zooming tend to distract users, smooth changes are preferred. This is why some digital maps are trying to make the zooming as continuous as they can. The process of producing maps at different scales with smooth changes is called continuous map generalization. In order to produce maps of high quality, cartographers often take into account additional requirements. These requirements are transferred to models in map generalization. Optimization for map generalization is important not only because it finds optimal solutions in the sense of the models, but also because it helps us to evaluate the quality of the models. Optimization, however, becomes more delicate when we deal with continuous map generalization. In this area, there are requirements not only for a specific map but also for relations between maps at difference scales. This thesis is about continuous map generalization based on optimization. First, we show the background of our research topics. Second, we find optimal sequences for aggregating land-cover areas. We compare the A\$^{\!\star}\$\xspace algorithm and integer linear programming in completing this task. Third, we continuously generalize county boundaries to provincial boundaries based on compatible triangulations. We morph between the two sets of boundaries, using dynamic programming to compute the correspondence. Fourth, we continuously generalize buildings to built-up areas by aggregating and growing. In this work, we group buildings with the help of a minimum spanning tree. Fifth, we define vertex trajectories that allow us to morph between polylines. We require that both the angles and the edge lengths change linearly over time. As it is impossible to fulfill all of these requirements simultaneously, we mediate between them using least-squares adjustment. Sixth, we discuss the performance of some commonly used data structures for a specific spatial problem. Seventh, we conclude this thesis and present open problems.}, subject = {Generalisierung }, language = {en} } @phdthesis{Ostermayer2017, author = {Ostermayer, Ludwig}, title = {Integration of Prolog and Java with the Connector Architecture CAPJa}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-150713}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Modern software is often realized as a modular combination of subsystems for, e. g., knowledge management, visualization, verification, or the interaction with users. As a result, software libraries from possibly different programming languages have to work together. Even more complex the case is if different programming paradigms have to be combined. This type of diversification of programming languages and paradigms in just one software application can only be mastered by mechanisms for a seamless integration of the involved programming languages. However, the integration of the common logic programming language Prolog and the popular object-oriented programming language Java is complicated by various interoperability problems which stem on the one hand from the paradigmatic gap between the programming languages, and on the other hand, from the diversity of the available Prolog systems. The subject of the thesis is the investigation of novel mechanisms for the integration of logic programming in Prolog and object-oriented programming in Java. We are particularly interested in an object-oriented, uniform approach which is not specific to just one Prolog system. Therefore, we have first identified several important criteria for the seamless integration of Prolog and Java from the object-oriented perspective. The main contribution of the thesis is a novel integration framework called the Connector Architecture for Prolog and Java (CAPJa). The framework is completely implemented in Java and imposes no modifications to the Java Virtual Machine or Prolog. CAPJa provides a semi-automated mechanism for the integration of Prolog predicates into Java. For compact, readable, and object-oriented queries to Prolog, CAPJa exploits lambda expressions with conditional and relational operators in Java. The communication between Java and Prolog is based on a fully automated mapping of Java objects to Prolog terms, and vice versa. In Java, an extensible system of gateways provides connectivity with various Prolog system and, moreover, makes any connected Prolog system easily interchangeable, without major adaption in Java.}, subject = {Logische Programmierung}, language = {en} } @phdthesis{Oechsner2010, author = {Oechsner, Simon}, title = {Performance Challenges and Optimization Potential of Peer-to-Peer Overlay Technologies}, doi = {10.25972/OPUS-4159}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-50015}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {In today's Internet, building overlay structures to provide a service is becoming more and more common. This approach allows for the utilization of client resources, thus being more scalable than a client-server model in this respect. However, in these architectures the quality of the provided service depends on the clients and is therefore more complex to manage. Resource utilization, both at the clients themselves and in the underlying network, determine the efficiency of the overlay application. Here, a trade-off exists between the resource providers and the end users that can be tuned via overlay mechanisms. Thus, resource management and traffic management is always quality-of-service management as well. In this monograph, the three currently significant and most widely used overlay types in the Internet are considered. These overlays are implemented in popular applications which only recently have gained importance. Thus, these overlay networks still face real-world technical challenges which are of high practical relevance. We identify the specific issues for each of the considered overlays, and show how their optimization affects the trade-offs between resource efficiency and service quality. Thus, we supply new insights and system knowledge that is not provided by previous work.}, subject = {Overlay-Netz}, language = {en} } @techreport{OdhahGrassKraemer2022, type = {Working Paper}, author = {Odhah, Najib and Grass, Eckhard and Kraemer, Rolf}, title = {Effective Rate of URLLC with Short Block-Length Information Theory}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28085}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280859}, pages = {4}, year = {2022}, abstract = {Shannon channel capacity estimation, based on large packet length is used in traditional Radio Resource Management (RRM) optimization. This is good for the normal transmission of data in a wired or wireless system. For industrial automation and control, rather short packages are used due to the short-latency requirements. Using Shannon's formula leads in this case to inaccurate RRM solutions, thus another formula should be used to optimize radio resources in short block-length packet transmission, which is the basic of Ultra-Reliable Low-Latency Communications (URLLCs). The stringent requirement of delay Quality of Service (QoS) for URLLCs requires a link-level channel model rather than a physical level channel model. After finding the basic and accurate formula of the achievable rate of short block-length packet transmission, the RRM optimization problem can be accurately formulated and solved under the new constraints of URLLCs. In this short paper, the current mathematical models, which are used in formulating the effective transmission rate of URLLCs, will be briefly explained. Then, using this rate in RRM for URLLC will be discussed.}, subject = {Datennetz}, language = {en} } @article{ObremskiLugrinSchaperetal.2021, author = {Obremski, David and Lugrin, Jean-Luc and Schaper, Philipp and Lugrin, Birgit}, title = {Non-native speaker perception of Intelligent Virtual Agents in two languages: the impact of amount and type of grammatical mistakes}, series = {Journal on Multimodal User Interfaces}, volume = {15}, journal = {Journal on Multimodal User Interfaces}, number = {2}, issn = {1783-8738}, doi = {10.1007/s12193-021-00369-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-269984}, pages = {229-238}, year = {2021}, abstract = {Having a mixed-cultural membership becomes increasingly common in our modern society. It is thus beneficial in several ways to create Intelligent Virtual Agents (IVAs) that reflect a mixed-cultural background as well, e.g., for educational settings. For research with such IVAs, it is essential that they are classified as non-native by members of a target culture. In this paper, we focus on variations of IVAs' speech to create the impression of non-native speakers that are identified as such by speakers of two different mother tongues. In particular, we investigate grammatical mistakes and identify thresholds beyond which the agents is clearly categorised as a non-native speaker. Therefore, we conducted two experiments: one for native speakers of German, and one for native speakers of English. Results of the German study indicate that beyond 10\% of word order mistakes and 25\% of infinitive mistakes German-speaking IVAs are perceived as non-native speakers. Results of the English study indicate that beyond 50\% of omission mistakes and 50\% of infinitive mistakes English-speaking IVAs are perceived as non-native speakers. We believe these thresholds constitute helpful guidelines for computational approaches of non-native speaker generation, simplifying research with IVAs in mixed-cultural settings.}, language = {en} } @article{ObremskiFriedrichHaaketal.2022, author = {Obremski, David and Friedrich, Paula and Haak, Nora and Schaper, Philipp and Lugrin, Birgit}, title = {The impact of mixed-cultural speech on the stereotypical perception of a virtual robot}, series = {Frontiers in Robotics and AI}, volume = {9}, journal = {Frontiers in Robotics and AI}, issn = {2296-9144}, doi = {10.3389/frobt.2022.983955}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293531}, year = {2022}, abstract = {Despite the fact that mixed-cultural backgrounds become of increasing importance in our daily life, the representation of multiple cultural backgrounds in one entity is still rare in socially interactive agents (SIAs). This paper's contribution is twofold. First, it provides a survey of research on mixed-cultured SIAs. Second, it presents a study investigating how mixed-cultural speech (in this case, non-native accent) influences how a virtual robot is perceived in terms of personality, warmth, competence and credibility. Participants with English or German respectively as their first language watched a video of a virtual robot speaking in either standard English or German-accented English. It was expected that the German-accented speech would be rated more positively by native German participants as well as elicit the German stereotypes credibility and conscientiousness for both German and English participants. Contrary to the expectations, German participants rated the virtual robot lower in terms of competence and credibility when it spoke with a German accent, whereas English participants perceived the virtual robot with a German accent as more credible compared to the version without an accent. Both the native English and native German listeners classified the virtual robot with a German accent as significantly more neurotic than the virtual robot speaking standard English. This work shows that by solely implementing a non-native accent in a virtual robot, stereotypes are partly transferred. It also shows that the implementation of a non-native accent leads to differences in the perception of the virtual robot.}, language = {en} } @article{OberdoerferLatoschik2019, author = {Oberd{\"o}rfer, Sebastian and Latoschik, Marc Erich}, title = {Knowledge encoding in game mechanics: transfer-oriented knowledge learning in desktop-3D and VR}, series = {International Journal of Computer Games Technology}, volume = {2019}, journal = {International Journal of Computer Games Technology}, doi = {10.1155/2019/7626349}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201159}, pages = {7626349}, year = {2019}, abstract = {Affine Transformations (ATs) are a complex and abstract learning content. Encoding the AT knowledge in Game Mechanics (GMs) achieves a repetitive knowledge application and audiovisual demonstration. Playing a serious game providing these GMs leads to motivating and effective knowledge learning. Using immersive Virtual Reality (VR) has the potential to even further increase the serious game's learning outcome and learning quality. This paper compares the effectiveness and efficiency of desktop-3D and VR in respect to the achieved learning outcome. Also, the present study analyzes the effectiveness of an enhanced audiovisual knowledge encoding and the provision of a debriefing system. The results validate the effectiveness of the knowledge encoding in GMs to achieve knowledge learning. The study also indicates that VR is beneficial for the overall learning quality and that an enhanced audiovisual encoding has only a limited effect on the learning outcome.}, language = {en} } @article{OberdoerferHeidrichBirnstieletal.2021, author = {Oberd{\"o}rfer, Sebastian and Heidrich, David and Birnstiel, Sandra and Latoschik, Marc Erich}, title = {Enchanted by Your Surrounding? Measuring the Effects of Immersion and Design of Virtual Environments on Decision-Making}, series = {Frontiers in Virtual Reality}, volume = {2}, journal = {Frontiers in Virtual Reality}, doi = {10.3389/frvir.2021.679277}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260101}, pages = {679277}, year = {2021}, abstract = {Impaired decision-making leads to the inability to distinguish between advantageous and disadvantageous choices. The impairment of a person's decision-making is a common goal of gambling games. Given the recent trend of gambling using immersive Virtual Reality it is crucial to investigate the effects of both immersion and the virtual environment (VE) on decision-making. In a novel user study, we measured decision-making using three virtual versions of the Iowa Gambling Task (IGT). The versions differed with regard to the degree of immersion and design of the virtual environment. While emotions affect decision-making, we further measured the positive and negative affect of participants. A higher visual angle on a stimulus leads to an increased emotional response. Thus, we kept the visual angle on the Iowa Gambling Task the same between our conditions. Our results revealed no significant impact of immersion or the VE on the IGT. We further found no significant difference between the conditions with regard to positive and negative affect. This suggests that neither the medium used nor the design of the VE causes an impairment of decision-making. However, in combination with a recent study, we provide first evidence that a higher visual angle on the IGT leads to an effect of impairment.}, language = {en} } @article{OberdoerferBirnstielLatoschiketal.2021, author = {Oberd{\"o}rfer, Sebastian and Birnstiel, Sandra and Latoschik, Marc Erich and Grafe, Silke}, title = {Mutual Benefits: Interdisciplinary Education of Pre-Service Teachers and HCI Students in VR/AR Learning Environment Design}, series = {Frontiers in Education}, volume = {6}, journal = {Frontiers in Education}, issn = {2504-284X}, doi = {10.3389/feduc.2021.693012}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241612}, year = {2021}, abstract = {The successful development and classroom integration of Virtual (VR) and Augmented Reality (AR) learning environments requires competencies and content knowledge with respect to media didactics and the respective technologies. The paper discusses a pedagogical concept specifically aiming at the interdisciplinary education of pre-service teachers in collaboration with human-computer interaction students. The students' overarching goal is the interdisciplinary realization and integration of VR/AR learning environments in teaching and learning concepts. To assist this approach, we developed a specific tutorial guiding the developmental process. We evaluate and validate the effectiveness of the overall pedagogical concept by analyzing the change in attitudes regarding 1) the use of VR/AR for educational purposes and in competencies and content knowledge regarding 2) media didactics and 3) technology. Our results indicate a significant improvement in the knowledge of media didactics and technology. We further report on four STEM learning environments that have been developed during the seminar.}, language = {en} } @phdthesis{Nogatz2023, author = {Nogatz, Falco}, title = {Defining and Implementing Domain-Specific Languages with Prolog}, doi = {10.25972/OPUS-30187}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301872}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The landscape of today's programming languages is manifold. With the diversity of applications, the difficulty of adequately addressing and specifying the used programs increases. This often leads to newly designed and implemented domain-specific languages. They enable domain experts to express knowledge in their preferred format, resulting in more readable and concise programs. Due to its flexible and declarative syntax without reserved keywords, the logic programming language Prolog is particularly suitable for defining and embedding domain-specific languages. This thesis addresses the questions and challenges that arise when integrating domain-specific languages into Prolog. We compare the two approaches to define them either externally or internally, and provide assisting tools for each. The grammar of a formal language is usually defined in the extended Backus-Naur form. In this work, we handle this formalism as a domain-specific language in Prolog, and define term expansions that allow to translate it into equivalent definite clause grammars. We present the package library(dcg4pt) for SWI-Prolog, which enriches them by an additional argument to automatically process the term's corresponding parse tree. To simplify the work with definite clause grammars, we visualise their application by a web-based tracer. The external integration of domain-specific languages requires the programmer to keep the grammar, parser, and interpreter in sync. In many cases, domain-specific languages can instead be directly embedded into Prolog by providing appropriate operator definitions. In addition, we propose syntactic extensions for Prolog to expand its expressiveness, for instance to state logic formulas with their connectives verbatim. This allows to use all tools that were originally written for Prolog, for instance code linters and editors with syntax highlighting. We present the package library(plammar), a standard-compliant parser for Prolog source code, written in Prolog. It is able to automatically infer from example sentences the required operator definitions with their classes and precedences as well as the required Prolog language extensions. As a result, we can automatically answer the question: Is it possible to model these example sentences as valid Prolog clauses, and how? We discuss and apply the two approaches to internal and external integrations for several domain-specific languages, namely the extended Backus-Naur form, GraphQL, XPath, and a controlled natural language to represent expert rules in if-then form. The created toolchain with library(dcg4pt) and library(plammar) yields new application opportunities for static Prolog source code analysis, which we also present.}, subject = {PROLOG }, language = {en} } @phdthesis{Niebler2019, author = {Niebler, Thomas}, title = {Extracting and Learning Semantics from Social Web Data}, doi = {10.25972/OPUS-17866}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178666}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Making machines understand natural language is a dream of mankind that existed since a very long time. Early attempts at programming machines to converse with humans in a supposedly intelligent way with humans relied on phrase lists and simple keyword matching. However, such approaches cannot provide semantically adequate answers, as they do not consider the specific meaning of the conversation. Thus, if we want to enable machines to actually understand language, we need to be able to access semantically relevant background knowledge. For this, it is possible to query so-called ontologies, which are large networks containing knowledge about real-world entities and their semantic relations. However, creating such ontologies is a tedious task, as often extensive expert knowledge is required. Thus, we need to find ways to automatically construct and update ontologies that fit human intuition of semantics and semantic relations. More specifically, we need to determine semantic entities and find relations between them. While this is usually done on large corpora of unstructured text, previous work has shown that we can at least facilitate the first issue of extracting entities by considering special data such as tagging data or human navigational paths. Here, we do not need to detect the actual semantic entities, as they are already provided because of the way those data are collected. Thus we can mainly focus on the problem of assessing the degree of semantic relatedness between tags or web pages. However, there exist several issues which need to be overcome, if we want to approximate human intuition of semantic relatedness. For this, it is necessary to represent words and concepts in a way that allows easy and highly precise semantic characterization. This also largely depends on the quality of data from which these representations are constructed. In this thesis, we extract semantic information from both tagging data created by users of social tagging systems and human navigation data in different semantic-driven social web systems. Our main goal is to construct high quality and robust vector representations of words which can the be used to measure the relatedness of semantic concepts. First, we show that navigation in the social media systems Wikipedia and BibSonomy is driven by a semantic component. After this, we discuss and extend methods to model the semantic information in tagging data as low-dimensional vectors. Furthermore, we show that tagging pragmatics influences different facets of tagging semantics. We then investigate the usefulness of human navigational paths in several different settings on Wikipedia and BibSonomy for measuring semantic relatedness. Finally, we propose a metric-learning based algorithm in adapt pre-trained word embeddings to datasets containing human judgment of semantic relatedness. This work contributes to the field of studying semantic relatedness between words by proposing methods to extract semantic relatedness from web navigation, learn highquality and low-dimensional word representations from tagging data, and to learn semantic relatedness from any kind of vector representation by exploiting human feedback. Applications first and foremest lie in ontology learning for the Semantic Web, but also semantic search or query expansion.}, subject = {Semantik}, language = {en} } @techreport{NguyenLohHossfeld2023, type = {Working Paper}, author = {Nguyen, Kien and Loh, Frank and Hoßfeld, Tobias}, title = {Challenges of Serverless Deployment in Edge-MEC-Cloud}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32202}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322025}, pages = {4}, year = {2023}, abstract = {The emerging serverless computing may meet Edge Cloud in a beneficial manner as the two offer flexibility and dynamicity in optimizing finite hardware resources. However, the lack of proper study of a joint platform leaves a gap in literature about consumption and performance of such integration. To this end, this paper identifies the key questions and proposes a methodology to answer them.}, language = {en} } @techreport{NavadeMaileGerman2023, type = {Working Paper}, author = {Navade, Piyush and Maile, Lisa and German, Reinhard}, title = {Multiple DCLC Routing Algorithms for Ultra-Reliable and Time-Sensitive Applications}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32217}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322177}, pages = {4}, year = {2023}, abstract = {This paper discusses the problem of finding multiple shortest disjoint paths in modern communication networks, which is essential for ultra-reliable and time-sensitive applications. Dijkstra's algorithm has been a popular solution for the shortest path problem, but repetitive use of it to find multiple paths is not scalable. The Multiple Disjoint Path Algorithm (MDPAlg), published in 2021, proposes the use of a single full graph to construct multiple disjoint paths. This paper proposes modifications to the algorithm to include a delay constraint, which is important in time-sensitive applications. Different delay constraint least-cost routing algorithms are compared in a comprehensive manner to evaluate the benefits of the adapted MDPAlg algorithm. Fault tolerance, and thereby reliability, is ensured by generating multiple link-disjoint paths from source to destination.}, language = {en} } @article{MuellerLeppichGeissetal.2023, author = {M{\"u}ller, Konstantin and Leppich, Robert and Geiß, Christian and Borst, Vanessa and Pelizari, Patrick Aravena and Kounev, Samuel and Taubenb{\"o}ck, Hannes}, title = {Deep neural network regression for normalized digital surface model generation with Sentinel-2 imagery}, series = {IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing}, volume = {16}, journal = {IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing}, issn = {1939-1404}, doi = {10.1109/JSTARS.2023.3297710}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349424}, pages = {8508-8519}, year = {2023}, abstract = {In recent history, normalized digital surface models (nDSMs) have been constantly gaining importance as a means to solve large-scale geographic problems. High-resolution surface models are precious, as they can provide detailed information for a specific area. However, measurements with a high resolution are time consuming and costly. Only a few approaches exist to create high-resolution nDSMs for extensive areas. This article explores approaches to extract high-resolution nDSMs from low-resolution Sentinel-2 data, allowing us to derive large-scale models. We thereby utilize the advantages of Sentinel 2 being open access, having global coverage, and providing steady updates through a high repetition rate. Several deep learning models are trained to overcome the gap in producing high-resolution surface maps from low-resolution input data. With U-Net as a base architecture, we extend the capabilities of our model by integrating tailored multiscale encoders with differently sized kernels in the convolution as well as conformed self-attention inside the skip connection gates. Using pixelwise regression, our U-Net base models can achieve a mean height error of approximately 2 m. Moreover, through our enhancements to the model architecture, we reduce the model error by more than 7\%.}, language = {en} } @phdthesis{Maeder2008, author = {M{\"a}der, Andreas}, title = {Performance Models for UMTS 3.5G Mobile Wireless Systems}, doi = {10.25972/OPUS-2766}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-32525}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Mobile telecommunication systems of the 3.5th generation (3.5G) constitute a first step towards the requirements of an all-IP world. As the denotation suggests, 3.5G systems are not completely new designed from scratch. Instead, they are evolved from existing 3G systems like UMTS or cdma2000. 3.5G systems are primarily designed and optimized for packet-switched best-effort traffic, but they are also intended to increase system capacity by exploiting available radio resources more efficiently. Systems based on cdma2000 are enhanced with 1xEV-DO (EV-DO: evolution, data-optimized). In the UMTS domain, the 3G partnership project (3GPP) specified the High Speed Packet Access (HSPA) family, consisting of High Speed Downlink Packet Access (HSDPA) and its counterpart High Speed Uplink Packet Access (HSUPA) or Enhanced Uplink. The focus of this monograph is on HSPA systems, although the operation principles of other 3.5G systems are similar. One of the main contributions of our work are performance models which allow a holistic view on the system. The models consider user traffic on flow-level, such that only on significant changes of the system state a recalculation of parameters like bandwidth is necessary. The impact of lower layers is captured by stochastic models. This approach combines accurate modeling and the ability to cope with computational complexity. Adopting this approach to HSDPA, we develop a new physical layer abstraction model that takes radio resources, scheduling discipline, radio propagation and mobile device capabilities into account. Together with models for the calculation of network-wide interference and transmit powers, a discrete-event simulation and an analytical model based on a queuing-theoretical approach are proposed. For the Enhanced Uplink, we develop analytical models considering independent and correlated other-cell interference.}, subject = {Mobilfunk}, language = {en} } @phdthesis{Milbrandt2007, author = {Milbrandt, Jens}, title = {Performance Evaluation of Efficient Resource Management Concepts for Next Generation IP Networks}, doi = {10.25972/OPUS-1991}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-23332}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Next generation networks (NGNs) must integrate the services of current circuit-switched telephone networks and packet-switched data networks. This convergence towards a unified communication infrastructure necessitates from the high capital expenditures (CAPEX) and operational expenditures (OPEX) due to the coexistence of separate networks for voice and data. In the end, NGNs must offer the same services as these legacy networks and, therefore, they must provide a low-cost packet-switched solution with real-time transport capabilities for telephony and multimedia applications. In addition, NGNs must be fault-tolerant to guarantee user satisfaction and to support business-critical processes also in case of network failures. A key technology for the operation of NGNs is the Internet Protocol (IP) which evolved to a common and well accepted standard for networking in the Internet during the last 25 years. There are two basically different approaches to achieve QoS in IP networks. With capacity overprovisioning (CO), an IP network is equipped with sufficient bandwidth such that network congestion becomes very unlikely and QoS is maintained most of the time. The second option to achieve QoS in IP networks is admission control (AC). AC represents a network-inherent intelligence that admits real-time traffic flows to a single link or an entire network only if enough resources are available such that the requirements on packet loss and delay can be met. Otherwise, the request of a new flow is blocked. This work focuses on resource management and control mechanisms for NGNs, in particular on AC and associated bandwidth allocation methods. The first contribution consists of a new link-oriented AC method called experience-based admission control (EBAC) which is a hybrid approach dealing with the problems inherent to conventional AC mechanisms like parameter-based or measurement-based AC (PBAC/MBAC). PBAC provides good QoS but suffers from poor resource utilization and, vice versa, MBAC uses resources efficiently but is susceptible to QoS violations. Hence, EBAC aims at increasing the resource efficiency while maintaining the QoS which increases the revenues of ISPs and postpones their CAPEX for infrastructure upgrades. To show the advantages of EBAC, we first review today's AC approaches and then develop the concept of EBAC. EBAC is a simple mechanism that safely overbooks the capacity of a single link to increase its resource utilization. We evaluate the performance of EBAC by its simulation under various traffic conditions. The second contribution concerns dynamic resource allocation in transport networks which implement a specific network admission control (NAC) architecture. In general, the performance of different NAC systems may be evaluated by conventional methods such as call blocking analysis which has often been applied in the context of multi-service asynchronous transfer mode (ATM) networks. However, to yield more practical results than abstract blocking probabilities, we propose a new method to compare different AC approaches by their respective bandwidth requirements. To present our new method for comparing different AC systems, we first give an overview of network resource management (NRM) in general. Then we present the concept of adaptive bandwidth allocation (ABA) in capacity tunnels and illustrate the analytical performance evaluation framework to compare different AC systems by their capacity requirements. Different network characteristics influence the performance of ABA. Therefore, the impact of various traffic demand models and tunnel implementations, and the influence of resilience requirements is investigated. In conclusion, the resources in NGNs must be exclusively dedicated to admitted traffic to guarantee QoS. For that purpose, robust and efficient concepts for NRM are required to control the requested bandwidth with regard to the available transmission capacity. Sophisticated AC will be a key function for NRM in NGNs and, therefore, efficient resource management concepts like experience-based admission control and adaptive bandwidth allocation for admission-controlled capacity tunnels, as presented in this work are appealing for NGN solutions.}, subject = {Ressourcenmanagement}, language = {en} } @techreport{Metzger2020, type = {Working Paper}, author = {Metzger, Florian}, title = {Crowdsensed QoE for the community - a concept to make QoE assessment accessible}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203748}, pages = {7}, year = {2020}, abstract = {In recent years several community testbeds as well as participatory sensing platforms have successfully established themselves to provide open data to everyone interested. Each of them with a specific goal in mind, ranging from collecting radio coverage data up to environmental and radiation data. Such data can be used by the community in their decision making, whether to subscribe to a specific mobile phone service that provides good coverage in an area or in finding a sunny and warm region for the summer holidays. However, the existing platforms are usually limiting themselves to directly measurable network QoS. If such a crowdsourced data set provides more in-depth derived measures, this would enable an even better decision making. A community-driven crowdsensing platform that derives spatial application-layer user experience from resource-friendly bandwidth estimates would be such a case, video streaming services come to mind as a prime example. In this paper we present a concept for such a system based on an initial prototype that eases the collection of data necessary to determine mobile-specific QoE at large scale. In addition we reason why the simple quality metric proposed here can hold its own.}, subject = {Quality of Experience}, language = {en} } @phdthesis{Menth2004, author = {Menth, Michael}, title = {Efficient admission control and routing for resilient communication networks}, doi = {10.25972/OPUS-846}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-9949}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {This work is subdivided into two main areas: resilient admission control and resilient routing. The work gives an overview of the state of the art of quality of service mechanisms in communication networks and proposes a categorization of admission control (AC) methods. These approaches are investigated regarding performance, more precisely, regarding the potential resource utilization by dimensioning the capacity for a network with a given topology, traffic matrix, and a required flow blocking probability. In case of a failure, the affected traffic is rerouted over backup paths which increases the traffic rate on the respective links. To guarantee the effectiveness of admission control also in failure scenarios, the increased traffic rate must be taken into account for capacity dimensioning and leads to resilient AC. Capacity dimensioning is not feasible for existing networks with already given link capacities. For the application of resilient NAC in this case, the size of distributed AC budgets must be adapted according to the traffic matrix in such a way that the maximum blocking probability for all flows is minimized and that the capacity of all links is not exceeded by the admissible traffic rate in any failure scenario. Several algorithms for the solution of that problem are presented and compared regarding their efficiency and fairness. A prototype for resilient AC was implemented in the laboratories of Siemens AG in Munich within the scope of the project KING. Resilience requires additional capacity on the backup paths for failure scenarios. The amount of this backup capacity depends on the routing and can be minimized by routing optimization. New protection switching mechanisms are presented that deviate the traffic quickly around outage locations. They are simple and can be implemented, e.g, by MPLS technology. The Self-Protecting Multi-Path (SPM) is a multi-path consisting of disjoint partial paths. The traffic is distributed over all faultless partial paths according to an optimized load balancing function both in the working case and in failure scenarios. Performance studies show that the network topology and the traffic matrix also influence the amount of required backup capacity significantly. The example of the COST-239 network illustrates that conventional shortest path routing may need 50\% more capacity than the optimized SPM if all single link and node failures are protected.}, subject = {Kommunikation}, language = {en} } @techreport{MazighBeausencourtBodeetal.2023, type = {Working Paper}, author = {Mazigh, Sadok Mehdi and Beausencourt, Marcel and Bode, Max Julius and Scheffler, Thomas}, title = {Using P4-INT on Tofino for Measuring Device Performance Characteristics in a Network Lab}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32208}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322084}, pages = {4}, year = {2023}, abstract = {This paper presents a prototypical implementation of the In-band Network Telemetry (INT) specification in P4 and demonstrates a use case, where a Tofino Switch is used to measure device and network performance in a lab setting. This work is based on research activities in the area of P4 data plane programming conducted at the network lab of HTW Berlin.}, language = {en} } @techreport{MartinoDeutschmannHielscheretal.2023, type = {Working Paper}, author = {Martino, Luigi and Deutschmann, J{\"o}rg and Hielscher, Kai-Steffen and German, Reinhard}, title = {Towards a 5G Satellite Communication Framework for V2X}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32214}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322148}, pages = {5}, year = {2023}, abstract = {In recent years, satellite communication has been expanding its field of application in the world of computer networks. This paper aims to provide an overview of how a typical scenario involving 5G Non-Terrestrial Networks (NTNs) for vehicle to everything (V2X) applications is characterized. In particular, a first implementation of a system that integrates them together will be described. Such a framework will later be used to evaluate the performance of applications such as Vehicle Monitoring (VM), Remote Driving (RD), Voice Over IP (VoIP), and others. Different configuration scenarios such as Low Earth Orbit and Geostationary Orbit will be considered.}, language = {en} } @phdthesis{Martin2008, author = {Martin, R{\"u}diger}, title = {Resilience, Provisioning, and Control for the Network of the Future}, doi = {10.25972/OPUS-2504}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-28497}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {The Internet sees an ongoing transformation process from a single best-effort service network into a multi-service network. In addition to traditional applications like e-mail,WWW-traffic, or file transfer, future generation networks (FGNs) will carry services with real-time constraints and stringent availability and reliability requirements like Voice over IP (VoIP), video conferencing, virtual private networks (VPNs) for finance, other real-time business applications, tele-medicine, or tele-robotics. Hence, quality of service (QoS) guarantees and resilience to failures are crucial characteristics of an FGN architecture. At the same time, network operations must be efficient. This necessitates sophisticated mechanisms for the provisioning and the control of future communication infrastructures. In this work we investigate such echanisms for resilient FGNs. There are many aspects of the provisioning and control of resilient FGNs such as traffic matrix estimation, traffic characterization, traffic forecasting, mechanisms for QoS enforcement also during failure cases, resilient routing, or calability concerns for future routing and addressing mechanisms. In this work we focus on three important aspects for which performance analysis can deliver substantial insights: load balancing for multipath Internet routing, fast resilience concepts, and advanced dimensioning techniques for resilient networks. Routing in modern communication networks is often based on multipath structures, e.g., equal-cost multipath routing (ECMP) in IP networks, to facilitate traffic engineering and resiliency. When multipath routing is applied, load balancing algorithms distribute the traffic over available paths towards the destination according to pre-configured distribution values. State-of-the-art load balancing algorithms operate either on the packet or the flow level. Packet level mechanisms achieve highly accurate traffic distributions, but are known to have negative effects on the performance of transport protocols and should not be applied. Flow level mechanisms avoid performance degradations, but at the expense of reduced accuracy. These inaccuracies may have unpredictable effects on link capacity requirements and complicate resource management. Thus, it is important to exactly understand the accuracy and dynamics of load balancing algorithms in order to be able to exercise better network control. Knowing about their weaknesses, it is also important to look for alternatives and to assess their applicability in different networking scenarios. This is the first aspect of this work. Component failures are inevitable during the operation of communication networks and lead to routing disruptions if no special precautions are taken. In case of a failure, the robust shortest-path routing of the Internet reconverges after some time to a state where all nodes are again reachable - provided physical connectivity still exists. But stringent availability and reliability criteria of new services make a fast reaction to failures obligatory for resilient FGNs. This led to the development of fast reroute (FRR) concepts for MPLS and IP routing. The operations of MPLS-FRR have already been standardized. Still, the standards leave some degrees of freedom for the resilient path layout and it is important to understand the tradeoffs between different options for the path layout to efficiently provision resilient FGNs. In contrast, the standardization for IP-FRR is an ongoing process. The applicability and possible combinations of different concepts still are open issues. IP-FRR also facilitates a comprehensive resilience framework for IP routing covering all steps of the failure recovery cycle. These points constitute another aspect of this work. Finally, communication networks are usually over-provisioned, i.e., they have much more capacity installed than actually required during normal operation. This is a precaution for various challenges such as network element failures. An alternative to this capacity overprovisioning (CO) approach is admission control (AC). AC blocks new flows in case of imminent overload due to unanticipated events to protect the QoS for already admitted flows. On the one hand, CO is generally viewed as a simple mechanism, AC as a more complex mechanism that complicates the network control plane and raises interoperability issues. On the other hand, AC appears more cost-efficient than CO. To obtain advanced provisioning methods for resilient FGNs, it is important to find suitable models for irregular events, such as failures and different sources of overload, and to incorporate them into capacity dimensioning methods. This allows for a fair comparison between CO and AC in various situations and yields a better understanding of the strengths and weaknesses of both concepts. Such an advanced capacity dimensioning method for resilient FGNs represents the third aspect of this work.}, subject = {Backbone-Netz}, language = {en} } @article{MandelHoernleinIflandetal.2011, author = {Mandel, Alexander and H{\"o}rnlein, Alexander and Ifland, Marianus and L{\"u}neburg, Edeltraud and Deckert, J{\"u}rgen and Puppe, Frank}, title = {Aufwandsanalyse f{\"u}r computerunterst{\"u}tzte Multiple-Choice Papierklausuren}, series = {GMS Journal for Medical Education}, volume = {28}, journal = {GMS Journal for Medical Education}, number = {4}, doi = {10.3205/zma000767}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134386}, pages = {1-15, Doc55}, year = {2011}, abstract = {Introduction: Multiple-choice-examinations are still fundamental for assessment in medical degree programs. In addition to content related research, the optimization of the technical procedure is an important question. Medical examiners face three options: paper-based examinations with or without computer support or completely electronic examinations. Critical aspects are the effort for formatting, the logistic effort during the actual examination, quality, promptness and effort of the correction, the time for making the documents available for inspection by the students, and the statistical analysis of the examination results. Methods: Since three semesters a computer program for input and formatting of MC-questions in medical and other paper-based examinations is used and continuously improved at Wuerzburg University. In the winter semester (WS) 2009/10 eleven, in the summer semester (SS) 2010 twelve and in WS 2010/11 thirteen medical examinations were accomplished with the program and automatically evaluated. For the last two semesters the remaining manual workload was recorded. Results: The cost of the formatting and the subsequent analysis including adjustments of the analysis of an average examination with about 140 participants and about 35 questions was 5-7 hours for exams without complications in the winter semester 2009/2010, about 2 hours in SS 2010 and about 1.5 hours in the winter semester 2010/11. Including exams with complications, the average time was about 3 hours per exam in SS 2010 and 2.67 hours for the WS 10/11. Discussion: For conventional multiple-choice exams the computer-based formatting and evaluation of paper-based exams offers a significant time reduction for lecturers in comparison with the manual correction of paper-based exams and compared to purely electronically conducted exams it needs a much simpler technological infrastructure and fewer staff during the exam."}, language = {de} } @article{MaiwaldBruschkeSchneideretal.2023, author = {Maiwald, Ferdinand and Bruschke, Jonas and Schneider, Danilo and Wacker, Markus and Niebling, Florian}, title = {Giving historical photographs a new perspective: introducing camera orientation parameters as new metadata in a large-scale 4D application}, series = {Remote Sensing}, volume = {15}, journal = {Remote Sensing}, number = {7}, issn = {2072-4292}, doi = {10.3390/rs15071879}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311103}, year = {2023}, abstract = {The ongoing digitization of historical photographs in archives allows investigating the quality, quantity, and distribution of these images. However, the exact interior and exterior camera orientations of these photographs are usually lost during the digitization process. The proposed method uses content-based image retrieval (CBIR) to filter exterior images of single buildings in combination with metadata information. The retrieved photographs are automatically processed in an adapted structure-from-motion (SfM) pipeline to determine the camera parameters. In an interactive georeferencing process, the calculated camera positions are transferred into a global coordinate system. As all image and camera data are efficiently stored in the proposed 4D database, they can be conveniently accessed afterward to georeference newly digitized images by using photogrammetric triangulation and spatial resection. The results show that the CBIR and the subsequent SfM are robust methods for various kinds of buildings and different quantity of data. The absolute accuracy of the camera positions after georeferencing lies in the range of a few meters likely introduced by the inaccurate LOD2 models used for transformation. The proposed photogrammetric method, the database structure, and the 4D visualization interface enable adding historical urban photographs and 3D models from other locations.}, language = {en} } @article{MadeiraGromerLatoschiketal.2021, author = {Madeira, Octavia and Gromer, Daniel and Latoschik, Marc Erich and Pauli, Paul}, title = {Effects of Acrophobic Fear and Trait Anxiety on Human Behavior in a Virtual Elevated Plus-Maze}, series = {Frontiers in Virtual Reality}, volume = {2}, journal = {Frontiers in Virtual Reality}, doi = {10.3389/frvir.2021.635048}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258709}, year = {2021}, abstract = {The Elevated Plus-Maze (EPM) is a well-established apparatus to measure anxiety in rodents, i.e., animals exhibiting an increased relative time spent in the closed vs. the open arms are considered anxious. To examine whether such anxiety-modulated behaviors are conserved in humans, we re-translated this paradigm to a human setting using virtual reality in a Cave Automatic Virtual Environment (CAVE) system. In two studies, we examined whether the EPM exploration behavior of humans is modulated by their trait anxiety and also assessed the individuals' levels of acrophobia (fear of height), claustrophobia (fear of confined spaces), sensation seeking, and the reported anxiety when on the maze. First, we constructed an exact virtual copy of the animal EPM adjusted to human proportions. In analogy to animal EPM studies, participants (N = 30) freely explored the EPM for 5 min. In the second study (N = 61), we redesigned the EPM to make it more human-adapted and to differentiate influences of trait anxiety and acrophobia by introducing various floor textures and lower walls of closed arms to the height of standard handrails. In the first experiment, hierarchical regression analyses of exploration behavior revealed the expected association between open arm avoidance and Trait Anxiety, an even stronger association with acrophobic fear. In the second study, results revealed that acrophobia was associated with avoidance of open arms with mesh-floor texture, whereas for trait anxiety, claustrophobia, and sensation seeking, no effect was detected. Also, subjects' fear rating was moderated by all psychometrics but trait anxiety. In sum, both studies consistently indicate that humans show no general open arm avoidance analogous to rodents and that human EPM behavior is modulated strongest by acrophobic fear, whereas trait anxiety plays a subordinate role. Thus, we conclude that the criteria for cross-species validity are met insufficiently in this case. Despite the exploratory nature, our studies provide in-depth insights into human exploration behavior on the virtual EPM.}, language = {en} } @phdthesis{Loeffler2021, author = {L{\"o}ffler, Andre}, title = {Constrained Graph Layouts: Vertices on the Outer Face and on the Integer Grid}, edition = {1. Auflage}, publisher = {W{\"u}rzburg University Press}, address = {W{\"u}rzburg}, isbn = {978-3-95826-146-4}, doi = {10.25972/WUP-978-3-95826-147-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-215746}, school = {W{\"u}rzburg University Press}, pages = {viii, 161}, year = {2021}, abstract = {Constraining graph layouts - that is, restricting the placement of vertices and the routing of edges to obey certain constraints - is common practice in graph drawing. In this book, we discuss algorithmic results on two different restriction types: placing vertices on the outer face and on the integer grid. For the first type, we look into the outer k-planar and outer k-quasi-planar graphs, as well as giving a linear-time algorithm to recognize full and closed outer k-planar graphs Monadic Second-order Logic. For the second type, we consider the problem of transferring a given planar drawing onto the integer grid while perserving the original drawings topology; we also generalize a variant of Cauchy's rigidity theorem for orthogonal polyhedra of genus 0 to those of arbitrary genus.}, subject = {Graphenzeichnen}, language = {en} } @article{LugrinLatoschikHabeletal.2016, author = {Lugrin, Jean-Luc and Latoschik, Marc Erich and Habel, Michael and Roth, Daniel and Seufert, Christian and Grafe, Silke}, title = {Breaking Bad Behaviors: A New Tool for Learning Classroom Management Using Virtual Reality}, series = {Frontiers in ICT}, volume = {3}, journal = {Frontiers in ICT}, number = {26}, doi = {10.3389/fict.2016.00026}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147945}, year = {2016}, abstract = {This article presents an immersive virtual reality (VR) system for training classroom management skills, with a specific focus on learning to manage disruptive student behavior in face-to-face, one-to-many teaching scenarios. The core of the system is a real-time 3D virtual simulation of a classroom populated by twenty-four semi-autonomous virtual students. The system has been designed as a companion tool for classroom management seminars in a syllabus for primary and secondary school teachers. This will allow lecturers to link theory with practice using the medium of VR. The system is therefore designed for two users: a trainee teacher and an instructor supervising the training session. The teacher is immersed in a real-time 3D simulation of a classroom by means of a head-mounted display and headphone. The instructor operates a graphical desktop console, which renders a view of the class and the teacher whose avatar movements are captured by a marker less tracking system. This console includes a 2D graphics menu with convenient behavior and feedback control mechanisms to provide human-guided training sessions. The system is built using low-cost consumer hardware and software. Its architecture and technical design are described in detail. A first evaluation confirms its conformance to critical usability requirements (i.e., safety and comfort, believability, simplicity, acceptability, extensibility, affordability, and mobility). Our initial results are promising and constitute the necessary first step toward a possible investigation of the efficiency and effectiveness of such a system in terms of learning outcomes and experience.}, language = {en} } @article{LopezArreguinMontenegro2019, author = {Lopez-Arreguin, A. J. R. and Montenegro, S.}, title = {Improving engineering models of terramechanics for planetary exploration}, series = {Results in Engineering}, volume = {3}, journal = {Results in Engineering}, doi = {10.1016/j.rineng.2019.100027}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202490}, pages = {100027}, year = {2019}, abstract = {This short letter proposes more consolidated explicit solutions for the forces and torques acting on typical rover wheels, that can be used as a method to determine their average mobility characteristics in planetary soils. The closed loop solutions stand in one of the verified methods, but at difference of the previous, observables are decoupled requiring a less amount of physical parameters to measure. As a result, we show that with knowledge of terrain properties, wheel driving performance rely in a single observable only. Because of their generality, the formulated equations established here can have further implications in autonomy and control of rovers or planetary soil characterization.}, language = {en} } @article{LohWamserPoigneeetal.2022, author = {Loh, Frank and Wamser, Florian and Poign{\´e}e, Fabian and Geißler, Stefan and Hoßfeld, Tobias}, title = {YouTube Dataset on Mobile Streaming for Internet Traffic Modeling and Streaming Analysis}, series = {Scientific Data}, volume = {9}, journal = {Scientific Data}, number = {1}, doi = {10.1038/s41597-022-01418-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300240}, year = {2022}, abstract = {Around 4.9 billion Internet users worldwide watch billions of hours of online video every day. As a result, streaming is by far the predominant type of traffic in communication networks. According to Google statistics, three out of five video views come from mobile devices. Thus, in view of the continuous technological advances in end devices and increasing mobile use, datasets for mobile streaming are indispensable in research but only sparsely dealt with in literature so far. With this public dataset, we provide 1,081 hours of time-synchronous video measurements at network, transport, and application layer with the native YouTube streaming client on mobile devices. The dataset includes 80 network scenarios with 171 different individual bandwidth settings measured in 5,181 runs with limited bandwidth, 1,939 runs with emulated 3 G/4 G traces, and 4,022 runs with pre-defined bandwidth changes. This corresponds to 332 GB video payload. We present the most relevant quality indicators for scientific use, i.e., initial playback delay, streaming video quality, adaptive video quality changes, video rebuffering events, and streaming phases.}, language = {en} } @techreport{LohRaffeckGeissleretal.2023, type = {Working Paper}, author = {Loh, Frank and Raffeck, Simon and Geißler, Stefan and Hoßfeld, Tobias}, title = {Paving the Way for an Energy Efficient and Sustainable Future Internet of Things}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32216}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322161}, pages = {4}, year = {2023}, abstract = {In this work, we describe the network from data collection to data processing and storage as a system based on different layers. We outline the different layers and highlight major tasks and dependencies with regard to energy consumption and energy efficiency. With this view, we can outwork challenges and questions a future system architect must answer to provide a more sustainable, green, resource friendly, and energy efficient application or system. Therefore, all system layers must be considered individually but also altogether for future IoT solutions. This requires, in particular, novel sustainability metrics in addition to current Quality of Service and Quality of Experience metrics to provide a high power, user satisfying, and sustainable network.}, language = {en} } @article{LohPoigneeWamseretal.2021, author = {Loh, Frank and Poign{\´e}e, Fabian and Wamser, Florian and Leidinger, Ferdinand and Hoßfeld, Tobias}, title = {Uplink vs. Downlink: Machine Learning-Based Quality Prediction for HTTP Adaptive Video Streaming}, series = {Sensors}, volume = {21}, journal = {Sensors}, number = {12}, issn = {1424-8220}, doi = {10.3390/s21124172}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241121}, year = {2021}, abstract = {Streaming video is responsible for the bulk of Internet traffic these days. For this reason, Internet providers and network operators try to make predictions and assessments about the streaming quality for an end user. Current monitoring solutions are based on a variety of different machine learning approaches. The challenge for providers and operators nowadays is that existing approaches require large amounts of data. In this work, the most relevant quality of experience metrics, i.e., the initial playback delay, the video streaming quality, video quality changes, and video rebuffering events, are examined using a voluminous data set of more than 13,000 YouTube video streaming runs that were collected with the native YouTube mobile app. Three Machine Learning models are developed and compared to estimate playback behavior based on uplink request information. The main focus has been on developing a lightweight approach using as few features and as little data as possible, while maintaining state-of-the-art performance.}, language = {en} } @article{LohMehlingHossfeld2022, author = {Loh, Frank and Mehling, Noah and Hoßfeld, Tobias}, title = {Towards LoRaWAN without data loss: studying the performance of different channel access approaches}, series = {Sensors}, volume = {22}, journal = {Sensors}, number = {2}, issn = {1424-8220}, doi = {10.3390/s22020691}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-302418}, year = {2022}, abstract = {The Long Range Wide Area Network (LoRaWAN) is one of the fastest growing Internet of Things (IoT) access protocols. It operates in the license free 868 MHz band and gives everyone the possibility to create their own small sensor networks. The drawback of this technology is often unscheduled or random channel access, which leads to message collisions and potential data loss. For that reason, recent literature studies alternative approaches for LoRaWAN channel access. In this work, state-of-the-art random channel access is compared with alternative approaches from the literature by means of collision probability. Furthermore, a time scheduled channel access methodology is presented to completely avoid collisions in LoRaWAN. For this approach, an exhaustive simulation study was conducted and the performance was evaluated with random access cross-traffic. In a general theoretical analysis the limits of the time scheduled approach are discussed to comply with duty cycle regulations in LoRaWAN.}, language = {en} } @techreport{LohGeisslerHossfeld2022, type = {Working Paper}, author = {Loh, Frank and Geißler, Stefan and Hoßfeld, Tobias}, title = {LoRaWAN Network Planning in Smart Environments: Towards Reliability, Scalability, and Cost Reduction}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28082}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280829}, pages = {4}, year = {2022}, abstract = {The goal in this work is to present a guidance for LoRaWAN planning to improve overall reliability for message transmissions and scalability. At the end, the cost component is discussed. Therefore, a five step approach is presented that helps to plan a LoRaWAN deployment step by step: Based on the device locations, an initial gateway placement is suggested followed by in-depth frequency and channel access planning. After an initial planning phase, updates for channel access and the initial gateway planning is suggested that should also be done periodically during network operation. Since current gateway placement approaches are only studied with random channel access, there is a lot of potential in the cell planning phase. Furthermore, the performance of different channel access approaches is highly related on network load, and thus cell size and sensor density. Last, the influence of different cell planning ideas on expected costs are discussed.}, subject = {Datennetz}, language = {en} } @article{LodaKrebsDanhofetal.2019, author = {Loda, Sophia and Krebs, Jonathan and Danhof, Sophia and Schreder, Martin and Solimando, Antonio G. and Strifler, Susanne and Rasche, Leo and Kort{\"u}m, Martin and Kerscher, Alexander and Knop, Stefan and Puppe, Frank and Einsele, Hermann and Bittrich, Max}, title = {Exploration of artificial intelligence use with ARIES in multiple myeloma research}, series = {Journal of Clinical Medicine}, volume = {8}, journal = {Journal of Clinical Medicine}, number = {7}, issn = {2077-0383}, doi = {10.3390/jcm8070999}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197231}, pages = {999}, year = {2019}, abstract = {Background: Natural language processing (NLP) is a powerful tool supporting the generation of Real-World Evidence (RWE). There is no NLP system that enables the extensive querying of parameters specific to multiple myeloma (MM) out of unstructured medical reports. We therefore created a MM-specific ontology to accelerate the information extraction (IE) out of unstructured text. Methods: Our MM ontology consists of extensive MM-specific and hierarchically structured attributes and values. We implemented "A Rule-based Information Extraction System" (ARIES) that uses this ontology. We evaluated ARIES on 200 randomly selected medical reports of patients diagnosed with MM. Results: Our system achieved a high F1-Score of 0.92 on the evaluation dataset with a precision of 0.87 and recall of 0.98. Conclusions: Our rule-based IE system enables the comprehensive querying of medical reports. The IE accelerates the extraction of data and enables clinicians to faster generate RWE on hematological issues. RWE helps clinicians to make decisions in an evidence-based manner. Our tool easily accelerates the integration of research evidence into everyday clinical practice.}, language = {en} } @article{LimanMayFetteetal.2023, author = {Liman, Leon and May, Bernd and Fette, Georg and Krebs, Jonathan and Puppe, Frank}, title = {Using a clinical data warehouse to calculate and present key metrics for the radiology department: implementation and performance evaluation}, series = {JMIR Medical Informatics}, volume = {11}, journal = {JMIR Medical Informatics}, issn = {2291-9694}, doi = {10.2196/41808}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349411}, year = {2023}, abstract = {Background: Due to the importance of radiologic examinations, such as X-rays or computed tomography scans, for many clinical diagnoses, the optimal use of the radiology department is 1 of the primary goals of many hospitals. Objective: This study aims to calculate the key metrics of this use by creating a radiology data warehouse solution, where data from radiology information systems (RISs) can be imported and then queried using a query language as well as a graphical user interface (GUI). Methods: Using a simple configuration file, the developed system allowed for the processing of radiology data exported from any kind of RIS into a Microsoft Excel, comma-separated value (CSV), or JavaScript Object Notation (JSON) file. These data were then imported into a clinical data warehouse. Additional values based on the radiology data were calculated during this import process by implementing 1 of several provided interfaces. Afterward, the query language and GUI of the data warehouse were used to configure and calculate reports on these data. For the most common types of requested reports, a web interface was created to view their numbers as graphics. Results: The tool was successfully tested with the data of 4 different German hospitals from 2018 to 2021, with a total of 1,436,111 examinations. The user feedback was good, since all their queries could be answered if the available data were sufficient. The initial processing of the radiology data for using them with the clinical data warehouse took (depending on the amount of data provided by each hospital) between 7 minutes and 1 hour 11 minutes. Calculating 3 reports of different complexities on the data of each hospital was possible in 1-3 seconds for reports with up to 200 individual calculations and in up to 1.5 minutes for reports with up to 8200 individual calculations. Conclusions: A system was developed with the main advantage of being generic concerning the export of different RISs as well as concerning the configuration of queries for various reports. The queries could be configured easily using the GUI of the data warehouse, and their results could be exported into the standard formats Excel and CSV for further processing.}, language = {en} } @article{LiGuanGaoetal.2020, author = {Li, Ningbo and Guan, Lianwu and Gao, Yanbin and Du, Shitong and Wu, Menghao and Guang, Xingxing and Cong, Xiaodan}, title = {Indoor and outdoor low-cost seamless integrated navigation system based on the integration of INS/GNSS/LIDAR system}, series = {Remote Sensing}, volume = {12}, journal = {Remote Sensing}, number = {19}, issn = {2072-4292}, doi = {10.3390/rs12193271}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216229}, year = {2020}, abstract = {Global Navigation Satellite System (GNSS) provides accurate positioning data for vehicular navigation in open outdoor environment. In an indoor environment, Light Detection and Ranging (LIDAR) Simultaneous Localization and Mapping (SLAM) establishes a two-dimensional map and provides positioning data. However, LIDAR can only provide relative positioning data and it cannot directly provide the latitude and longitude of the current position. As a consequence, GNSS/Inertial Navigation System (INS) integrated navigation could be employed in outdoors, while the indoors part makes use of INS/LIDAR integrated navigation and the corresponding switching navigation will make the indoor and outdoor positioning consistent. In addition, when the vehicle enters the garage, the GNSS signal will be blurred for a while and then disappeared. Ambiguous GNSS satellite signals will lead to the continuous distortion or overall drift of the positioning trajectory in the indoor condition. Therefore, an INS/LIDAR seamless integrated navigation algorithm and a switching algorithm based on vehicle navigation system are designed. According to the experimental data, the positioning accuracy of the INS/LIDAR navigation algorithm in the simulated environmental experiment is 50\% higher than that of the Dead Reckoning (DR) algorithm. Besides, the switching algorithm developed based on the INS/LIDAR integrated navigation algorithm can achieve 80\% success rate in navigation mode switching.}, language = {en} } @techreport{LhamoNguyenFitzek2022, type = {Working Paper}, author = {Lhamo, Osel and Nguyen, Giang T. and Fitzek, Frank H. P.}, title = {Virtual Queues for QoS Compliance of Haptic Data Streams in Teleoperation}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28076}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280762}, pages = {4}, year = {2022}, abstract = {Tactile Internet aims at allowing perceived real-time interactions between humans and machines. This requires satisfying a stringent latency requirement of haptic data streams whose data rates vary drastically as the results of perceptual codecs. This introduces a complex problem for the underlying network infrastructure to fulfill the pre-defined level of Quality of Service (QoS). However, novel networking hardware with data plane programming capability allows processing packets differently and opens up a new opportunity. For example, a dynamic and network-aware resource management strategy can help satisfy the QoS requirements of different priority flows without wasting precious bandwidth. This paper introduces virtual queues for service differentiation between different types of traffic streams, leveraging protocol independent switch architecture (PISA). We propose coordinating the management of all the queues and dynamically adapting their sizes to minimize packet loss and delay due to network congestion and ensure QoS compliance.}, subject = {Datennetz}, language = {en} } @article{LeschKoenigKounevetal.2022, author = {Lesch, Veronika and K{\"o}nig, Maximilian and Kounev, Samuel and Stein, Anthony and Krupitzer, Christian}, title = {Tackling the rich vehicle routing problem with nature-inspired algorithms}, series = {Applied Intelligence}, volume = {52}, journal = {Applied Intelligence}, issn = {1573-7497}, doi = {10.1007/s10489-021-03035-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-268942}, pages = {9476-9500}, year = {2022}, abstract = {In the last decades, the classical Vehicle Routing Problem (VRP), i.e., assigning a set of orders to vehicles and planning their routes has been intensively researched. As only the assignment of order to vehicles and their routes is already an NP-complete problem, the application of these algorithms in practice often fails to take into account the constraints and restrictions that apply in real-world applications, the so called rich VRP (rVRP) and are limited to single aspects. In this work, we incorporate the main relevant real-world constraints and requirements. We propose a two-stage strategy and a Timeline algorithm for time windows and pause times, and apply a Genetic Algorithm (GA) and Ant Colony Optimization (ACO) individually to the problem to find optimal solutions. Our evaluation of eight different problem instances against four state-of-the-art algorithms shows that our approach handles all given constraints in a reasonable time.}, language = {en} } @phdthesis{Lehrieder2013, author = {Lehrieder, Frank}, title = {Performance Evaluation and Optimization of Content Distribution using Overlay Networks}, doi = {10.25972/OPUS-6420}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-76018}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {The work presents a performance evaluation and optimization of so-called overlay networks for content distribution in the Internet. Chapter 1 describes the importance which have such networks in today's Internet, for example, for the transmission of video content. The focus of this work is on overlay networks based on the peer-to-peer principle. These are characterized by the fact that users who download content, also contribute to the distribution process by sharing parts of the data to other users. This enables efficient content distribution because each user not only consumes resources in the system, but also provides its own resources. Chapter 2 of the monograph contains a detailed description of the functionality of today's most popular overlay network BitTorrent. It explains the various components and their interaction. This is followed by an illustration of why such overlay networks for Internet service providers (ISPs) are problematic. The reason lies in the large amount of inter-ISP traffic that is produced by these overlay networks. Since this inter-ISP traffic leads to high costs for ISPs, they try to reduce it by improved mechanisms for overlay networks. One optimization approach is the use of topology awareness within the overlay networks. It provides users of the overlay networks with information about the underlying physical network topology. This allows them to avoid inter-ISP traffic by exchanging data preferrentially with other users that are connected to the same ISP. Another approach to save inter-ISP traffic is caching. In this case the ISP provides additional computers in its network, called caches, which store copies of popular content. The users of this ISP can then obtain such content from the cache. This prevents that the content must be retrieved from locations outside of the ISP's network, and saves costly inter-ISP traffic in this way. In the third chapter of the thesis, the results of a comprehensive measurement study of overlay networks, which can be found in today's Internet, are presented. After a short description of the measurement methodology, the results of the measurements are described. These results contain data on a variety of characteristics of current P2P overlay networks in the Internet. These include the popularity of content, i.e., how many users are interested in specific content, the evolution of the popularity and the size of the files. The distribution of users within the Internet is investigated in detail. Special attention is given to the number of users that exchange a particular file within the same ISP. On the basis of these measurement results, an estimation of the traffic savings that can achieved by topology awareness is derived. This new estimation is of scientific and practical importance, since it is not limited to individual ISPs and files, but considers the whole Internet and the total amount of data exchanged in overlay networks. Finally, the characteristics of regional content are considered, in which the popularity is limited to certain parts of the Internet. This is for example the case of videos in German, Italian or French language. Chapter 4 of the thesis is devoted to the optimization of overlay networks for content distribution through caching. It presents a deterministic flow model that describes the influence of caches. On the basis of this model, it derives an estimate of the inter-ISP traffic that is generated by an overlay network, and which part can be saved by caches. The results show that the influence of the cache depends on the structure of the overlay networks, and that caches can also lead to an increase in inter-ISP traffic under certain circumstances. The described model is thus an important tool for ISPs to decide for which overlay networks caches are useful and to dimension them. Chapter 5 summarizes the content of the work and emphasizes the importance of the findings. In addition, it explains how the findings can be applied to the optimization of future overlay networks. Special attention is given to the growing importance of video-on-demand and real-time video transmissions.}, subject = {Leistungsbewertung}, language = {en} } @techreport{LeGrossmannKrieger2022, type = {Working Paper}, author = {Le, Duy Thanh and Großmann, Marcel and Krieger, Udo R.}, title = {Cloudless Resource Monitoring in a Fog Computing System Enabled by an SDN/NFV Infrastructure}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28072}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280723}, pages = {4}, year = {2022}, abstract = {Today's advanced Internet-of-Things applications raise technical challenges on cloud, edge, and fog computing. The design of an efficient, virtualized, context-aware, self-configuring orchestration system of a fog computing system constitutes a major development effort within this very innovative area of research. In this paper we describe the architecture and relevant implementation aspects of a cloudless resource monitoring system interworking with an SDN/NFV infrastructure. It realizes the basic monitoring component of the fundamental MAPE-K principles employed in autonomic computing. Here we present the hierarchical layering and functionality within the underlying fog nodes to generate a working prototype of an intelligent, self-managed orchestrator for advanced IoT applications and services. The latter system has the capability to monitor automatically various performance aspects of the resource allocation among multiple hosts of a fog computing system interconnected by SDN.}, subject = {Datennetz}, language = {en} } @article{LatoschikWienrich2022, author = {Latoschik, Marc Erich and Wienrich, Carolin}, title = {Congruence and plausibility, not presence: pivotal conditions for XR experiences and effects, a novel approach}, series = {Frontiers in Virtual Reality}, volume = {3}, journal = {Frontiers in Virtual Reality}, issn = {2673-4192}, doi = {10.3389/frvir.2022.694433}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284787}, year = {2022}, abstract = {Presence is often considered the most important quale describing the subjective feeling of being in a computer-generated and/or computer-mediated virtual environment. The identification and separation of orthogonal presence components, i.e., the place illusion and the plausibility illusion, has been an accepted theoretical model describing Virtual Reality (VR) experiences for some time. This perspective article challenges this presence-oriented VR theory. First, we argue that a place illusion cannot be the major construct to describe the much wider scope of virtual, augmented, and mixed reality (VR, AR, MR: or XR for short). Second, we argue that there is no plausibility illusion but merely plausibility, and we derive the place illusion caused by the congruent and plausible generation of spatial cues and similarly for all the current model's so-defined illusions. Finally, we propose congruence and plausibility to become the central essential conditions in a novel theoretical model describing XR experiences and effects.}, language = {en} } @article{LandeckAlvarezIgarzabalUnruhetal.2022, author = {Landeck, Maximilian and Alvarez Igarz{\´a}bal, Federico and Unruh, Fabian and Habenicht, Hannah and Khoshnoud, Shiva and Wittmann, Marc and Lugrin, Jean-Luc and Latoschik, Marc Erich}, title = {Journey through a virtual tunnel: Simulated motion and its effects on the experience of time}, series = {Frontiers in Virtual Reality}, volume = {3}, journal = {Frontiers in Virtual Reality}, issn = {2673-4192}, doi = {10.3389/frvir.2022.1059971}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301519}, year = {2022}, abstract = {This paper examines the relationship between time and motion perception in virtual environments. Previous work has shown that the perception of motion can affect the perception of time. We developed a virtual environment that simulates motion in a tunnel and measured its effects on the estimation of the duration of time, the speed at which perceived time passes, and the illusion of self-motion, also known as vection. When large areas of the visual field move in the same direction, vection can occur; observers often perceive this as self-motion rather than motion of the environment. To generate different levels of vection and investigate its effects on time perception, we developed an abstract procedural tunnel generator. The generator can simulate different speeds and densities of tunnel sections (visibly distinguishable sections that form the virtual tunnel), as well as the degree of embodiment of the user avatar (with or without virtual hands). We exposed participants to various tunnel simulations with different durations, speeds, and densities in a remote desktop and a virtual reality (VR) laboratory study. Time passed subjectively faster under high-speed and high-density conditions in both studies. The experience of self-motion was also stronger under high-speed and high-density conditions. Both studies revealed a significant correlation between the perceived passage of time and perceived self-motion. Subjects in the virtual reality study reported a stronger self-motion experience, a faster perceived passage of time, and shorter time estimates than subjects in the desktop study. Our results suggest that a virtual tunnel simulation can manipulate time perception in virtual reality. We will explore these results for the development of virtual reality applications for therapeutic approaches in our future work. This could be particularly useful in treating disorders like depression, autism, and schizophrenia, which are known to be associated with distortions in time perception. For example, the tunnel could be therapeutically applied by resetting patients' time perceptions by exposing them to the tunnel under different conditions, such as increasing or decreasing perceived time.}, language = {en} } @article{KrupitzerEberhardingerGerostathopoulosetal.2020, author = {Krupitzer, Christian and Eberhardinger, Benedikt and Gerostathopoulos, Ilias and Raibulet, Claudia}, title = {Introduction to the special issue "Applications in Self-Aware Computing Systems and their Evaluation"}, series = {Computers}, volume = {9}, journal = {Computers}, number = {1}, issn = {2073-431X}, doi = {10.3390/computers9010022}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203439}, year = {2020}, abstract = {The joint 1st Workshop on Evaluations and Measurements in Self-Aware Computing Systems (EMSAC 2019) and Workshop on Self-Aware Computing (SeAC) was held as part of the FAS* conference alliance in conjunction with the 16th IEEE International Conference on Autonomic Computing (ICAC) and the 13th IEEE International Conference on Self-Adaptive and Self-Organizing Systems (SASO) in Ume{\aa}, Sweden on 20 June 2019. The goal of this one-day workshop was to bring together researchers and practitioners from academic environments and from the industry to share their solutions, ideas, visions, and doubts in self-aware computing systems in general and in the evaluation and measurements of such systems in particular. The workshop aimed to enable discussions, partnerships, and collaborations among the participants. This special issue follows the theme of the workshop. It contains extended versions of workshop presentations as well as additional contributions.}, language = {en} } @article{KrenzerMakowskiHekaloetal.2022, author = {Krenzer, Adrian and Makowski, Kevin and Hekalo, Amar and Fitting, Daniel and Troya, Joel and Zoller, Wolfram G. and Hann, Alexander and Puppe, Frank}, title = {Fast machine learning annotation in the medical domain: a semi-automated video annotation tool for gastroenterologists}, series = {BioMedical Engineering OnLine}, volume = {21}, journal = {BioMedical Engineering OnLine}, number = {1}, doi = {10.1186/s12938-022-01001-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300231}, year = {2022}, abstract = {Background Machine learning, especially deep learning, is becoming more and more relevant in research and development in the medical domain. For all the supervised deep learning applications, data is the most critical factor in securing successful implementation and sustaining the progress of the machine learning model. Especially gastroenterological data, which often involves endoscopic videos, are cumbersome to annotate. Domain experts are needed to interpret and annotate the videos. To support those domain experts, we generated a framework. With this framework, instead of annotating every frame in the video sequence, experts are just performing key annotations at the beginning and the end of sequences with pathologies, e.g., visible polyps. Subsequently, non-expert annotators supported by machine learning add the missing annotations for the frames in-between. Methods In our framework, an expert reviews the video and annotates a few video frames to verify the object's annotations for the non-expert. In a second step, a non-expert has visual confirmation of the given object and can annotate all following and preceding frames with AI assistance. After the expert has finished, relevant frames will be selected and passed on to an AI model. This information allows the AI model to detect and mark the desired object on all following and preceding frames with an annotation. Therefore, the non-expert can adjust and modify the AI predictions and export the results, which can then be used to train the AI model. Results Using this framework, we were able to reduce workload of domain experts on average by a factor of 20 on our data. This is primarily due to the structure of the framework, which is designed to minimize the workload of the domain expert. Pairing this framework with a state-of-the-art semi-automated AI model enhances the annotation speed further. Through a prospective study with 10 participants, we show that semi-automated annotation using our tool doubles the annotation speed of non-expert annotators compared to a well-known state-of-the-art annotation tool. Conclusion In summary, we introduce a framework for fast expert annotation for gastroenterologists, which reduces the workload of the domain expert considerably while maintaining a very high annotation quality. The framework incorporates a semi-automated annotation system utilizing trained object detection models. The software and framework are open-source.}, language = {en} } @phdthesis{Krenzer2023, author = {Krenzer, Adrian}, title = {Machine learning to support physicians in endoscopic examinations with a focus on automatic polyp detection in images and videos}, doi = {10.25972/OPUS-31911}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-319119}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Deep learning enables enormous progress in many computer vision-related tasks. Artificial Intel- ligence (AI) steadily yields new state-of-the-art results in the field of detection and classification. Thereby AI performance equals or exceeds human performance. Those achievements impacted many domains, including medical applications. One particular field of medical applications is gastroenterology. In gastroenterology, machine learning algorithms are used to assist examiners during interventions. One of the most critical concerns for gastroenterologists is the development of Colorectal Cancer (CRC), which is one of the leading causes of cancer-related deaths worldwide. Detecting polyps in screening colonoscopies is the essential procedure to prevent CRC. Thereby, the gastroenterologist uses an endoscope to screen the whole colon to find polyps during a colonoscopy. Polyps are mucosal growths that can vary in severity. This thesis supports gastroenterologists in their examinations with automated detection and clas- sification systems for polyps. The main contribution is a real-time polyp detection system. This system is ready to be installed in any gastroenterology practice worldwide using open-source soft- ware. The system achieves state-of-the-art detection results and is currently evaluated in a clinical trial in four different centers in Germany. The thesis presents two additional key contributions: One is a polyp detection system with ex- tended vision tested in an animal trial. Polyps often hide behind folds or in uninvestigated areas. Therefore, the polyp detection system with extended vision uses an endoscope assisted by two additional cameras to see behind those folds. If a polyp is detected, the endoscopist receives a vi- sual signal. While the detection system handles the additional two camera inputs, the endoscopist focuses on the main camera as usual. The second one are two polyp classification models, one for the classification based on shape (Paris) and the other on surface and texture (NBI International Colorectal Endoscopic (NICE) classification). Both classifications help the endoscopist with the treatment of and the decisions about the detected polyp. The key algorithms of the thesis achieve state-of-the-art performance. Outstandingly, the polyp detection system tested on a highly demanding video data set shows an F1 score of 90.25 \% while working in real-time. The results exceed all real-time systems in the literature. Furthermore, the first preliminary results of the clinical trial of the polyp detection system suggest a high Adenoma Detection Rate (ADR). In the preliminary study, all polyps were detected by the polyp detection system, and the system achieved a high usability score of 96.3 (max 100). The Paris classification model achieved an F1 score of 89.35 \% which is state-of-the-art. The NICE classification model achieved an F1 score of 81.13 \%. Furthermore, a large data set for polyp detection and classification was created during this thesis. Therefore a fast and robust annotation system called Fast Colonoscopy Annotation Tool (FastCAT) was developed. The system simplifies the annotation process for gastroenterologists. Thereby the i gastroenterologists only annotate key parts of the endoscopic video. Afterward, those video parts are pre-labeled by a polyp detection AI to speed up the process. After the AI has pre-labeled the frames, non-experts correct and finish the annotation. This annotation process is fast and ensures high quality. FastCAT reduces the overall workload of the gastroenterologist on average by a factor of 20 compared to an open-source state-of-art annotation tool.}, subject = {Deep Learning}, language = {en} }