@article{SeufertSchroederSeufert2021, author = {Seufert, Anika and Schr{\"o}der, Svenja and Seufert, Michael}, title = {Delivering User Experience over Networks: Towards a Quality of Experience Centered Design Cycle for Improved Design of Networked Applications}, series = {SN Computer Science}, volume = {2}, journal = {SN Computer Science}, number = {6}, issn = {2661-8907}, doi = {10.1007/s42979-021-00851-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-271762}, year = {2021}, abstract = {To deliver the best user experience (UX), the human-centered design cycle (HCDC) serves as a well-established guideline to application developers. However, it does not yet cover network-specific requirements, which become increasingly crucial, as most applications deliver experience over the Internet. The missing network-centric view is provided by Quality of Experience (QoE), which could team up with UX towards an improved overall experience. By considering QoE aspects during the development process, it can be achieved that applications become network-aware by design. In this paper, the Quality of Experience Centered Design Cycle (QoE-CDC) is proposed, which provides guidelines on how to design applications with respect to network-specific requirements and QoE. Its practical value is showcased for popular application types and validated by outlining the design of a new smartphone application. We show that combining HCDC and QoE-CDC will result in an application design, which reaches a high UX and avoids QoE degradation.}, language = {en} } @phdthesis{Nogatz2023, author = {Nogatz, Falco}, title = {Defining and Implementing Domain-Specific Languages with Prolog}, doi = {10.25972/OPUS-30187}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301872}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The landscape of today's programming languages is manifold. With the diversity of applications, the difficulty of adequately addressing and specifying the used programs increases. This often leads to newly designed and implemented domain-specific languages. They enable domain experts to express knowledge in their preferred format, resulting in more readable and concise programs. Due to its flexible and declarative syntax without reserved keywords, the logic programming language Prolog is particularly suitable for defining and embedding domain-specific languages. This thesis addresses the questions and challenges that arise when integrating domain-specific languages into Prolog. We compare the two approaches to define them either externally or internally, and provide assisting tools for each. The grammar of a formal language is usually defined in the extended Backus-Naur form. In this work, we handle this formalism as a domain-specific language in Prolog, and define term expansions that allow to translate it into equivalent definite clause grammars. We present the package library(dcg4pt) for SWI-Prolog, which enriches them by an additional argument to automatically process the term's corresponding parse tree. To simplify the work with definite clause grammars, we visualise their application by a web-based tracer. The external integration of domain-specific languages requires the programmer to keep the grammar, parser, and interpreter in sync. In many cases, domain-specific languages can instead be directly embedded into Prolog by providing appropriate operator definitions. In addition, we propose syntactic extensions for Prolog to expand its expressiveness, for instance to state logic formulas with their connectives verbatim. This allows to use all tools that were originally written for Prolog, for instance code linters and editors with syntax highlighting. We present the package library(plammar), a standard-compliant parser for Prolog source code, written in Prolog. It is able to automatically infer from example sentences the required operator definitions with their classes and precedences as well as the required Prolog language extensions. As a result, we can automatically answer the question: Is it possible to model these example sentences as valid Prolog clauses, and how? We discuss and apply the two approaches to internal and external integrations for several domain-specific languages, namely the extended Backus-Naur form, GraphQL, XPath, and a controlled natural language to represent expert rules in if-then form. The created toolchain with library(dcg4pt) and library(plammar) yields new application opportunities for static Prolog source code analysis, which we also present.}, subject = {PROLOG }, language = {en} } @article{MuellerLeppichGeissetal.2023, author = {M{\"u}ller, Konstantin and Leppich, Robert and Geiß, Christian and Borst, Vanessa and Pelizari, Patrick Aravena and Kounev, Samuel and Taubenb{\"o}ck, Hannes}, title = {Deep neural network regression for normalized digital surface model generation with Sentinel-2 imagery}, series = {IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing}, volume = {16}, journal = {IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing}, issn = {1939-1404}, doi = {10.1109/JSTARS.2023.3297710}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349424}, pages = {8508-8519}, year = {2023}, abstract = {In recent history, normalized digital surface models (nDSMs) have been constantly gaining importance as a means to solve large-scale geographic problems. High-resolution surface models are precious, as they can provide detailed information for a specific area. However, measurements with a high resolution are time consuming and costly. Only a few approaches exist to create high-resolution nDSMs for extensive areas. This article explores approaches to extract high-resolution nDSMs from low-resolution Sentinel-2 data, allowing us to derive large-scale models. We thereby utilize the advantages of Sentinel 2 being open access, having global coverage, and providing steady updates through a high repetition rate. Several deep learning models are trained to overcome the gap in producing high-resolution surface maps from low-resolution input data. With U-Net as a base architecture, we extend the capabilities of our model by integrating tailored multiscale encoders with differently sized kernels in the convolution as well as conformed self-attention inside the skip connection gates. Using pixelwise regression, our U-Net base models can achieve a mean height error of approximately 2 m. Moreover, through our enhancements to the model architecture, we reduce the model error by more than 7\%.}, language = {en} } @article{AliMontenegro2016, author = {Ali, Qasim and Montenegro, Sergio}, title = {Decentralized control for scalable quadcopter formations}, series = {International Journal of Aerospace Engineering}, volume = {2016}, journal = {International Journal of Aerospace Engineering}, doi = {10.1155/2016/9108983}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146704}, pages = {9108983}, year = {2016}, abstract = {An innovative framework has been developed for teamwork of two quadcopter formations, each having its specified formation geometry, assigned task, and matching control scheme. Position control for quadcopters in one of the formations has been implemented through a Linear Quadratic Regulator Proportional Integral (LQR PI) control scheme based on explicit model following scheme. Quadcopters in the other formation are controlled through LQR PI servomechanism control scheme. These two control schemes are compared in terms of their performance and control effort. Both formations are commanded by respective ground stations through virtual leaders. Quadcopters in formations are able to track desired trajectories as well as hovering at desired points for selected time duration. In case of communication loss between ground station and any of the quadcopters, the neighboring quadcopter provides the command data, received from the ground station, to the affected unit. Proposed control schemes have been validated through extensive simulations using MATLAB®/Simulink® that provided favorable results.}, language = {en} } @techreport{RaffeckGeisslerHossfeld2022, type = {Working Paper}, author = {Raffeck, Simon and Geißler, Stefan and Hoßfeld, Tobias}, title = {DBM: Decentralized Burst Mitigation for Self-Organizing LoRa Deployments}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28080}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280809}, pages = {4}, year = {2022}, abstract = {This work proposes a novel approach to disperse dense transmission intervals and reduce bursty traffic patterns without the need for centralized control. Furthermore, by keeping the mechanism as close to the Long Range Wide Area Network (LoRaWAN) standard as possible the suggested mechanism can be deployed within existing networks and can even be co-deployed with other devices.}, subject = {Datennetz}, language = {en} } @techreport{RossiMaurelliUnnithanetal.2021, author = {Rossi, Angelo Pio and Maurelli, Francesco and Unnithan, Vikram and Dreger, Hendrik and Mathewos, Kedus and Pradhan, Nayan and Corbeanu, Dan-Andrei and Pozzobon, Riccardo and Massironi, Matteo and Ferrari, Sabrina and Pernechele, Claudia and Paoletti, Lorenzo and Simioni, Emanuele and Maurizio, Pajola and Santagata, Tommaso and Borrmann, Dorit and N{\"u}chter, Andreas and Bredenbeck, Anton and Zevering, Jasper and Arzberger, Fabian and Reyes Mantilla, Camilo Andr{\´e}s}, title = {DAEDALUS - Descent And Exploration in Deep Autonomy of Lava Underground Structures}, isbn = {978-3-945459-33-1}, issn = {1868-7466}, doi = {10.25972/OPUS-22791}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227911}, pages = {188}, year = {2021}, abstract = {The DAEDALUS mission concept aims at exploring and characterising the entrance and initial part of Lunar lava tubes within a compact, tightly integrated spherical robotic device, with a complementary payload set and autonomous capabilities. The mission concept addresses specifically the identification and characterisation of potential resources for future ESA exploration, the local environment of the subsurface and its geologic and compositional structure. A sphere is ideally suited to protect sensors and scientific equipment in rough, uneven environments. It will house laser scanners, cameras and ancillary payloads. The sphere will be lowered into the skylight and will explore the entrance shaft, associated caverns and conduits. Lidar (light detection and ranging) systems produce 3D models with high spatial accuracy independent of lighting conditions and visible features. Hence this will be the primary exploration toolset within the sphere. The additional payload that can be accommodated in the robotic sphere consists of camera systems with panoramic lenses and scanners such as multi-wavelength or single-photon scanners. A moving mass will trigger movements. The tether for lowering the sphere will be used for data communication and powering the equipment during the descending phase. Furthermore, the connector tether-sphere will host a WIFI access point, such that data of the conduit can be transferred to the surface relay station. During the exploration phase, the robot will be disconnected from the cable, and will use wireless communication. Emergency autonomy software will ensure that in case of loss of communication, the robot will continue the nominal mission.}, subject = {Mond}, language = {en} } @article{DuLauterbachLietal.2020, author = {Du, Shitong and Lauterbach, Helge A. and Li, Xuyou and Demisse, Girum G. and Borrmann, Dorit and N{\"u}chter, Andreas}, title = {Curvefusion — A Method for Combining Estimated Trajectories with Applications to SLAM and Time-Calibration}, series = {Sensors}, volume = {20}, journal = {Sensors}, number = {23}, issn = {1424-8220}, doi = {10.3390/s20236918}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-219988}, year = {2020}, abstract = {Mapping and localization of mobile robots in an unknown environment are essential for most high-level operations like autonomous navigation or exploration. This paper presents a novel approach for combining estimated trajectories, namely curvefusion. The robot used in the experiments is equipped with a horizontally mounted 2D profiler, a constantly spinning 3D laser scanner and a GPS module. The proposed algorithm first combines trajectories from different sensors to optimize poses of the planar three degrees of freedom (DoF) trajectory, which is then fed into continuous-time simultaneous localization and mapping (SLAM) to further improve the trajectory. While state-of-the-art multi-sensor fusion methods mainly focus on probabilistic methods, our approach instead adopts a deformation-based method to optimize poses. To this end, a similarity metric for curved shapes is introduced into the robotics community to fuse the estimated trajectories. Additionally, a shape-based point correspondence estimation method is applied to the multi-sensor time calibration. Experiments show that the proposed fusion method can achieve relatively better accuracy, even if the error of the trajectory before fusion is large, which demonstrates that our method can still maintain a certain degree of accuracy in an environment where typical pose estimation methods have poor performance. In addition, the proposed time-calibration method also achieves high accuracy in estimating point correspondences.}, language = {en} } @techreport{Metzger2020, type = {Working Paper}, author = {Metzger, Florian}, title = {Crowdsensed QoE for the community - a concept to make QoE assessment accessible}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203748}, pages = {7}, year = {2020}, abstract = {In recent years several community testbeds as well as participatory sensing platforms have successfully established themselves to provide open data to everyone interested. Each of them with a specific goal in mind, ranging from collecting radio coverage data up to environmental and radiation data. Such data can be used by the community in their decision making, whether to subscribe to a specific mobile phone service that provides good coverage in an area or in finding a sunny and warm region for the summer holidays. However, the existing platforms are usually limiting themselves to directly measurable network QoS. If such a crowdsourced data set provides more in-depth derived measures, this would enable an even better decision making. A community-driven crowdsensing platform that derives spatial application-layer user experience from resource-friendly bandwidth estimates would be such a case, video streaming services come to mind as a prime example. In this paper we present a concept for such a system based on an initial prototype that eases the collection of data necessary to determine mobile-specific QoE at large scale. In addition we reason why the simple quality metric proposed here can hold its own.}, subject = {Quality of Experience}, language = {en} } @phdthesis{Fink2014, author = {Fink, Martin}, title = {Crossings, Curves, and Constraints in Graph Drawing}, publisher = {W{\"u}rzburg University Press}, isbn = {978-3-95826-002-3 (print)}, doi = {10.25972/WUP-978-3-95826-003-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-98235}, school = {W{\"u}rzburg University Press}, pages = {222}, year = {2014}, abstract = {In many cases, problems, data, or information can be modeled as graphs. Graphs can be used as a tool for modeling in any case where connections between distinguishable objects occur. Any graph consists of a set of objects, called vertices, and a set of connections, called edges, such that any edge connects a pair of vertices. For example, a social network can be modeled by a graph by transforming the users of the network into vertices and friendship relations between users into edges. Also physical networks like computer networks or transportation networks, for example, the metro network of a city, can be seen as graphs. For making graphs and, thereby, the data that is modeled, well-understandable for users, we need a visualization. Graph drawing deals with algorithms for visualizing graphs. In this thesis, especially the use of crossings and curves is investigated for graph drawing problems under additional constraints. The constraints that occur in the problems investigated in this thesis especially restrict the positions of (a part of) the vertices; this is done either as a hard constraint or as an optimization criterion.}, subject = {Graphenzeichnen}, language = {en} } @article{AtienzadeCastroCortesetal.2012, author = {Atienza, Nieves and de Castro, Natalia and Cort{\´e}s, Carmen and Garrido, M. {\´A}ngeles and Grima, Clara I. and Hern{\´a}ndez, Gregorio and M{\´a}rquez, Alberto and Moreno-Gonz{\´a}lez, Auxiliadora and N{\"o}llenburg, Martin and Portillo, Jos{\´e} Ram{\´o}n and Reyes, Pedro and Valenzuela, Jes{\´u}s and Trinidad Villar, Maria and Wolff, Alexander}, title = {Cover contact graphs}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78845}, year = {2012}, abstract = {We study problems that arise in the context of covering certain geometric objects called seeds (e.g., points or disks) by a set of other geometric objects called cover (e.g., a set of disks or homothetic triangles). We insist that the interiors of the seeds and the cover elements are pairwise disjoint, respectively, but they can touch. We call the contact graph of a cover a cover contact graph (CCG). We are interested in three types of tasks, both in the general case and in the special case of seeds on a line: (a) deciding whether a given seed set has a connected CCG, (b) deciding whether a given graph has a realization as a CCG on a given seed set, and (c) bounding the sizes of certain classes of CCG's. Concerning (a) we give efficient algorithms for the case that seeds are points and show that the problem becomes hard if seeds and covers are disks. Concerning (b) we show that this problem is hard even for point seeds and disk covers (given a fixed correspondence between graph vertices and seeds). Concerning (c) we obtain upper and lower bounds on the number of CCG's for point seeds.}, subject = {Informatik}, language = {de} } @article{SteiningerAbelZiegleretal.2023, author = {Steininger, Michael and Abel, Daniel and Ziegler, Katrin and Krause, Anna and Paeth, Heiko and Hotho, Andreas}, title = {ConvMOS: climate model output statistics with deep learning}, series = {Data Mining and Knowledge Discovery}, volume = {37}, journal = {Data Mining and Knowledge Discovery}, number = {1}, issn = {1384-5810}, doi = {10.1007/s10618-022-00877-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324213}, pages = {136-166}, year = {2023}, abstract = {Climate models are the tool of choice for scientists researching climate change. Like all models they suffer from errors, particularly systematic and location-specific representation errors. One way to reduce these errors is model output statistics (MOS) where the model output is fitted to observational data with machine learning. In this work, we assess the use of convolutional Deep Learning climate MOS approaches and present the ConvMOS architecture which is specifically designed based on the observation that there are systematic and location-specific errors in the precipitation estimates of climate models. We apply ConvMOS models to the simulated precipitation of the regional climate model REMO, showing that a combination of per-location model parameters for reducing location-specific errors and global model parameters for reducing systematic errors is indeed beneficial for MOS performance. We find that ConvMOS models can reduce errors considerably and perform significantly better than three commonly used MOS approaches and plain ResNet and U-Net models in most cases. Our results show that non-linear MOS models underestimate the number of extreme precipitation events, which we alleviate by training models specialized towards extreme precipitation events with the imbalanced regression method DenseLoss. While we consider climate MOS, we argue that aspects of ConvMOS may also be beneficial in other domains with geospatial data, such as air pollution modeling or weather forecasts.}, subject = {Klima}, language = {en} } @article{GlemarecLugrinBosseretal.2022, author = {Gl{\´e}marec, Yann and Lugrin, Jean-Luc and Bosser, Anne-Gwenn and Buche, C{\´e}dric and Latoschik, Marc Erich}, title = {Controlling the stage: a high-level control system for virtual audiences in Virtual Reality}, series = {Frontiers in Virtual Reality}, volume = {3}, journal = {Frontiers in Virtual Reality}, issn = {2673-4192}, doi = {10.3389/frvir.2022.876433}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284601}, year = {2022}, abstract = {This article presents a novel method for controlling a virtual audience system (VAS) in Virtual Reality (VR) application, called STAGE, which has been originally designed for supervised public speaking training in university seminars dedicated to the preparation and delivery of scientific talks. We are interested in creating pedagogical narratives: narratives encompass affective phenomenon and rather than organizing events changing the course of a training scenario, pedagogical plans using our system focus on organizing the affects it arouses for the trainees. Efficiently controlling a virtual audience towards a specific training objective while evaluating the speaker's performance presents a challenge for a seminar instructor: the high level of cognitive and physical demands required to be able to control the virtual audience, whilst evaluating speaker's performance, adjusting and allowing it to quickly react to the user's behaviors and interactions. It is indeed a critical limitation of a number of existing systems that they rely on a Wizard of Oz approach, where the tutor drives the audience in reaction to the user's performance. We address this problem by integrating with a VAS a high-level control component for tutors, which allows using predefined audience behavior rules, defining custom ones, as well as intervening during run-time for finer control of the unfolding of the pedagogical plan. At its core, this component offers a tool to program, select, modify and monitor interactive training narratives using a high-level representation. The STAGE offers the following features: i) a high-level API to program pedagogical narratives focusing on a specific public speaking situation and training objectives, ii) an interactive visualization interface iii) computation and visualization of user metrics, iv) a semi-autonomous virtual audience composed of virtual spectators with automatic reactions to the speaker and surrounding spectators while following the pedagogical plan V) and the possibility for the instructor to embody a virtual spectator to ask questions or guide the speaker from within the Virtual Environment. We present here the design, and implementation of the tutoring system and its integration in STAGE, and discuss its reception by end-users.}, language = {en} } @phdthesis{Loeffler2021, author = {L{\"o}ffler, Andre}, title = {Constrained Graph Layouts: Vertices on the Outer Face and on the Integer Grid}, edition = {1. Auflage}, publisher = {W{\"u}rzburg University Press}, address = {W{\"u}rzburg}, isbn = {978-3-95826-146-4}, doi = {10.25972/WUP-978-3-95826-147-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-215746}, school = {W{\"u}rzburg University Press}, pages = {viii, 161}, year = {2021}, abstract = {Constraining graph layouts - that is, restricting the placement of vertices and the routing of edges to obey certain constraints - is common practice in graph drawing. In this book, we discuss algorithmic results on two different restriction types: placing vertices on the outer face and on the integer grid. For the first type, we look into the outer k-planar and outer k-quasi-planar graphs, as well as giving a linear-time algorithm to recognize full and closed outer k-planar graphs Monadic Second-order Logic. For the second type, we consider the problem of transferring a given planar drawing onto the integer grid while perserving the original drawings topology; we also generalize a variant of Cauchy's rigidity theorem for orthogonal polyhedra of genus 0 to those of arbitrary genus.}, subject = {Graphenzeichnen}, language = {en} } @article{LatoschikWienrich2022, author = {Latoschik, Marc Erich and Wienrich, Carolin}, title = {Congruence and plausibility, not presence: pivotal conditions for XR experiences and effects, a novel approach}, series = {Frontiers in Virtual Reality}, volume = {3}, journal = {Frontiers in Virtual Reality}, issn = {2673-4192}, doi = {10.3389/frvir.2022.694433}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284787}, year = {2022}, abstract = {Presence is often considered the most important quale describing the subjective feeling of being in a computer-generated and/or computer-mediated virtual environment. The identification and separation of orthogonal presence components, i.e., the place illusion and the plausibility illusion, has been an accepted theoretical model describing Virtual Reality (VR) experiences for some time. This perspective article challenges this presence-oriented VR theory. First, we argue that a place illusion cannot be the major construct to describe the much wider scope of virtual, augmented, and mixed reality (VR, AR, MR: or XR for short). Second, we argue that there is no plausibility illusion but merely plausibility, and we derive the place illusion caused by the congruent and plausible generation of spatial cues and similarly for all the current model's so-defined illusions. Finally, we propose congruence and plausibility to become the central essential conditions in a novel theoretical model describing XR experiences and effects.}, language = {en} } @article{BoehlerCreignouGalotaetal.2012, author = {B{\"o}hler, Elmar and Creignou, Nadia and Galota, Matthias and Reith, Steffen and Schnoor, Henning and Vollmer, Heribert}, title = {Complexity Classifications for Different Equivalence and Audit Problems for Boolean Circuits}, series = {Logical Methods in Computer Science}, volume = {8}, journal = {Logical Methods in Computer Science}, number = {3:27}, doi = {10.2168/LMCS-8(3:27)2012}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131121}, pages = {1 -- 25}, year = {2012}, abstract = {We study Boolean circuits as a representation of Boolean functions and conskier different equivalence, audit, and enumeration problems. For a number of restricted sets of gate types (bases) we obtain efficient algorithms, while for all other gate types we show these problems are at least NP-hard.}, language = {en} } @phdthesis{Kosub2001, author = {Kosub, Sven}, title = {Complexity and Partitions}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-2808}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {Computational complexity theory usually investigates the complexity of sets, i.e., the complexity of partitions into two parts. But often it is more appropriate to represent natural problems by partitions into more than two parts. A particularly interesting class of such problems consists of classification problems for relations. For instance, a binary relation R typically defines a partitioning of the set of all pairs (x,y) into four parts, classifiable according to the cases where R(x,y) and R(y,x) hold, only R(x,y) or only R(y,x) holds or even neither R(x,y) nor R(y,x) is true. By means of concrete classification problems such as Graph Embedding or Entailment (for propositional logic), this thesis systematically develops tools, in shape of the boolean hierarchy of NP-partitions and its refinements, for the qualitative analysis of the complexity of partitions generated by NP-relations. The Boolean hierarchy of NP-partitions is introduced as a generalization of the well-known and well-studied Boolean hierarchy (of sets) over NP. Whereas the latter hierarchy has a very simple structure, the situation is much more complicated for the case of partitions into at least three parts. To get an idea of this hierarchy, alternative descriptions of the partition classes are given in terms of finite, labeled lattices. Based on these characterizations the Embedding Conjecture is established providing the complete information on the structure of the hierarchy. This conjecture is supported by several results. A natural extension of the Boolean hierarchy of NP-partitions emerges from the lattice-characterization of its classes by considering partition classes generated by finite, labeled posets. It turns out that all significant ideas translate from the case of lattices. The induced refined Boolean hierarchy of NP-partitions enables us more accuratly capturing the complexity of certain relations (such as Graph Embedding) and a description of projectively closed partition classes.}, subject = {Partition }, language = {en} } @phdthesis{Spoerhase2009, author = {Spoerhase, Joachim}, title = {Competitive and Voting Location}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-52978}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {We consider competitive location problems where two competing providers place their facilities sequentially and users can decide between the competitors. We assume that both competitors act non-cooperatively and aim at maximizing their own benefits. We investigate the complexity and approximability of such problems on graphs, in particular on simple graph classes such as trees and paths. We also develop fast algorithms for single competitive location problems where each provider places a single facilty. Voting location, in contrast, aims at identifying locations that meet social criteria. The provider wants to satisfy the users (customers) of the facility to be opened. In general, there is no location that is favored by all users. Therefore, a satisfactory compromise has to be found. To this end, criteria arising from voting theory are considered. The solution of the location problem is understood as the winner of a virtual election among the users of the facilities, in which the potential locations play the role of the candidates and the users represent the voters. Competitive and voting location problems turn out to be closely related.}, subject = {Standortproblem}, language = {en} } @article{HossfeldHeegaardKellerer2023, author = {Hossfeld, Tobias and Heegaard, Poul E. and Kellerer, Wolfgang}, title = {Comparing the scalability of communication networks and systems}, series = {IEEE Access}, volume = {11}, journal = {IEEE Access}, doi = {10.1109/ACCESS.2023.3314201}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349403}, pages = {101474-101497}, year = {2023}, abstract = {Scalability is often mentioned in literature, but a stringent definition is missing. In particular, there is no general scalability assessment which clearly indicates whether a system scales or not or whether a system scales better than another. The key contribution of this article is the definition of a scalability index (SI) which quantifies if a system scales in comparison to another system, a hypothetical system, e.g., linear system, or the theoretically optimal system. The suggested SI generalizes different metrics from literature, which are specialized cases of our SI. The primary target of our scalability framework is, however, benchmarking of two systems, which does not require any reference system. The SI is demonstrated and evaluated for different use cases, that are (1) the performance of an IoT load balancer depending on the system load, (2) the availability of a communication system depending on the size and structure of the network, (3) scalability comparison of different location selection mechanisms in fog computing with respect to delays and energy consumption; (4) comparison of time-sensitive networking (TSN) mechanisms in terms of efficiency and utilization. Finally, we discuss how to use and how not to use the SI and give recommendations and guidelines in practice. To the best of our knowledge, this is the first work which provides a general SI for the comparison and benchmarking of systems, which is the primary target of our scalability analysis.}, language = {en} } @techreport{LeGrossmannKrieger2022, type = {Working Paper}, author = {Le, Duy Thanh and Großmann, Marcel and Krieger, Udo R.}, title = {Cloudless Resource Monitoring in a Fog Computing System Enabled by an SDN/NFV Infrastructure}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28072}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280723}, pages = {4}, year = {2022}, abstract = {Today's advanced Internet-of-Things applications raise technical challenges on cloud, edge, and fog computing. The design of an efficient, virtualized, context-aware, self-configuring orchestration system of a fog computing system constitutes a major development effort within this very innovative area of research. In this paper we describe the architecture and relevant implementation aspects of a cloudless resource monitoring system interworking with an SDN/NFV infrastructure. It realizes the basic monitoring component of the fundamental MAPE-K principles employed in autonomic computing. Here we present the hierarchical layering and functionality within the underlying fog nodes to generate a working prototype of an intelligent, self-managed orchestrator for advanced IoT applications and services. The latter system has the capability to monitor automatically various performance aspects of the resource allocation among multiple hosts of a fog computing system interconnected by SDN.}, subject = {Datennetz}, language = {en} } @article{HentschelKobsHotho2022, author = {Hentschel, Simon and Kobs, Konstantin and Hotho, Andreas}, title = {CLIP knows image aesthetics}, series = {Frontiers in Artificial Intelligence}, volume = {5}, journal = {Frontiers in Artificial Intelligence}, issn = {2624-8212}, doi = {10.3389/frai.2022.976235}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297150}, year = {2022}, abstract = {Most Image Aesthetic Assessment (IAA) methods use a pretrained ImageNet classification model as a base to fine-tune. We hypothesize that content classification is not an optimal pretraining task for IAA, since the task discourages the extraction of features that are useful for IAA, e.g., composition, lighting, or style. On the other hand, we argue that the Contrastive Language-Image Pretraining (CLIP) model is a better base for IAA models, since it has been trained using natural language supervision. Due to the rich nature of language, CLIP needs to learn a broad range of image features that correlate with sentences describing the image content, composition, environments, and even subjective feelings about the image. While it has been shown that CLIP extracts features useful for content classification tasks, its suitability for tasks that require the extraction of style-based features like IAA has not yet been shown. We test our hypothesis by conducting a three-step study, investigating the usefulness of features extracted by CLIP compared to features obtained from the last layer of a comparable ImageNet classification model. In each step, we get more computationally expensive. First, we engineer natural language prompts that let CLIP assess an image's aesthetic without adjusting any weights in the model. To overcome the challenge that CLIP's prompting only is applicable to classification tasks, we propose a simple but effective strategy to convert multiple prompts to a continuous scalar as required when predicting an image's mean aesthetic score. Second, we train a linear regression on the AVA dataset using image features obtained by CLIP's image encoder. The resulting model outperforms a linear regression trained on features from an ImageNet classification model. It also shows competitive performance with fully fine-tuned networks based on ImageNet, while only training a single layer. Finally, by fine-tuning CLIP's image encoder on the AVA dataset, we show that CLIP only needs a fraction of training epochs to converge, while also performing better than a fine-tuned ImageNet model. Overall, our experiments suggest that CLIP is better suited as a base model for IAA methods than ImageNet pretrained networks.}, language = {en} }