@article{KernKullmannGanaletal.2021, author = {Kern, Florian and Kullmann, Peter and Ganal, Elisabeth and Korwisi, Kristof and Stingl, Ren{\´e} and Niebling, Florian and Latoschik, Marc Erich}, title = {Off-The-Shelf Stylus: Using XR Devices for Handwriting and Sketching on Physically Aligned Virtual Surfaces}, series = {Frontiers in Virtual Reality}, volume = {2}, journal = {Frontiers in Virtual Reality}, doi = {10.3389/frvir.2021.684498}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260219}, year = {2021}, abstract = {This article introduces the Off-The-Shelf Stylus (OTSS), a framework for 2D interaction (in 3D) as well as for handwriting and sketching with digital pen, ink, and paper on physically aligned virtual surfaces in Virtual, Augmented, and Mixed Reality (VR, AR, MR: XR for short). OTSS supports self-made XR styluses based on consumer-grade six-degrees-of-freedom XR controllers and commercially available styluses. The framework provides separate modules for three basic but vital features: 1) The stylus module provides stylus construction and calibration features. 2) The surface module provides surface calibration and visual feedback features for virtual-physical 2D surface alignment using our so-called 3ViSuAl procedure, and surface interaction features. 3) The evaluation suite provides a comprehensive test bed combining technical measurements for precision, accuracy, and latency with extensive usability evaluations including handwriting and sketching tasks based on established visuomotor, graphomotor, and handwriting research. The framework's development is accompanied by an extensive open source reference implementation targeting the Unity game engine using an Oculus Rift S headset and Oculus Touch controllers. The development compares three low-cost and low-tech options to equip controllers with a tip and includes a web browser-based surface providing support for interacting, handwriting, and sketching. The evaluation of the reference implementation based on the OTSS framework identified an average stylus precision of 0.98 mm (SD = 0.54 mm) and an average surface accuracy of 0.60 mm (SD = 0.32 mm) in a seated VR environment. The time for displaying the stylus movement as digital ink on the web browser surface in VR was 79.40 ms on average (SD = 23.26 ms), including the physical controller's motion-to-photon latency visualized by its virtual representation (M = 42.57 ms, SD = 15.70 ms). The usability evaluation (N = 10) revealed a low task load, high usability, and high user experience. Participants successfully reproduced given shapes and created legible handwriting, indicating that the OTSS and it's reference implementation is ready for everyday use. We provide source code access to our implementation, including stylus and surface calibration and surface interaction features, making it easy to reuse, extend, adapt and/or replicate previous results (https://go.uniwue.de/hci-otss).}, language = {en} } @article{ObremskiLugrinSchaperetal.2021, author = {Obremski, David and Lugrin, Jean-Luc and Schaper, Philipp and Lugrin, Birgit}, title = {Non-native speaker perception of Intelligent Virtual Agents in two languages: the impact of amount and type of grammatical mistakes}, series = {Journal on Multimodal User Interfaces}, volume = {15}, journal = {Journal on Multimodal User Interfaces}, number = {2}, issn = {1783-8738}, doi = {10.1007/s12193-021-00369-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-269984}, pages = {229-238}, year = {2021}, abstract = {Having a mixed-cultural membership becomes increasingly common in our modern society. It is thus beneficial in several ways to create Intelligent Virtual Agents (IVAs) that reflect a mixed-cultural background as well, e.g., for educational settings. For research with such IVAs, it is essential that they are classified as non-native by members of a target culture. In this paper, we focus on variations of IVAs' speech to create the impression of non-native speakers that are identified as such by speakers of two different mother tongues. In particular, we investigate grammatical mistakes and identify thresholds beyond which the agents is clearly categorised as a non-native speaker. Therefore, we conducted two experiments: one for native speakers of German, and one for native speakers of English. Results of the German study indicate that beyond 10\% of word order mistakes and 25\% of infinitive mistakes German-speaking IVAs are perceived as non-native speakers. Results of the English study indicate that beyond 50\% of omission mistakes and 50\% of infinitive mistakes English-speaking IVAs are perceived as non-native speakers. We believe these thresholds constitute helpful guidelines for computational approaches of non-native speaker generation, simplifying research with IVAs in mixed-cultural settings.}, language = {en} } @article{BencurovaShityakovSchaacketal.2022, author = {Bencurova, Elena and Shityakov, Sergey and Schaack, Dominik and Kaltdorf, Martin and Sarukhanyan, Edita and Hilgarth, Alexander and Rath, Christin and Montenegro, Sergio and Roth, G{\"u}nter and Lopez, Daniel and Dandekar, Thomas}, title = {Nanocellulose composites as smart devices with chassis, light-directed DNA Storage, engineered electronic properties, and chip integration}, series = {Frontiers in Bioengineering and Biotechnology}, volume = {10}, journal = {Frontiers in Bioengineering and Biotechnology}, issn = {2296-4185}, doi = {10.3389/fbioe.2022.869111}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-283033}, year = {2022}, abstract = {The rapid development of green and sustainable materials opens up new possibilities in the field of applied research. Such materials include nanocellulose composites that can integrate many components into composites and provide a good chassis for smart devices. In our study, we evaluate four approaches for turning a nanocellulose composite into an information storage or processing device: 1) nanocellulose can be a suitable carrier material and protect information stored in DNA. 2) Nucleotide-processing enzymes (polymerase and exonuclease) can be controlled by light after fusing them with light-gating domains; nucleotide substrate specificity can be changed by mutation or pH change (read-in and read-out of the information). 3) Semiconductors and electronic capabilities can be achieved: we show that nanocellulose is rendered electronic by iodine treatment replacing silicon including microstructures. Nanocellulose semiconductor properties are measured, and the resulting potential including single-electron transistors (SET) and their properties are modeled. Electric current can also be transported by DNA through G-quadruplex DNA molecules; these as well as classical silicon semiconductors can easily be integrated into the nanocellulose composite. 4) To elaborate upon miniaturization and integration for a smart nanocellulose chip device, we demonstrate pH-sensitive dyes in nanocellulose, nanopore creation, and kinase micropatterning on bacterial membranes as well as digital PCR micro-wells. Future application potential includes nano-3D printing and fast molecular processors (e.g., SETs) integrated with DNA storage and conventional electronics. This would also lead to environment-friendly nanocellulose chips for information processing as well as smart nanocellulose composites for biomedical applications and nano-factories.}, language = {en} } @article{OberdoerferBirnstielLatoschiketal.2021, author = {Oberd{\"o}rfer, Sebastian and Birnstiel, Sandra and Latoschik, Marc Erich and Grafe, Silke}, title = {Mutual Benefits: Interdisciplinary Education of Pre-Service Teachers and HCI Students in VR/AR Learning Environment Design}, series = {Frontiers in Education}, volume = {6}, journal = {Frontiers in Education}, issn = {2504-284X}, doi = {10.3389/feduc.2021.693012}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241612}, year = {2021}, abstract = {The successful development and classroom integration of Virtual (VR) and Augmented Reality (AR) learning environments requires competencies and content knowledge with respect to media didactics and the respective technologies. The paper discusses a pedagogical concept specifically aiming at the interdisciplinary education of pre-service teachers in collaboration with human-computer interaction students. The students' overarching goal is the interdisciplinary realization and integration of VR/AR learning environments in teaching and learning concepts. To assist this approach, we developed a specific tutorial guiding the developmental process. We evaluate and validate the effectiveness of the overall pedagogical concept by analyzing the change in attitudes regarding 1) the use of VR/AR for educational purposes and in competencies and content knowledge regarding 2) media didactics and 3) technology. Our results indicate a significant improvement in the knowledge of media didactics and technology. We further report on four STEM learning environments that have been developed during the seminar.}, language = {en} } @article{DjebkoPuppeKayal2019, author = {Djebko, Kirill and Puppe, Frank and Kayal, Hakan}, title = {Model-based fault detection and diagnosis for spacecraft with an application for the SONATE triple cube nano-satellite}, series = {Aerospace}, volume = {6}, journal = {Aerospace}, number = {10}, issn = {2226-4310}, doi = {10.3390/aerospace6100105}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-198836}, pages = {105}, year = {2019}, abstract = {The correct behavior of spacecraft components is the foundation of unhindered mission operation. However, no technical system is free of wear and degradation. A malfunction of one single component might significantly alter the behavior of the whole spacecraft and may even lead to a complete mission failure. Therefore, abnormal component behavior must be detected early in order to be able to perform counter measures. A dedicated fault detection system can be employed, as opposed to classical health monitoring, performed by human operators, to decrease the response time to a malfunction. In this paper, we present a generic model-based diagnosis system, which detects faults by analyzing the spacecraft's housekeeping data. The observed behavior of the spacecraft components, given by the housekeeping data is compared to their expected behavior, obtained through simulation. Each discrepancy between the observed and the expected behavior of a component generates a so-called symptom. Given the symptoms, the diagnoses are derived by computing sets of components whose malfunction might cause the observed discrepancies. We demonstrate the applicability of the diagnosis system by using modified housekeeping data of the qualification model of an actual spacecraft and outline the advantages and drawbacks of our approach.}, language = {en} } @article{WienrichCarolusMarkusetal.2023, author = {Wienrich, Carolin and Carolus, Astrid and Markus, Andr{\´e} and Augustin, Yannik and Pfister, Jan and Hotho, Andreas}, title = {Long-term effects of perceived friendship with intelligent voice assistants on usage behavior, user experience, and social perceptions}, series = {Computers}, volume = {12}, journal = {Computers}, number = {4}, issn = {2073-431X}, doi = {10.3390/computers12040077}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313552}, year = {2023}, abstract = {Social patterns and roles can develop when users talk to intelligent voice assistants (IVAs) daily. The current study investigates whether users assign different roles to devices and how this affects their usage behavior, user experience, and social perceptions. Since social roles take time to establish, we equipped 106 participants with Alexa or Google assistants and some smart home devices and observed their interactions for nine months. We analyzed diverse subjective (questionnaire) and objective data (interaction data). By combining social science and data science analyses, we identified two distinct clusters—users who assigned a friendship role to IVAs over time and users who did not. Interestingly, these clusters exhibited significant differences in their usage behavior, user experience, and social perceptions of the devices. For example, participants who assigned a role to IVAs attributed more friendship to them used them more frequently, reported more enjoyment during interactions, and perceived more empathy for IVAs. In addition, these users had distinct personal requirements, for example, they reported more loneliness. This study provides valuable insights into the role-specific effects and consequences of voice assistants. Recent developments in conversational language models such as ChatGPT suggest that the findings of this study could make an important contribution to the design of dialogic human-AI interactions.}, language = {en} } @article{KlemzRote2022, author = {Klemz, Boris and Rote, G{\"u}nter}, title = {Linear-Time Algorithms for Maximum-Weight Induced Matchings and Minimum Chain Covers in Convex Bipartite Graphs}, series = {Algorithmica}, volume = {84}, journal = {Algorithmica}, number = {4}, issn = {1432-0541}, doi = {10.1007/s00453-021-00904-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-267876}, pages = {1064-1080}, year = {2022}, abstract = {A bipartite graph G=(U,V,E) is convex if the vertices in V can be linearly ordered such that for each vertex u∈U, the neighbors of u are consecutive in the ordering of V. An induced matching H of G is a matching for which no edge of E connects endpoints of two different edges of H. We show that in a convex bipartite graph with n vertices and m weighted edges, an induced matching of maximum total weight can be computed in O(n+m) time. An unweighted convex bipartite graph has a representation of size O(n) that records for each vertex u∈U the first and last neighbor in the ordering of V. Given such a compact representation, we compute an induced matching of maximum cardinality in O(n) time. In convex bipartite graphs, maximum-cardinality induced matchings are dual to minimum chain covers. A chain cover is a covering of the edge set by chain subgraphs, that is, subgraphs that do not contain induced matchings of more than one edge. Given a compact representation, we compute a representation of a minimum chain cover in O(n) time. If no compact representation is given, the cover can be computed in O(n+m) time. All of our algorithms achieve optimal linear running time for the respective problem and model, and they improve and generalize the previous results in several ways: The best algorithms for the unweighted problem versions had a running time of O(n\(^{2}\)) (Brandst{\"a}dt et al. in Theor. Comput. Sci. 381(1-3):260-265, 2007. https://doi.org/10.1016/j.tcs.2007.04.006). The weighted case has not been considered before.}, language = {en} } @article{FischerHarteltPuppe2023, author = {Fischer, Norbert and Hartelt, Alexander and Puppe, Frank}, title = {Line-level layout recognition of historical documents with background knowledge}, series = {Algorithms}, volume = {16}, journal = {Algorithms}, number = {3}, issn = {1999-4893}, doi = {10.3390/a16030136}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-310938}, year = {2023}, abstract = {Digitization and transcription of historic documents offer new research opportunities for humanists and are the topics of many edition projects. However, manual work is still required for the main phases of layout recognition and the subsequent optical character recognition (OCR) of early printed documents. This paper describes and evaluates how deep learning approaches recognize text lines and can be extended to layout recognition using background knowledge. The evaluation was performed on five corpora of early prints from the 15th and 16th Centuries, representing a variety of layout features. While the main text with standard layouts could be recognized in the correct reading order with a precision and recall of up to 99.9\%, also complex layouts were recognized at a rate as high as 90\% by using background knowledge, the full potential of which was revealed if many pages of the same source were transcribed.}, language = {en} } @article{OberdoerferLatoschik2019, author = {Oberd{\"o}rfer, Sebastian and Latoschik, Marc Erich}, title = {Knowledge encoding in game mechanics: transfer-oriented knowledge learning in desktop-3D and VR}, series = {International Journal of Computer Games Technology}, volume = {2019}, journal = {International Journal of Computer Games Technology}, doi = {10.1155/2019/7626349}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201159}, pages = {7626349}, year = {2019}, abstract = {Affine Transformations (ATs) are a complex and abstract learning content. Encoding the AT knowledge in Game Mechanics (GMs) achieves a repetitive knowledge application and audiovisual demonstration. Playing a serious game providing these GMs leads to motivating and effective knowledge learning. Using immersive Virtual Reality (VR) has the potential to even further increase the serious game's learning outcome and learning quality. This paper compares the effectiveness and efficiency of desktop-3D and VR in respect to the achieved learning outcome. Also, the present study analyzes the effectiveness of an enhanced audiovisual knowledge encoding and the provision of a debriefing system. The results validate the effectiveness of the knowledge encoding in GMs to achieve knowledge learning. The study also indicates that VR is beneficial for the overall learning quality and that an enhanced audiovisual encoding has only a limited effect on the learning outcome.}, language = {en} } @article{KempfKrugPuppe2023, author = {Kempf, Sebastian and Krug, Markus and Puppe, Frank}, title = {KIETA: Key-insight extraction from scientific tables}, series = {Applied Intelligence}, volume = {53}, journal = {Applied Intelligence}, number = {8}, issn = {0924-669X}, doi = {10.1007/s10489-022-03957-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324180}, pages = {9513-9530}, year = {2023}, abstract = {An important but very time consuming part of the research process is literature review. An already large and nevertheless growing ground set of publications as well as a steadily increasing publication rate continue to worsen the situation. Consequently, automating this task as far as possible is desirable. Experimental results of systems are key-insights of high importance during literature review and usually represented in form of tables. Our pipeline KIETA exploits these tables to contribute to the endeavor of automation by extracting them and their contained knowledge from scientific publications. The pipeline is split into multiple steps to guarantee modularity as well as analyzability, and agnosticim regarding the specific scientific domain up until the knowledge extraction step, which is based upon an ontology. Additionally, a dataset of corresponding articles has been manually annotated with information regarding table and knowledge extraction. Experiments show promising results that signal the possibility of an automated system, while also indicating limits of extracting knowledge from tables without any context.}, language = {en} } @article{SteinhaeusserOberdoerfervonMammenetal.2022, author = {Steinhaeusser, Sophia C. and Oberd{\"o}rfer, Sebastian and von Mammen, Sebastian and Latoschik, Marc Erich and Lugrin, Birgit}, title = {Joyful adventures and frightening places - designing emotion-inducing virtual environments}, series = {Frontiers in Virtual Reality}, volume = {3}, journal = {Frontiers in Virtual Reality}, issn = {2673-4192}, doi = {10.3389/frvir.2022.919163}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284831}, year = {2022}, abstract = {Virtual environments (VEs) can evoke and support emotions, as experienced when playing emotionally arousing games. We theoretically approach the design of fear and joy evoking VEs based on a literature review of empirical studies on virtual and real environments as well as video games' reviews and content analyses. We define the design space and identify central design elements that evoke specific positive and negative emotions. Based on that, we derive and present guidelines for emotion-inducing VE design with respect to design themes, colors and textures, and lighting configurations. To validate our guidelines in two user studies, we 1) expose participants to 360° videos of VEs designed following the individual guidelines and 2) immerse them in a neutral, positive and negative emotion-inducing VEs combining all respective guidelines in Virtual Reality. The results support our theoretically derived guidelines by revealing significant differences in terms of fear and joy induction.}, language = {en} } @article{LandeckAlvarezIgarzabalUnruhetal.2022, author = {Landeck, Maximilian and Alvarez Igarz{\´a}bal, Federico and Unruh, Fabian and Habenicht, Hannah and Khoshnoud, Shiva and Wittmann, Marc and Lugrin, Jean-Luc and Latoschik, Marc Erich}, title = {Journey through a virtual tunnel: Simulated motion and its effects on the experience of time}, series = {Frontiers in Virtual Reality}, volume = {3}, journal = {Frontiers in Virtual Reality}, issn = {2673-4192}, doi = {10.3389/frvir.2022.1059971}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301519}, year = {2022}, abstract = {This paper examines the relationship between time and motion perception in virtual environments. Previous work has shown that the perception of motion can affect the perception of time. We developed a virtual environment that simulates motion in a tunnel and measured its effects on the estimation of the duration of time, the speed at which perceived time passes, and the illusion of self-motion, also known as vection. When large areas of the visual field move in the same direction, vection can occur; observers often perceive this as self-motion rather than motion of the environment. To generate different levels of vection and investigate its effects on time perception, we developed an abstract procedural tunnel generator. The generator can simulate different speeds and densities of tunnel sections (visibly distinguishable sections that form the virtual tunnel), as well as the degree of embodiment of the user avatar (with or without virtual hands). We exposed participants to various tunnel simulations with different durations, speeds, and densities in a remote desktop and a virtual reality (VR) laboratory study. Time passed subjectively faster under high-speed and high-density conditions in both studies. The experience of self-motion was also stronger under high-speed and high-density conditions. Both studies revealed a significant correlation between the perceived passage of time and perceived self-motion. Subjects in the virtual reality study reported a stronger self-motion experience, a faster perceived passage of time, and shorter time estimates than subjects in the desktop study. Our results suggest that a virtual tunnel simulation can manipulate time perception in virtual reality. We will explore these results for the development of virtual reality applications for therapeutic approaches in our future work. This could be particularly useful in treating disorders like depression, autism, and schizophrenia, which are known to be associated with distortions in time perception. For example, the tunnel could be therapeutically applied by resetting patients' time perceptions by exposing them to the tunnel under different conditions, such as increasing or decreasing perceived time.}, language = {en} } @article{KrupitzerEberhardingerGerostathopoulosetal.2020, author = {Krupitzer, Christian and Eberhardinger, Benedikt and Gerostathopoulos, Ilias and Raibulet, Claudia}, title = {Introduction to the special issue "Applications in Self-Aware Computing Systems and their Evaluation"}, series = {Computers}, volume = {9}, journal = {Computers}, number = {1}, issn = {2073-431X}, doi = {10.3390/computers9010022}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203439}, year = {2020}, abstract = {The joint 1st Workshop on Evaluations and Measurements in Self-Aware Computing Systems (EMSAC 2019) and Workshop on Self-Aware Computing (SeAC) was held as part of the FAS* conference alliance in conjunction with the 16th IEEE International Conference on Autonomic Computing (ICAC) and the 13th IEEE International Conference on Self-Adaptive and Self-Organizing Systems (SASO) in Ume{\aa}, Sweden on 20 June 2019. The goal of this one-day workshop was to bring together researchers and practitioners from academic environments and from the industry to share their solutions, ideas, visions, and doubts in self-aware computing systems in general and in the evaluation and measurements of such systems in particular. The workshop aimed to enable discussions, partnerships, and collaborations among the participants. This special issue follows the theme of the workshop. It contains extended versions of workshop presentations as well as additional contributions.}, language = {en} } @article{HeinLatoschikWienrich2022, author = {Hein, Rebecca M. and Latoschik, Marc Erich and Wienrich, Carolin}, title = {Inter- and transcultural learning in cocial virtual reality: a proposal for an inter- and transcultural virtual object database to be used in the implementation, reflection, and evaluation of virtual encounters}, series = {Multimodal Technologies and Interaction}, volume = {6}, journal = {Multimodal Technologies and Interaction}, number = {7}, issn = {2414-4088}, doi = {10.3390/mti6070050}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-278974}, year = {2022}, abstract = {Visual stimuli are frequently used to improve memory, language learning or perception, and understanding of metacognitive processes. However, in virtual reality (VR), there are few systematically and empirically derived databases. This paper proposes the first collection of virtual objects based on empirical evaluation for inter-and transcultural encounters between English- and German-speaking learners. We used explicit and implicit measurement methods to identify cultural associations and the degree of stereotypical perception for each virtual stimuli (n = 293) through two online studies, including native German and English-speaking participants. The analysis resulted in a final well-describable database of 128 objects (called InteractionSuitcase). In future applications, the objects can be used as a great interaction or conversation asset and behavioral measurement tool in social VR applications, especially in the field of foreign language education. For example, encounters can use the objects to describe their culture, or teachers can intuitively assess stereotyped attitudes of the encounters.}, language = {en} } @article{RiedmannSchaperLugrin2022, author = {Riedmann, Anna and Schaper, Philipp and Lugrin, Birgit}, title = {Integration of a social robot and gamification in adult learning and effects on motivation, engagement and performance}, series = {AI \& Society}, journal = {AI \& Society}, issn = {0951-5666}, doi = {10.1007/s00146-022-01514-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324208}, year = {2022}, abstract = {Learning is a central component of human life and essential for personal development. Therefore, utilizing new technologies in the learning context and exploring their combined potential are considered essential to support self-directed learning in a digital age. A learning environment can be expanded by various technical and content-related aspects. Gamification in the form of elements from video games offers a potential concept to support the learning process. This can be supplemented by technology-supported learning. While the use of tablets is already widespread in the learning context, the integration of a social robot can provide new perspectives on the learning process. However, simply adding new technologies such as social robots or gamification to existing systems may not automatically result in a better learning environment. In the present study, game elements as well as a social robot were integrated separately and conjointly into a learning environment for basic Spanish skills, with a follow-up on retained knowledge. This allowed us to investigate the respective and combined effects of both expansions on motivation, engagement and learning effect. This approach should provide insights into the integration of both additions in an adult learning context. We found that the additions of game elements and the robot did not significantly improve learning, engagement or motivation. Based on these results and a literature review, we outline relevant factors for meaningful integration of gamification and social robots in learning environments in adult learning.}, language = {en} } @article{LiGuanGaoetal.2020, author = {Li, Ningbo and Guan, Lianwu and Gao, Yanbin and Du, Shitong and Wu, Menghao and Guang, Xingxing and Cong, Xiaodan}, title = {Indoor and outdoor low-cost seamless integrated navigation system based on the integration of INS/GNSS/LIDAR system}, series = {Remote Sensing}, volume = {12}, journal = {Remote Sensing}, number = {19}, issn = {2072-4292}, doi = {10.3390/rs12193271}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216229}, year = {2020}, abstract = {Global Navigation Satellite System (GNSS) provides accurate positioning data for vehicular navigation in open outdoor environment. In an indoor environment, Light Detection and Ranging (LIDAR) Simultaneous Localization and Mapping (SLAM) establishes a two-dimensional map and provides positioning data. However, LIDAR can only provide relative positioning data and it cannot directly provide the latitude and longitude of the current position. As a consequence, GNSS/Inertial Navigation System (INS) integrated navigation could be employed in outdoors, while the indoors part makes use of INS/LIDAR integrated navigation and the corresponding switching navigation will make the indoor and outdoor positioning consistent. In addition, when the vehicle enters the garage, the GNSS signal will be blurred for a while and then disappeared. Ambiguous GNSS satellite signals will lead to the continuous distortion or overall drift of the positioning trajectory in the indoor condition. Therefore, an INS/LIDAR seamless integrated navigation algorithm and a switching algorithm based on vehicle navigation system are designed. According to the experimental data, the positioning accuracy of the INS/LIDAR navigation algorithm in the simulated environmental experiment is 50\% higher than that of the Dead Reckoning (DR) algorithm. Besides, the switching algorithm developed based on the INS/LIDAR integrated navigation algorithm can achieve 80\% success rate in navigation mode switching.}, language = {en} } @article{SchloerRingHotho2020, author = {Schl{\"o}r, Daniel and Ring, Markus and Hotho, Andreas}, title = {iNALU: Improved Neural Arithmetic Logic Unit}, series = {Frontiers in Artificial Intelligence}, volume = {3}, journal = {Frontiers in Artificial Intelligence}, issn = {2624-8212}, doi = {10.3389/frai.2020.00071}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212301}, year = {2020}, abstract = {Neural networks have to capture mathematical relationships in order to learn various tasks. They approximate these relations implicitly and therefore often do not generalize well. The recently proposed Neural Arithmetic Logic Unit (NALU) is a novel neural architecture which is able to explicitly represent the mathematical relationships by the units of the network to learn operations such as summation, subtraction or multiplication. Although NALUs have been shown to perform well on various downstream tasks, an in-depth analysis reveals practical shortcomings by design, such as the inability to multiply or divide negative input values or training stability issues for deeper networks. We address these issues and propose an improved model architecture. We evaluate our model empirically in various settings from learning basic arithmetic operations to more complex functions. Our experiments indicate that our model solves stability issues and outperforms the original NALU model in means of arithmetic precision and convergence.}, language = {en} } @article{LopezArreguinMontenegro2019, author = {Lopez-Arreguin, A. J. R. and Montenegro, S.}, title = {Improving engineering models of terramechanics for planetary exploration}, series = {Results in Engineering}, volume = {3}, journal = {Results in Engineering}, doi = {10.1016/j.rineng.2019.100027}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202490}, pages = {100027}, year = {2019}, abstract = {This short letter proposes more consolidated explicit solutions for the forces and torques acting on typical rover wheels, that can be used as a method to determine their average mobility characteristics in planetary soils. The closed loop solutions stand in one of the verified methods, but at difference of the previous, observables are decoupled requiring a less amount of physical parameters to measure. As a result, we show that with knowledge of terrain properties, wheel driving performance rely in a single observable only. Because of their generality, the formulated equations established here can have further implications in autonomy and control of rovers or planetary soil characterization.}, language = {en} } @article{MaiwaldBruschkeSchneideretal.2023, author = {Maiwald, Ferdinand and Bruschke, Jonas and Schneider, Danilo and Wacker, Markus and Niebling, Florian}, title = {Giving historical photographs a new perspective: introducing camera orientation parameters as new metadata in a large-scale 4D application}, series = {Remote Sensing}, volume = {15}, journal = {Remote Sensing}, number = {7}, issn = {2072-4292}, doi = {10.3390/rs15071879}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311103}, year = {2023}, abstract = {The ongoing digitization of historical photographs in archives allows investigating the quality, quantity, and distribution of these images. However, the exact interior and exterior camera orientations of these photographs are usually lost during the digitization process. The proposed method uses content-based image retrieval (CBIR) to filter exterior images of single buildings in combination with metadata information. The retrieved photographs are automatically processed in an adapted structure-from-motion (SfM) pipeline to determine the camera parameters. In an interactive georeferencing process, the calculated camera positions are transferred into a global coordinate system. As all image and camera data are efficiently stored in the proposed 4D database, they can be conveniently accessed afterward to georeference newly digitized images by using photogrammetric triangulation and spatial resection. The results show that the CBIR and the subsequent SfM are robust methods for various kinds of buildings and different quantity of data. The absolute accuracy of the camera positions after georeferencing lies in the range of a few meters likely introduced by the inaccurate LOD2 models used for transformation. The proposed photogrammetric method, the database structure, and the 4D visualization interface enable adding historical urban photographs and 3D models from other locations.}, language = {en} } @article{ToepferCorovicFetteetal.2015, author = {Toepfer, Martin and Corovic, Hamo and Fette, Georg and Kl{\"u}gl, Peter and St{\"o}rk, Stefan and Puppe, Frank}, title = {Fine-grained information extraction from German transthoracic echocardiography reports}, series = {BMC Medical Informatics and Decision Making}, volume = {15}, journal = {BMC Medical Informatics and Decision Making}, number = {91}, doi = {doi:10.1186/s12911-015-0215-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125509}, year = {2015}, abstract = {Background Information extraction techniques that get structured representations out of unstructured data make a large amount of clinically relevant information about patients accessible for semantic applications. These methods typically rely on standardized terminologies that guide this process. Many languages and clinical domains, however, lack appropriate resources and tools, as well as evaluations of their applications, especially if detailed conceptualizations of the domain are required. For instance, German transthoracic echocardiography reports have not been targeted sufficiently before, despite of their importance for clinical trials. This work therefore aimed at development and evaluation of an information extraction component with a fine-grained terminology that enables to recognize almost all relevant information stated in German transthoracic echocardiography reports at the University Hospital of W{\"u}rzburg. Methods A domain expert validated and iteratively refined an automatically inferred base terminology. The terminology was used by an ontology-driven information extraction system that outputs attribute value pairs. The final component has been mapped to the central elements of a standardized terminology, and it has been evaluated according to documents with different layouts. Results The final system achieved state-of-the-art precision (micro average.996) and recall (micro average.961) on 100 test documents that represent more than 90 \% of all reports. In particular, principal aspects as defined in a standardized external terminology were recognized with f 1=.989 (micro average) and f 1=.963 (macro average). As a result of keyword matching and restraint concept extraction, the system obtained high precision also on unstructured or exceptionally short documents, and documents with uncommon layout. Conclusions The developed terminology and the proposed information extraction system allow to extract fine-grained information from German semi-structured transthoracic echocardiography reports with very high precision and high recall on the majority of documents at the University Hospital of W{\"u}rzburg. Extracted results populate a clinical data warehouse which supports clinical research.}, language = {en} }