@phdthesis{Schmidt2011, author = {Schmidt, Marco}, title = {Ground Station Networks for Efficient Operation of Distributed Small Satellite Systems}, isbn = {978-3-923959-77-8}, doi = {10.25972/OPUS-4984}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-64999}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {The field of small satellite formations and constellations attracted growing attention, based on recent advances in small satellite engineering. The utilization of distributed space systems allows the realization of innovative applications and will enable improved temporal and spatial resolution in observation scenarios. On the other side, this new paradigm imposes a variety of research challenges. In this monograph new networking concepts for space missions are presented, using networks of ground stations. The developed approaches combine ground station resources in a coordinated way to achieve more robust and efficient communication links. Within this thesis, the following topics were elaborated to improve the performance in distributed space missions: Appropriate scheduling of contact windows in a distributed ground system is a necessary process to avoid low utilization of ground stations. The theoretical basis for the novel concept of redundant scheduling was elaborated in detail. Additionally to the presented algorithm was a scheduling system implemented, its performance was tested extensively with real world scheduling problems. In the scope of data management, a system was developed which autonomously synchronizes data frames in ground station networks and uses this information to detect and correct transmission errors. The system was validated with hardware in the loop experiments, demonstrating the benefits of the developed approach.}, subject = {Kleinsatellit}, language = {en} } @phdthesis{Duelli2012, author = {Duelli, Michael}, title = {Heuristic Design and Provisioning of Resilient Multi-Layer Networks}, doi = {10.25972/OPUS-5600}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69433}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {To jointly provide different services/technologies, like IP and Ethernet or IP and SDH/SONET, in a single network, equipment of multiple technologies needs to be deployed to the sites/Points of Presence (PoP) and interconnected with each other. Therein, a technology may provide transport functionality to other technologies and increase the number of available resources by using multiplexing techniques. By providing its own switching functionality, each technology creates connections in a logical layer which leads to the notion of multi-layer networks. The design of such networks comprises the deployment and interconnection of components to suit to given traffic demands. To prevent traffic loss due to failures of networking equipment, protection mechanisms need to be established. In multi-layer networks, protection usually can be applied in any of the considered layers. In turn, the hierarchical structure of multi-layer networks also bears shared risk groups (SRG). To achieve a cost-optimal resilient network, an appropriate combination of multiplexing techniques, technologies, and their interconnections needs to be found. Thus, network design is a combinatorial problem with a large parameter and solution space. After the design stage, the resources of a multi-layer network can be provided to traffic demands. Especially, dynamic capacity provisioning requires interaction of sites and layers, as well as accurate retrieval of constraint information. In recent years, generalized multiprotocol label switching (GMPLS) and path computation elements (PCE) have emerged as possible approaches for these challenges. Like the design, the provisioning of multi-layer networks comprises a variety of optimization parameters, like blocking probability, resilience, and energy efficiency. In this work, we introduce several efficient heuristics to approach the considered optimization problems. We perform capital expenditure (CAPEX)-aware design of multi-layer networks from scratch, based on IST NOBEL phase 2 project's cost and equipment data. We comprise traffic and resilience requirements in different and multiple layers as well as different network architectures. On top of the designed networks, we consider the dynamic provisioning of multi-layer traffic based on the GMPLS and PCE architecture. We evaluate different PCE deployments, information retrieval strategies, and re-optimization. Finally, we show how information about provisioning utilization can be used to provide a feedback for network design.}, subject = {Mehrschichtsystem}, language = {en} } @phdthesis{Aschenbrenner2017, author = {Aschenbrenner, Doris}, title = {Human Robot Interaction Concepts for Human Supervisory Control and Telemaintenance Applications in an Industry 4.0 Environment}, isbn = {978-3-945459-18-8}, doi = {10.25972/OPUS-15052}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-150520}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {While teleoperation of technical highly sophisticated systems has already been a wide field of research, especially for space and robotics applications, the automation industry has not yet benefited from its results. Besides the established fields of application, also production lines with industrial robots and the surrounding plant components are in need of being remotely accessible. This is especially critical for maintenance or if an unexpected problem cannot be solved by the local specialists. Special machine manufacturers, especially robotics companies, sell their technology worldwide. Some factories, for example in emerging economies, lack qualified personnel for repair and maintenance tasks. When a severe failure occurs, an expert of the manufacturer needs to fly there, which leads to long down times of the machine or even the whole production line. With the development of data networks, a huge part of those travels can be omitted, if appropriate teleoperation equipment is provided. This thesis describes the development of a telemaintenance system, which was established in an active production line for research purposes. The customer production site of Braun in Marktheidenfeld, a factory which belongs to Procter \& Gamble, consists of a six-axis cartesian industrial robot by KUKA Industries, a two-component injection molding system and an assembly unit. The plant produces plastic parts for electric toothbrushes. In the research projects "MainTelRob" and "Bayern.digital", during which this plant was utilised, the Zentrum f{\"u}r Telematik e.V. (ZfT) and its project partners develop novel technical approaches and procedures for modern telemaintenance. The term "telemaintenance" hereby refers to the integration of computer science and communication technologies into the maintenance strategy. It is particularly interesting for high-grade capital-intensive goods like industrial robots. Typical telemaintenance tasks are for example the analysis of a robot failure or difficult repair operations. The service department of KUKA Industries is responsible for the worldwide distributed customers who own more than one robot. Currently such tasks are offered via phone support and service staff which travels abroad. They want to expand their service activities on telemaintenance and struggle with the high demands of teleoperation especially regarding security infrastructure. In addition, the facility in Marktheidenfeld has to keep up with the high international standards of Procter \& Gamble and wants to minimize machine downtimes. Like 71.6 \% of all German companies, P\&G sees a huge potential for early information on their production system, but complains about the insufficient quality and the lack of currentness of data. The main research focus of this work lies on the human machine interface for all human tasks in a telemaintenance setup. This thesis provides own work in the use of a mobile device in context of maintenance, describes new tools on asynchronous remote analysis and puts all parts together in an integrated telemaintenance infrastructure. With the help of Augmented Reality, the user performance and satisfaction could be raised. A special regard is put upon the situation awareness of the remote expert realized by different camera viewpoints. In detail the work consists of: - Support of maintenance tasks with a mobile device - Development and evaluation of a context-aware inspection tool - Comparison of a new touch-based mobile robot programming device to the former teach pendant - Study on Augmented Reality support for repair tasks with a mobile device - Condition monitoring for a specific plant with industrial robot - Human computer interaction for remote analysis of a single plant cycle - A big data analysis tool for a multitude of cycles and similar plants - 3D process visualization for a specific plant cycle with additional virtual information - Network architecture in hardware, software and network infrastructure - Mobile device computer supported collaborative work for telemaintenance - Motor exchange telemaintenance example in running production environment - Augmented reality supported remote plant visualization for better situation awareness}, subject = {Fernwartung}, language = {en} } @phdthesis{Ostermayer2017, author = {Ostermayer, Ludwig}, title = {Integration of Prolog and Java with the Connector Architecture CAPJa}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-150713}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Modern software is often realized as a modular combination of subsystems for, e. g., knowledge management, visualization, verification, or the interaction with users. As a result, software libraries from possibly different programming languages have to work together. Even more complex the case is if different programming paradigms have to be combined. This type of diversification of programming languages and paradigms in just one software application can only be mastered by mechanisms for a seamless integration of the involved programming languages. However, the integration of the common logic programming language Prolog and the popular object-oriented programming language Java is complicated by various interoperability problems which stem on the one hand from the paradigmatic gap between the programming languages, and on the other hand, from the diversity of the available Prolog systems. The subject of the thesis is the investigation of novel mechanisms for the integration of logic programming in Prolog and object-oriented programming in Java. We are particularly interested in an object-oriented, uniform approach which is not specific to just one Prolog system. Therefore, we have first identified several important criteria for the seamless integration of Prolog and Java from the object-oriented perspective. The main contribution of the thesis is a novel integration framework called the Connector Architecture for Prolog and Java (CAPJa). The framework is completely implemented in Java and imposes no modifications to the Java Virtual Machine or Prolog. CAPJa provides a semi-automated mechanism for the integration of Prolog predicates into Java. For compact, readable, and object-oriented queries to Prolog, CAPJa exploits lambda expressions with conditional and relational operators in Java. The communication between Java and Prolog is based on a fully automated mapping of Java objects to Prolog terms, and vice versa. In Java, an extensible system of gateways provides connectivity with various Prolog system and, moreover, makes any connected Prolog system easily interchangeable, without major adaption in Java.}, subject = {Logische Programmierung}, language = {en} } @phdthesis{Zeiger2010, author = {Zeiger, Florian}, title = {Internet Protocol based networking of mobile robots}, isbn = {978-3-923959-59-4}, doi = {10.25972/OPUS-4661}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-54776}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {This work is composed of three main parts: remote control of mobile systems via Internet, ad-hoc networks of mobile robots, and remote control of mobile robots via 3G telecommunication technologies. The first part gives a detailed state of the art and a discussion of the problems to be solved in order to teleoperate mobile robots via the Internet. The focus of the application to be realized is set on a distributed tele-laboratory with remote experiments on mobile robots which can be accessed world-wide via the Internet. Therefore, analyses of the communication link are used in order to realize a robust system. The developed and implemented architecture of this distributed tele-laboratory allows for a smooth access also with a variable or low link quality. The second part covers the application of ad-hoc networks for mobile robots. The networking of mobile robots via mobile ad-hoc networks is a very promising approach to realize integrated telematic systems without relying on preexisting communication infrastructure. Relevant civilian application scenarios are for example in the area of search and rescue operations where first responders are supported by multi-robot systems. Here, mobile robots, humans, and also existing stationary sensors can be connected very fast and efficient. Therefore, this work investigates and analyses the performance of different ad-hoc routing protocols for IEEE 802.11 based wireless networks in relevant scenarios. The analysis of the different protocols allows for an optimization of the parameter settings in order to use these ad-hoc routing protocols for mobile robot teleoperation. Also guidelines for the realization of such telematics systems are given. Also traffic shaping mechanisms of application layer are presented which allow for a more efficient use of the communication link. An additional application scenario, the integration of a small size helicopter into an IP based ad-hoc network, is presented. The teleoperation of mobile robots via 3G telecommunication technologies is addressed in the third part of this work. The high availability, high mobility, and the high bandwidth provide a very interesting opportunity to realize scenarios for the teleoperation of mobile robots or industrial remote maintenance. This work analyses important parameters of the UMTS communication link and investigates also the characteristics for different data streams. These analyses are used to give guidelines which are necessary for the realization of or industrial remote maintenance or mobile robot teleoperation scenarios. All the results and guidelines for the design of telematic systems in this work were derived from analyses and experiments with real hardware.}, subject = {Robotik}, language = {en} } @phdthesis{Atzmueller2006, author = {Atzm{\"u}ller, Martin}, title = {Knowledge-Intensive Subgroup Mining - Techniques for Automatic and Interactive Discovery}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-21004}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Data mining has proved its significance in various domains and applications. As an important subfield of the general data mining task, subgroup mining can be used, e.g., for marketing purposes in business domains, or for quality profiling and analysis in medical domains. The goal is to efficiently discover novel, potentially useful and ultimately interesting knowledge. However, in real-world situations these requirements often cannot be fulfilled, e.g., if the applied methods do not scale for large data sets, if too many results are presented to the user, or if many of the discovered patterns are already known to the user. This thesis proposes a combination of several techniques in order to cope with the sketched problems: We discuss automatic methods, including heuristic and exhaustive approaches, and especially present the novel SD-Map algorithm for exhaustive subgroup discovery that is fast and effective. For an interactive approach we describe techniques for subgroup introspection and analysis, and we present advanced visualization methods, e.g., the zoomtable that directly shows the most important parameters of a subgroup and that can be used for optimization and exploration. We also describe various visualizations for subgroup comparison and evaluation in order to support the user during these essential steps. Furthermore, we propose to include possibly available background knowledge that is easy to formalize into the mining process. We can utilize the knowledge in many ways: To focus the search process, to restrict the search space, and ultimately to increase the efficiency of the discovery method. We especially present background knowledge to be applied for filtering the elements of the problem domain, for constructing abstractions, for aggregating values of attributes, and for the post-processing of the discovered set of patterns. Finally, the techniques are combined into a knowledge-intensive process supporting both automatic and interactive methods for subgroup mining. The practical significance of the proposed approach strongly depends on the available tools. We introduce the VIKAMINE system as a highly-integrated environment for knowledge-intensive active subgroup mining. Also, we present an evaluation consisting of two parts: With respect to objective evaluation criteria, i.e., comparing the efficiency and the effectiveness of the subgroup discovery methods, we provide an experimental evaluation using generated data. For that task we present a novel data generator that allows a simple and intuitive specification of the data characteristics. The results of the experimental evaluation indicate that the novel SD-Map method outperforms the other described algorithms using data sets similar to the intended application concerning the efficiency, and also with respect to precision and recall for the heuristic methods. Subjective evaluation criteria include the user acceptance, the benefit of the approach, and the interestingness of the results. We present five case studies utilizing the presented techniques: The approach has been successfully implemented in medical and technical applications using real-world data sets. The method was very well accepted by the users that were able to discover novel, useful, and interesting knowledge.}, subject = {Data Mining}, language = {en} } @phdthesis{Somody2023, author = {Somody, Joseph Christian Campbell}, title = {Leveraging deep learning for identification and structural determination of novel protein complexes from \(in\) \(situ\) electron cryotomography of \(Mycoplasma\) \(pneumoniae\)}, doi = {10.25972/OPUS-31344}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313447}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The holy grail of structural biology is to study a protein in situ, and this goal has been fast approaching since the resolution revolution and the achievement of atomic resolution. A cell's interior is not a dilute environment, and proteins have evolved to fold and function as needed in that environment; as such, an investigation of a cellular component should ideally include the full complexity of the cellular environment. Imaging whole cells in three dimensions using electron cryotomography is the best method to accomplish this goal, but it comes with a limitation on sample thickness and produces noisy data unamenable to direct analysis. This thesis establishes a novel workflow to systematically analyse whole-cell electron cryotomography data in three dimensions and to find and identify instances of protein complexes in the data to set up a determination of their structure and identity for success. Mycoplasma pneumoniae is a very small parasitic bacterium with fewer than 700 protein-coding genes, is thin enough and small enough to be imaged in large quantities by electron cryotomography, and can grow directly on the grids used for imaging, making it ideal for exploratory studies in structural proteomics. As part of the workflow, a methodology for training deep-learning-based particle-picking models is established. As a proof of principle, a dataset of whole-cell Mycoplasma pneumoniae tomograms is used with this workflow to characterize a novel membrane-associated complex observed in the data. Ultimately, 25431 such particles are picked from 353 tomograms and refined to a density map with a resolution of 11 {\AA}. Making good use of orthogonal datasets to filter search space and verify results, structures were predicted for candidate proteins and checked for suitable fit in the density map. In the end, with this approach, nine proteins were found to be part of the complex, which appears to be associated with chaperone activity and interact with translocon machinery. Visual proteomics refers to the ultimate potential of in situ electron cryotomography: the comprehensive interpretation of tomograms. The workflow presented here is demonstrated to help in reaching that potential.}, subject = {Kryoelektronenmikroskopie}, language = {en} } @phdthesis{Krenzer2023, author = {Krenzer, Adrian}, title = {Machine learning to support physicians in endoscopic examinations with a focus on automatic polyp detection in images and videos}, doi = {10.25972/OPUS-31911}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-319119}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Deep learning enables enormous progress in many computer vision-related tasks. Artificial Intel- ligence (AI) steadily yields new state-of-the-art results in the field of detection and classification. Thereby AI performance equals or exceeds human performance. Those achievements impacted many domains, including medical applications. One particular field of medical applications is gastroenterology. In gastroenterology, machine learning algorithms are used to assist examiners during interventions. One of the most critical concerns for gastroenterologists is the development of Colorectal Cancer (CRC), which is one of the leading causes of cancer-related deaths worldwide. Detecting polyps in screening colonoscopies is the essential procedure to prevent CRC. Thereby, the gastroenterologist uses an endoscope to screen the whole colon to find polyps during a colonoscopy. Polyps are mucosal growths that can vary in severity. This thesis supports gastroenterologists in their examinations with automated detection and clas- sification systems for polyps. The main contribution is a real-time polyp detection system. This system is ready to be installed in any gastroenterology practice worldwide using open-source soft- ware. The system achieves state-of-the-art detection results and is currently evaluated in a clinical trial in four different centers in Germany. The thesis presents two additional key contributions: One is a polyp detection system with ex- tended vision tested in an animal trial. Polyps often hide behind folds or in uninvestigated areas. Therefore, the polyp detection system with extended vision uses an endoscope assisted by two additional cameras to see behind those folds. If a polyp is detected, the endoscopist receives a vi- sual signal. While the detection system handles the additional two camera inputs, the endoscopist focuses on the main camera as usual. The second one are two polyp classification models, one for the classification based on shape (Paris) and the other on surface and texture (NBI International Colorectal Endoscopic (NICE) classification). Both classifications help the endoscopist with the treatment of and the decisions about the detected polyp. The key algorithms of the thesis achieve state-of-the-art performance. Outstandingly, the polyp detection system tested on a highly demanding video data set shows an F1 score of 90.25 \% while working in real-time. The results exceed all real-time systems in the literature. Furthermore, the first preliminary results of the clinical trial of the polyp detection system suggest a high Adenoma Detection Rate (ADR). In the preliminary study, all polyps were detected by the polyp detection system, and the system achieved a high usability score of 96.3 (max 100). The Paris classification model achieved an F1 score of 89.35 \% which is state-of-the-art. The NICE classification model achieved an F1 score of 81.13 \%. Furthermore, a large data set for polyp detection and classification was created during this thesis. Therefore a fast and robust annotation system called Fast Colonoscopy Annotation Tool (FastCAT) was developed. The system simplifies the annotation process for gastroenterologists. Thereby the i gastroenterologists only annotate key parts of the endoscopic video. Afterward, those video parts are pre-labeled by a polyp detection AI to speed up the process. After the AI has pre-labeled the frames, non-experts correct and finish the annotation. This annotation process is fast and ensures high quality. FastCAT reduces the overall workload of the gastroenterologist on average by a factor of 20 compared to an open-source state-of-art annotation tool.}, subject = {Deep Learning}, language = {en} } @phdthesis{Sauer2010, author = {Sauer, Markus}, title = {Mixed-Reality for Enhanced Robot Teleoperation}, isbn = {978-3-923959-67-9}, doi = {10.25972/OPUS-4666}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-55083}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {In den letzten Jahren ist die Forschung in der Robotik soweit fortgeschritten, dass die Mensch-Maschine Schnittstelle zunehmend die kritischste Komponente f{\"u}r eine hohe Gesamtperformanz von Systemen zur Navigation und Koordination von Robotern wird. In dieser Dissertation wird untersucht wie Mixed-Reality Technologien f{\"u}r Nutzerschnittstellen genutzt werden k{\"o}nnen, um diese Gesamtperformanz zu erh{\"o}hen. Hierzu werden Konzepte und Technologien entwickelt, die durch Evaluierung mit Nutzertest ein optimiertes und anwenderbezogenes Design von Mixed-Reality Nutzerschnittstellen erm{\"o}glichen. Er werden somit sowohl die technische Anforderungen als auch die menschlichen Faktoren f{\"u}r ein konsistentes Systemdesign ber{\"u}cksichtigt. Nach einer detaillierten Problemanalyse und der Erstellung eines Systemmodels, das den Menschen als Schl{\"u}sselkomponente mit einbezieht, wird zun{\"a}chst die Anwendung der neuartigen 3D-Time-of-Flight Kamera zur Navigation von Robotern, aber auch f{\"u}r den Einsatz in Mixed-Reality Schnittstellen analysiert und optimiert. Weiterhin wird gezeigt, wie sich der Netzwerkverkehr des Videostroms als wichtigstes Informationselement der meisten Nutzerschnittstellen f{\"u}r die Navigationsaufgabe auf der Netzwerk Applikationsebene in typischen Multi-Roboter Netzwerken mit dynamischen Topologien und Lastsituation optimieren l{\"a}sst. Hierdurch ist es m{\"o}glich in sonst in sonst typischen Ausfallszenarien den Videostrom zu erhalten und die Bildrate zu stabilisieren. Diese fortgeschrittenen Technologien werden dann auch dem entwickelten Konzept der generischen 3D Mixed Reality Schnittselle eingesetzt. Dieses Konzept erm{\"o}glicht eine integrierte 3D Darstellung der verf{\"u}gbaren Information, so dass r{\"a}umliche Beziehungen von Informationen aufrechterhalten werden und somit die Anzahl der mentalen Transformationen beim menschlichen Bediener reduziert wird. Gleichzeitig werden durch diesen Ansatz auch immersive Stereo Anzeigetechnologien unterst{\"u}tzt, welche zus{\"a}tzlich das r{\"a}umliche Verst{\"a}ndnis der entfernten Situation f{\"o}rdern. Die in der Dissertation vorgestellten und evaluierten Ans{\"a}tze nutzen auch die Tatsache, dass sich eine lokale Autonomie von Robotern heute sehr robust realisieren l{\"a}sst. Dies wird zum Beispiel zur Realisierung eines Assistenzsystems mit variabler Autonomie eingesetzt. Hierbei erh{\"a}lt der Fernbediener {\"u}ber eine Kraftr{\"u}ckkopplung kombiniert mit einer integrierten Augmented Reality Schnittstelle, einen Eindruck {\"u}ber die Situation am entfernten Arbeitsbereich, aber auch {\"u}ber die aktuelle Navigationsintention des Roboters. Die durchgef{\"u}hrten Nutzertests belegen die signifikante Steigerung der Navigationsperformanz durch den entwickelten Ansatz. Die robuste lokale Autonomie erm{\"o}glicht auch den in der Dissertation eingef{\"u}hrten Ansatz der pr{\"a}diktiven Mixed-Reality Schnittstelle. Die durch diesen Ansatz entkoppelte Regelschleife {\"u}ber den Menschen erm{\"o}glicht es die Sichtbarkeit von unvermeidbaren Systemverz{\"o}gerungen signifikant zu reduzieren. Zus{\"a}tzlich k{\"o}nnen durch diesen Ansatz beide f{\"u}r die Navigation hilfreichen Blickwinkel in einer 3D-Nutzerschnittstelle kombiniert werden - der exozentrische Blickwinkel und der egozentrische Blickwinkel als Augmented Reality Sicht.}, subject = {Mobiler Roboter}, language = {en} } @phdthesis{Staehle2011, author = {Staehle, Barbara}, title = {Modeling and Optimization Methods for Wireless Sensor and Mesh Networks}, doi = {10.25972/OPUS-4967}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-64884}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Im Internet der Zukunft werden Menschen nicht nur mit Menschen, sondern auch mit „Dingen", und sogar „Dinge" mit „Dingen" kommunizieren. Zus{\"a}tzlich wird das Bed{\"u}rfnis steigen, immer und {\"u}berall Zugang zum Internet zu haben. Folglich gewinnen drahtlose Sensornetze (WSNs) und drahtlose Mesh-Netze (WMNs) an Bedeutung, da sie Daten {\"u}ber die Umwelt ins Internet liefern, beziehungsweise einfache Internet-Zugangsm{\"o}glichkeiten schaffen. In den vier Teilen dieser Arbeit werden unterschiedliche Modellierungs- und Optimierungsmethoden f{\"u}r WSNs und WMNs vorgestellt. Der Energieverbrauch ist die wichtigste Metrik, wenn es darum geht die Kommunikation in einem WSN zu optimieren. Da sich in der Literatur sehr viele unterschiedliche Energiemodelle finden, untersucht der erste Teil der Arbeit welchen Einfluss unterschiedliche Energiemodelle auf die Optimierung von WSNs haben. Aufbauend auf diesen {\"U}berlegungen besch{\"a}ftigt sich der zweite Teil der Arbeit mit drei Problemen, die {\"u}berwunden werden m{\"u}ssen um eine standardisierte energieeffiziente Kommunikations-L{\"o}sung f{\"u}r WSNs basierend auf IEEE 802.15.4 und ZigBee zu realisieren. F{\"u}r WMNs sind beide Probleme von geringem Interesse, die Leistung des Netzes jedoch umso mehr. Der dritte Teil der Arbeit f{\"u}hrt daher Algorithmen f{\"u}r die Berechnung des Max-Min fairen (MMF) Netzwerk-Durchsatzes in WMNs mit mehreren Linkraten und Internet-Gateways ein. Der letzte Teil der Arbeit untersucht die Auswirkungen des LRA-Konzeptes. Dessen grundlegende Idee ist die folgende. Falls f{\"u}r einen Link eine niedrigere Datenrate als theoretisch m{\"o}glich verwendet wird, sinkt zwar der Link-Durchsatz, jedoch ist unter Umst{\"a}nden eine gr{\"o}ßere Anzahl von gleichzeitigen {\"U}bertragungen m{\"o}glich und der Gesamt-Durchsatz des Netzes kann sich erh{\"o}hen. Mithilfe einer analytischen LRA Formulierung und einer systematischen Studie kann gezeigt werden, dass eine netzwerkweite Zuordnung robusterer Datenraten als n{\"o}tig zu einer Erh{\"o}hung des MMF Netzwerk-Durchsatzes f{\"u}hrt. Desweitern kann gezeigt werden, dass sich LRA positiv auf die Leistungsf{\"a}higkeit eines IEEE 802.11 WMNs auswirkt und f{\"u}r die Optimierung des Netzes genutzt werden kann.}, subject = {Drahtloses Sensorsystem}, language = {en} } @phdthesis{Hess2009, author = {Hess, Martin}, title = {Motion coordination and control in systems of nonholonomic autonomous vehicles}, isbn = {978-3-923959-55-6}, doi = {10.25972/OPUS-3794}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-46442}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {This work focuses on coordination methods and the control of motion in groups of nonholonomic wheeled mobile robots, in particular of the car-like type. These kind of vehicles are particularly restricted in their mobility. In the main part of this work the two problems of formation motion coordination and of rendezvous in distributed multi-vehicle systems are considered. We introduce several enhancements to an existing motion planning approach for formations of nonholonomic mobile robots. Compared to the original method, the extended approach is able to handle time-varying reference speeds as well as adjustments of the formation's shape during reference trajectory segments with continuously differentiable curvature. Additionally, undesired discontinuities in the speed and steering profiles of the vehicles are avoided. Further, the scenario of snow shoveling on an airfield by utilizing multiple formations of autonomous snowplows is discussed. We propose solutions to the subproblems of motion planning for the formations and tracking control for the individual vehicles. While all situations that might occur have been tested in a simulation environment, we also verified the developed tracking controller in real robot hardware experiments. The task of the rendezvous problem in groups of car-like robots is to drive all vehicles to a common position by means of decentralized control laws. Typically there exists no direct interaction link between all of the vehicles. In this work we present decentralized rendezvous control laws for vehicles with free and with bounded steering. The convergence properties of the approaches are analyzed by utilizing Lyapunov based techniques. Furthermore, they are evaluated within various simulation experiments, while the bounded steering case is also verified within laboratory hardware experiments. Finally we introduce a modification to the bounded steering system that increases the convergence speed at the expense of a higher traveled distance of the vehicles.}, subject = {Robotik}, language = {en} } @phdthesis{Borrmann2018, author = {Borrmann, Dorit}, title = {Multi-modal 3D mapping - Combining 3D point clouds with thermal and color information}, isbn = {978-3-945459-20-1}, issn = {1868-7474}, doi = {10.25972/OPUS-15708}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157085}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Imagine a technology that automatically creates a full 3D thermal model of an environment and detects temperature peaks in it. For better orientation in the model it is enhanced with color information. The current state of the art for analyzing temperature related issues is thermal imaging. It is relevant for energy efficiency but also for securing important infrastructure such as power supplies and temperature regulation systems. Monitoring and analysis of the data for a large building is tedious as stable conditions need to be guaranteed for several hours and detailed notes about the pose and the environment conditions for each image must be taken. For some applications repeated measurements are necessary to monitor changes over time. The analysis of the scene is only possible through expertise and experience. This thesis proposes a robotic system that creates a full 3D model of the environment with color and thermal information by combining thermal imaging with the technology of terrestrial laser scanning. The addition of a color camera facilitates the interpretation of the data and allows for other application areas. The data from all sensors collected at different positions is joined in one common reference frame using calibration and scan matching. The first part of the thesis deals with 3D point cloud processing with the emphasis on accessing point cloud data efficiently, detecting planar structures in the data and registering multiple point clouds into one common coordinate system. The second part covers the autonomous exploration and data acquisition with a mobile robot with the objective to minimize the unseen area in 3D space. Furthermore, the combination of different modalities, color images, thermal images and point cloud data through calibration is elaborated. The last part presents applications for the the collected data. Among these are methods to detect the structure of building interiors for reconstruction purposes and subsequent detection and classification of windows. A system to project the gathered thermal information back into the scene is presented as well as methods to improve the color information and to join separately acquired point clouds and photo series. A full multi-modal 3D model contains all the relevant geometric information about the recorded scene and enables an expert to fully analyze it off-site. The technology clears the path for automatically detecting points of interest thereby helping the expert to analyze the heat flow as well as localize and identify heat leaks. The concept is modular and neither limited to achieving energy efficiency nor restricted to the use in combination with a mobile platform. It also finds its application in fields such as archaeology and geology and can be extended by further sensors.}, subject = {Punktwolke}, language = {en} } @phdthesis{Wirth2001, author = {Wirth, Hans-Christoph}, title = {Multicriteria Approximation of Network Design and Network Upgrade Problems}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-2845}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {Network planning has come to great importance during the past decades. Today's telecommunication, traffic systems, and logistics would not have been evolved to the current state without careful analysis of the underlying network problems and precise implementation of the results obtained from those examinations. Graphs with node and arc attributes are a very useful tool to model realistic applications, while on the other hand they are well understood in theory. We investigate network design problems which are motivated particularly from applications in communication networks and logistics. Those problems include the search for homogeneous subgraphs in edge labeled graphs where either the total number of labels or the reload cost are subject to optimize. Further, we investigate some variants of the dial a ride problem. On the other hand, we use node and edge upgrade models to deal with the fact that in many cases one prefers to change existing networks rather than implementing a newly computed solution from scratch. We investigate the construction of bottleneck constrained forests under a node upgrade model, as well as several flow cost problems under a edge based upgrade model. All problems are examined within a framework of multi-criteria optimization. Many of the problems can be shown to be NP-hard, with the consequence that, under the widely accepted assumption that P is not equal to NP, there cannot exist efficient algorithms for solving the problems. This motivates the development of approximation algorithms which compute near-optimal solutions with provable performance guarantee in polynomial time.}, subject = {Netzplantechnik}, language = {en} } @phdthesis{Reitwiessner2011, author = {Reitwießner, Christian}, title = {Multiobjective Optimization and Language Equations}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-70146}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Praktische Optimierungsprobleme beinhalten oft mehrere gleichberechtigte, sich jedoch widersprechende Kriterien. Beispielsweise will man bei einer Reise zugleich m{\"o}glichst schnell ankommen, sie soll aber auch nicht zu teuer sein. Im ersten Teil dieser Arbeit wird die algorithmische Beherrschbarkeit solcher mehrkriterieller Optimierungsprobleme behandelt. Es werden zun{\"a}chst verschiedene L{\"o}sungsbegriffe diskutiert und auf ihre Schwierigkeit hin verglichen. Interessanterweise stellt sich heraus, dass diese Begriffe f{\"u}r ein einkriterielles Problem stets gleich schwer sind, sie sich ab zwei Kriterien allerdings stark unterscheiden k{\"o}nen (außer es gilt P = NP). In diesem Zusammenhang wird auch die Beziehung zwischen Such- und Entscheidungsproblemen im Allgemeinen untersucht. Schließlich werden neue und verbesserte Approximationsalgorithmen f{\"u}r verschieden Varianten des Problems des Handlungsreisenden gefunden. Dabei wird mit Mitteln der Diskrepanztheorie eine Technik entwickelt, die ein grundlegendes Hindernis der Mehrkriteriellen Optimierung aus dem Weg schafft: Gegebene L{\"o}sungen so zu kombinieren, dass die neue L{\"o}sung in allen Kriterien m{\"o}glichst ausgewogen ist und gleichzeitig die Struktur der L{\"o}sungen nicht zu stark zerst{\"o}rt wird. Der zweite Teil der Arbeit widmet sich verschiedenen Aspekten von Gleichungssystemen f{\"u}r (formale) Sprachen. Einerseits werden konjunktive und Boolesche Grammatiken untersucht. Diese sind Erweiterungen der kontextfreien Grammatiken um explizite Durchschnitts- und Komplementoperationen. Es wird unter anderem gezeigt, dass man bei konjunktiven Grammatiken die Vereinigungsoperation stark einschr{\"a}nken kann, ohne dabei die erzeugte Sprache zu {\"a}ndern. Außerdem werden bestimmte Schaltkreise untersucht, deren Gatter keine Wahrheitswerte sondern Mengen von Zahlen berechnen. F{\"u}r diese Schaltkreise wird das {\"A}quivalenzproblem betrachtet, also die Frage ob zwei gegebene Schaltkreise die gleiche Menge berechnen oder nicht. Es stellt sich heraus, dass, abh{\"a}ngig von den erlaubten Gattertypen, die Komplexit{\"a}t des {\"A}quivalenzproblems stark variiert und f{\"u}r verschiedene Komplexit{\"a}tsklassen vollst{\"a}ndig ist, also als (parametrisierter) Vertreter f{\"u}r diese Klassen stehen kann.}, subject = {Mehrkriterielle Optimierung}, language = {en} } @phdthesis{Fleszar2018, author = {Fleszar, Krzysztof}, title = {Network-Design Problems in Graphs and on the Plane}, edition = {1. Auflage}, publisher = {W{\"u}rzburg University Press}, address = {W{\"u}rzburg}, isbn = {978-3-95826-076-4 (Print)}, doi = {10.25972/WUP-978-3-95826-077-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154904}, school = {W{\"u}rzburg University Press}, pages = {xi, 204}, year = {2018}, abstract = {A network design problem defines an infinite set whose elements, called instances, describe relationships and network constraints. It asks for an algorithm that, given an instance of this set, designs a network that respects the given constraints and at the same time optimizes some given criterion. In my thesis, I develop algorithms whose solutions are optimum or close to an optimum value within some guaranteed bound. I also examine the computational complexity of these problems. Problems from two vast areas are considered: graphs and the Euclidean plane. In the Maximum Edge Disjoint Paths problem, we are given a graph and a subset of vertex pairs that are called terminal pairs. We are asked for a set of paths where the endpoints of each path form a terminal pair. The constraint is that any two paths share at most one inner vertex. The optimization criterion is to maximize the cardinality of the set. In the hard-capacitated k-Facility Location problem, we are given an integer k and a complete graph where the distances obey a given metric and where each node has two numerical values: a capacity and an opening cost. We are asked for a subset of k nodes, called facilities, and an assignment of all the nodes, called clients, to the facilities. The constraint is that the number of clients assigned to a facility cannot exceed the facility's capacity value. The optimization criterion is to minimize the total cost which consists of the total opening cost of the facilities and the total distance between the clients and the facilities they are assigned to. In the Stabbing problem, we are given a set of axis-aligned rectangles in the plane. We are asked for a set of horizontal line segments such that, for every rectangle, there is a line segment crossing its left and right edge. The optimization criterion is to minimize the total length of the line segments. In the k-Colored Non-Crossing Euclidean Steiner Forest problem, we are given an integer k and a finite set of points in the plane where each point has one of k colors. For every color, we are asked for a drawing that connects all the points of the same color. The constraint is that drawings of different colors are not allowed to cross each other. The optimization criterion is to minimize the total length of the drawings. In the Minimum Rectilinear Polygon for Given Angle Sequence problem, we are given an angle sequence of left (+90°) turns and right (-90°) turns. We are asked for an axis-parallel simple polygon where the angles of the vertices yield the given sequence when walking around the polygon in counter-clockwise manner. The optimization criteria considered are to minimize the perimeter, the area, and the size of the axis-parallel bounding box of the polygon.}, subject = {Euklidische Ebene}, language = {en} } @phdthesis{Schroeter2012, author = {Schr{\"o}ter, Martin}, title = {Newton Methods for Image Registration}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-71490}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Consider the situation where two or more images are taken from the same object. After taking the first image, the object is moved or rotated so that the second recording depicts it in a different manner. Additionally, take heed of the possibility that the imaging techniques may have also been changed. One of the main problems in image processing is to determine the spatial relation between such images. The corresponding process of finding the spatial alignment is called "registration". In this work, we study the optimization problem which corresponds to the registration task. Especially, we exploit the Lie group structure of the set of transformations to construct efficient, intrinsic algorithms. We also apply the algorithms to medical registration tasks. However, the methods developed are not restricted to the field of medical image processing. We also have a closer look at more general forms of optimization problems and show connections to related tasks.}, subject = {Newton-Verfahren}, language = {en} } @phdthesis{Winkler2015, author = {Winkler, Marco}, title = {On the Role of Triadic Substructures in Complex Networks}, publisher = {epubli GmbH}, address = {Berlin}, isbn = {978-3-7375-5654-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116022}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {In the course of the growth of the Internet and due to increasing availability of data, over the last two decades, the field of network science has established itself as an own area of research. With quantitative scientists from computer science, mathematics, and physics working on datasets from biology, economics, sociology, political sciences, and many others, network science serves as a paradigm for interdisciplinary research. One of the major goals in network science is to unravel the relationship between topological graph structure and a network's function. As evidence suggests, systems from the same fields, i.e. with similar function, tend to exhibit similar structure. However, it is still vague whether a similar graph structure automatically implies likewise function. This dissertation aims at helping to bridge this gap, while particularly focusing on the role of triadic structures. After a general introduction to the main concepts of network science, existing work devoted to the relevance of triadic substructures is reviewed. A major challenge in modeling triadic structure is the fact that not all three-node subgraphs can be specified independently of each other, as pairs of nodes may participate in multiple of those triadic subgraphs. In order to overcome this obstacle, we suggest a novel class of generative network models based on so called Steiner triple systems. The latter are partitions of a graph's vertices into pair-disjoint triples (Steiner triples). Thus, the configurations on Steiner triples can be specified independently of each other without overdetermining the network's link structure. Subsequently, we investigate the most basic realization of this new class of models. We call it the triadic random graph model (TRGM). The TRGM is parametrized by a probability distribution over all possible triadic subgraph patterns. In order to generate a network instantiation of the model, for all Steiner triples in the system, a pattern is drawn from the distribution and adjusted randomly on the Steiner triple. We calculate the degree distribution of the TRGM analytically and find it to be similar to a Poissonian distribution. Furthermore, it is shown that TRGMs possess non-trivial triadic structure. We discover inevitable correlations in the abundance of certain triadic subgraph patterns which should be taken into account when attributing functional relevance to particular motifs - patterns which occur significantly more frequently than expected at random. Beyond, the strong impact of the probability distributions on the Steiner triples on the occurrence of triadic subgraphs over the whole network is demonstrated. This interdependence allows us to design ensembles of networks with predefined triadic substructure. Hence, TRGMs help to overcome the lack of generative models needed for assessing the relevance of triadic structure. We further investigate whether motifs occur homogeneously or heterogeneously distributed over a graph. Therefore, we study triadic subgraph structures in each node's neighborhood individually. In order to quantitatively measure structure from an individual node's perspective, we introduce an algorithm for node-specific pattern mining for both directed unsigned, and undirected signed networks. Analyzing real-world datasets, we find that there are networks in which motifs are distributed highly heterogeneously, bound to the proximity of only very few nodes. Moreover, we observe indication for the potential sensitivity of biological systems to a targeted removal of these critical vertices. In addition, we study whole graphs with respect to the homogeneity and homophily of their node-specific triadic structure. The former describes the similarity of subgraph distributions in the neighborhoods of individual vertices. The latter quantifies whether connected vertices are structurally more similar than non-connected ones. We discover these features to be characteristic for the networks' origins. Moreover, clustering the vertices of graphs regarding their triadic structure, we investigate structural groups in the neural network of C. elegans, the international airport-connection network, and the global network of diplomatic sentiments between countries. For the latter we find evidence for the instability of triangles considered socially unbalanced according to sociological theories. Finally, we utilize our TRGM to explore ensembles of networks with similar triadic substructure in terms of the evolution of dynamical processes acting on their nodes. Focusing on oscillators, coupled along the graphs' edges, we observe that certain triad motifs impose a clear signature on the systems' dynamics, even when embedded in a larger network structure.}, subject = {Netzwerk}, language = {en} } @phdthesis{Baier1998, author = {Baier, Herbert}, title = {Operators of Higher Order}, publisher = {Shaker Verlag}, isbn = {3-8265-4008-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140799}, school = {Universit{\"a}t W{\"u}rzburg}, pages = {V, 95}, year = {1998}, abstract = {Motivated by results on interactive proof systems we investigate the computational power of quantifiers applied to well-known complexity classes. In special, we are interested in existential, universal and probabilistic bounded error quantifiers ranging over words and sets of words, i.e. oracles if we think in a Turing machine model. In addition to the standard oracle access mechanism, we also consider quantifiers ranging over oracles to which access is restricted in a certain way.}, subject = {Komplexit{\"a}tstheorie}, language = {en} } @phdthesis{Hartmann2015, author = {Hartmann, Matthias}, title = {Optimization and Design of Network Architectures for Future Internet Routing}, issn = {1432-8801}, doi = {10.25972/OPUS-11416}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114165}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {At the center of the Internet's protocol stack stands the Internet Protocol (IP) as a common denominator that enables all communication. To make routing efficient, resilient, and scalable, several aspects must be considered. Care must be taken that traffic is well balanced to make efficient use of the existing network resources, both in failure free operation and in failure scenarios. Finding the optimal routing in a network is an NP-complete problem. Therefore, routing optimization is usually performed using heuristics. This dissertation shows that a routing optimized with one objective function is often not good when looking at other objective functions. It can even be worse than unoptimized routing with respect to that objective function. After looking at failure-free routing and traffic distribution in different failure scenarios, the analysis is extended to include the loop-free alternate (LFA) IP fast reroute mechanism. Different application scenarios of LFAs are examined and a special focus is set on the fact that LFAs usually cannot protect all traffic in a network even against single link failures. Thus, the routing optimization for LFAs is targeted on both link utilization and failure coverage. Finally, the pre-congestion notification mechanism PCN for network admission control and overload protection is analyzed and optimized. Different design options for implementing the protocol are compared, before algorithms are developed for the calculation and optimization of protocol parameters and PCN-based routing. The second part of the thesis tackles a routing problem that can only be resolved on a global scale. The scalability of the Internet is at risk since a major and intensifying growth of the interdomain routing tables has been observed. Several protocols and architectures are analyzed that can be used to make interdomain routing more scalable. The most promising approach is the locator/identifier (Loc/ID) split architecture which separates routing from host identification. This way, changes in connectivity, mobility of end hosts, or traffic-engineering activities are hidden from the routing in the core of the Internet and the routing tables can be kept much smaller. All of the currently proposed Loc/ID split approaches have their downsides. In particular, the fact that most architectures use the ID for routing outside the Internet's core is a poor design, which inhibits many of the possible features of a new routing architecture. To better understand the problems and to provide a solution for a scalable routing design that implements a true Loc/ID split, the new GLI-Split protocol is developed in this thesis, which provides separation of global and local routing and uses an ID that is independent from any routing decisions. Besides GLI-Split, several other new routing architectures implementing Loc/ID split have been proposed for the Internet. Most of them assume that a mapping system is queried for EID-to-RLOC mappings by an intermediate node at the border of an edge network. When the mapping system is queried by an intermediate node, packets are already on their way towards their destination, and therefore, the mapping system must be fast, scalable, secure, resilient, and should be able to relay packets without locators to nodes that can forward them to the correct destination. The dissertation develops a classification for all proposed mapping system architectures and shows their similarities and differences. Finally, the fast two-level mapping system FIRMS is developed. It includes security and resilience features as well as a relay service for initial packets of a flow when intermediate nodes encounter a cache miss for the EID-to-RLOC mapping.}, subject = {Netzwerk}, language = {en} } @phdthesis{Binzenhoefer2007, author = {Binzenh{\"o}fer, Andreas}, title = {Performance Analysis of Structured Overlay Networks}, doi = {10.25972/OPUS-2250}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-26291}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Overlay networks establish logical connections between users on top of the physical network. While randomly connected overlay networks provide only a best effort service, a new generation of structured overlay systems based on Distributed Hash Tables (DHTs) was proposed by the research community. However, there is still a lack of understanding the performance of such DHTs. Additionally, those architectures are highly distributed and therefore appear as a black box to the operator. Yet an operator does not want to lose control over his system and needs to be able to continuously observe and examine its current state at runtime. This work addresses both problems and shows how the solutions can be combined into a more self-organizing overlay concept. At first, we evaluate the performance of structured overlay networks under different aspects and thereby illuminate in how far such architectures are able to support carrier-grade applications. Secondly, to enable operators to monitor and understand their deployed system in more detail, we introduce both active as well as passive methods to gather information about the current state of the overlay network.}, subject = {Overlay-Netz}, language = {en} }