@article{ObremskiFriedrichHaaketal.2022, author = {Obremski, David and Friedrich, Paula and Haak, Nora and Schaper, Philipp and Lugrin, Birgit}, title = {The impact of mixed-cultural speech on the stereotypical perception of a virtual robot}, series = {Frontiers in Robotics and AI}, volume = {9}, journal = {Frontiers in Robotics and AI}, issn = {2296-9144}, doi = {10.3389/frobt.2022.983955}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293531}, year = {2022}, abstract = {Despite the fact that mixed-cultural backgrounds become of increasing importance in our daily life, the representation of multiple cultural backgrounds in one entity is still rare in socially interactive agents (SIAs). This paper's contribution is twofold. First, it provides a survey of research on mixed-cultured SIAs. Second, it presents a study investigating how mixed-cultural speech (in this case, non-native accent) influences how a virtual robot is perceived in terms of personality, warmth, competence and credibility. Participants with English or German respectively as their first language watched a video of a virtual robot speaking in either standard English or German-accented English. It was expected that the German-accented speech would be rated more positively by native German participants as well as elicit the German stereotypes credibility and conscientiousness for both German and English participants. Contrary to the expectations, German participants rated the virtual robot lower in terms of competence and credibility when it spoke with a German accent, whereas English participants perceived the virtual robot with a German accent as more credible compared to the version without an accent. Both the native English and native German listeners classified the virtual robot with a German accent as significantly more neurotic than the virtual robot speaking standard English. This work shows that by solely implementing a non-native accent in a virtual robot, stereotypes are partly transferred. It also shows that the implementation of a non-native accent leads to differences in the perception of the virtual robot.}, language = {en} } @phdthesis{Schmitz2000, author = {Schmitz, Heinz}, title = {The Forbidden Pattern Approach to Concatenation Hierarchies}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-2832}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2000}, abstract = {The thesis looks at the question asking for the computability of the dot-depth of star-free regular languages. Here one has to determine for a given star-free regular language the minimal number of alternations between concatenation on one hand, and intersection, union, complement on the other hand. This question was first raised in 1971 (Brzozowski/Cohen) and besides the extended star-heights problem usually refered to as one of the most difficult open questions on regular languages. The dot-depth problem can be captured formally by hierarchies of classes of star-free regular languages B(0), B(1/2), B(1), B(3/2),... and L(0), L(1/2), L(1), L(3/2),.... which are defined via alternating the closure under concatenation and Boolean operations, beginning with single alphabet letters. Now the question of dot-depth is the question whether these hierarchy classes have decidable membership problems. The thesis makes progress on this question using the so-called forbidden pattern approach: Classes of regular languages are characterized in terms of patterns in finite automata (subgraphs in the transition graph) that are not allowed. Such a characterization immediately implies the decidability of the respective class, since the absence of a certain pattern in a given automaton can be effectively verified. Before this work, the decidability of B(0), B(1/2), B(1) and L(0), L(1/2), L(1), L(3/2) were known. Here a detailed study of these classes with help of forbidden patterns is given which leads to new insights into their inner structure. Furthermore, the decidability of B(3/2) is proven. Based on these results a theory of pattern iteration is developed which leads to the introduction of two new hierarchies of star-free regular languages. These hierarchies are decidable on one hand, on the other hand they are in close connection to the classes B(n) and L(n). It remains an open question here whether they may in fact coincide. Some evidence is given in favour of this conjecture which opens a new way to attack the dot-depth problem. Moreover, it is shown that the class L(5/2) is decidable in the restricted case of a two-letter alphabet.}, subject = {Sternfreie Sprache}, language = {en} } @article{KunzLiangNillaetal.2016, author = {Kunz, Meik and Liang, Chunguang and Nilla, Santosh and Cecil, Alexander and Dandekar, Thomas}, title = {The drug-minded protein interaction database (DrumPID) for efficient target analysis and drug development}, series = {Database}, volume = {2016}, journal = {Database}, doi = {10.1093/database/baw041}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147369}, pages = {baw041}, year = {2016}, abstract = {The drug-minded protein interaction database (DrumPID) has been designed to provide fast, tailored information on drugs and their protein networks including indications, protein targets and side-targets. Starting queries include compound, target and protein interactions and organism-specific protein families. Furthermore, drug name, chemical structures and their SMILES notation, affected proteins (potential drug targets), organisms as well as diseases can be queried including various combinations and refinement of searches. Drugs and protein interactions are analyzed in detail with reference to protein structures and catalytic domains, related compound structures as well as potential targets in other organisms. DrumPID considers drug functionality, compound similarity, target structure, interactome analysis and organismic range for a compound, useful for drug development, predicting drug side-effects and structure-activity relationships.}, language = {en} } @techreport{KounevBrosigHuber2014, author = {Kounev, Samuel and Brosig, Fabian and Huber, Nikolaus}, title = {The Descartes Modeling Language}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-104887}, pages = {91}, year = {2014}, abstract = {This technical report introduces the Descartes Modeling Language (DML), a new architecture-level modeling language for modeling Quality-of-Service (QoS) and resource management related aspects of modern dynamic IT systems, infrastructures and services. DML is designed to serve as a basis for self-aware resource management during operation ensuring that system QoS requirements are continuously satisfied while infrastructure resources are utilized as efficiently as possible.}, subject = {Ressourcenmanagement}, language = {en} } @phdthesis{Driewer2008, author = {Driewer, Frauke}, title = {Teleoperation Interfaces in Human-Robot Teams}, isbn = {978-3-923959-57-0}, doi = {10.25972/OPUS-2955}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-36351}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Diese Arbeit besch{\"a}ftigt sich mit der Verbesserung von Mensch-Roboter Interaktion in Mensch-Roboter Teams f{\"u}r Teleoperation Szenarien, wie z.B. robotergest{\"u}tzte Feuerwehreins{\"a}tze. Hierbei wird ein Konzept und eine Architektur f{\"u}r ein System zur Unterst{\"u}tzung von Teleoperation von Mensch-Roboter Teams vorgestellt. Die Anforderungen an Informationsaustausch und -verarbeitung, insbesondere f{\"u}r die Anwendung Rettungseinsatz, werden ausgearbeitet. Weiterhin wird das Design der Benutzerschnittstellen f{\"u}r Mensch-Roboter Teams dargestellt und Prinzipien f{\"u}r Teleoperation-Systeme und Benutzerschnittstellen erarbeitet. Alle Studien und Ans{\"a}tze werden in einem Prototypen-System implementiert und in verschiedenen Benutzertests abgesichert. Erweiterungsm{\"o}glichkeiten zum Einbinden von 3D Sensordaten und die Darstellung auf Stereovisualisierungssystemen werden gezeigt.}, subject = {Robotik}, language = {en} } @article{AnkenbrandWeberBeckeretal.2016, author = {Ankenbrand, Markus J. and Weber, Lorenz and Becker, Dirk and F{\"o}rster, Frank and Bemm, Felix}, title = {TBro: visualization and management of de novo transcriptomes}, series = {Database}, volume = {2016}, journal = {Database}, doi = {10.1093/database/baw146}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147954}, pages = {baw146}, year = {2016}, abstract = {RNA sequencing (RNA-seq) has become a powerful tool to understand molecular mechanisms and/or developmental programs. It provides a fast, reliable and cost-effective method to access sets of expressed elements in a qualitative and quantitative manner. Especially for non-model organisms and in absence of a reference genome, RNA-seq data is used to reconstruct and quantify transcriptomes at the same time. Even SNPs, InDels, and alternative splicing events are predicted directly from the data without having a reference genome at hand. A key challenge, especially for non-computational personnal, is the management of the resulting datasets, consisting of different data types and formats. Here, we present TBro, a flexible de novo transcriptome browser, tackling this challenge. TBro aggregates sequences, their annotation, expression levels as well as differential testing results. It provides an easy-to-use interface to mine the aggregated data and generate publication-ready visualizations. Additionally, it supports users with an intuitive cart system, that helps collecting and analysing biological meaningful sets of transcripts. TBro's modular architecture allows easy extension of its functionalities in the future. Especially, the integration of new data types such as proteomic quantifications or array-based gene expression data is straightforward. Thus, TBro is a fully featured yet flexible transcriptome browser that supports approaching complex biological questions and enhances collaboration of numerous researchers.}, language = {en} } @article{LeschKoenigKounevetal.2022, author = {Lesch, Veronika and K{\"o}nig, Maximilian and Kounev, Samuel and Stein, Anthony and Krupitzer, Christian}, title = {Tackling the rich vehicle routing problem with nature-inspired algorithms}, series = {Applied Intelligence}, volume = {52}, journal = {Applied Intelligence}, issn = {1573-7497}, doi = {10.1007/s10489-021-03035-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-268942}, pages = {9476-9500}, year = {2022}, abstract = {In the last decades, the classical Vehicle Routing Problem (VRP), i.e., assigning a set of orders to vehicles and planning their routes has been intensively researched. As only the assignment of order to vehicles and their routes is already an NP-complete problem, the application of these algorithms in practice often fails to take into account the constraints and restrictions that apply in real-world applications, the so called rich VRP (rVRP) and are limited to single aspects. In this work, we incorporate the main relevant real-world constraints and requirements. We propose a two-stage strategy and a Timeline algorithm for time windows and pause times, and apply a Genetic Algorithm (GA) and Ant Colony Optimization (ACO) individually to the problem to find optimal solutions. Our evaluation of eight different problem instances against four state-of-the-art algorithms shows that our approach handles all given constraints in a reasonable time.}, language = {en} } @phdthesis{Travers2007, author = {Travers, Stephen}, title = {Structural Properties of NP-Hard Sets and Uniform Characterisations of Complexity Classes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-27124}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {This thesis is devoted to the study of computational complexity theory, a branch of theoretical computer science. Computational complexity theory investigates the inherent difficulty in designing efficient algorithms for computational problems. By doing so, it analyses the scalability of computational problems and algorithms and places practical limits on what computers can actually accomplish. Computational problems are categorised into complexity classes. Among the most important complexity classes are the class NP and the subclass of NP-complete problems, which comprises many important optimisation problems in the field of operations research. Moreover, with the P-NP-problem, the class NP represents the most important unsolved question in computer science. The first part of this thesis is devoted to the study of NP-complete-, and more generally, NP-hard problems. It aims at improving our understanding of this important complexity class by systematically studying how altering NP-hard sets affects their NP-hardness. This research is related to longstanding open questions concerning the complexity of unions of disjoint NP-complete sets, and the existence of sparse NP-hard sets. The second part of the thesis is also dedicated to complexity classes but takes a different perspective: In a sense, after investigating the interior of complexity classes in the first part, the focus shifts to the description of complexity classes and thereby to the exterior in the second part. It deals with the description of complexity classes through leaf languages, a uniform framework which allows us to characterise a great variety of important complexity classes. The known concepts are complemented by a new leaf-language model. To a certain extent, this new approach combines the advantages of the known models. The presented results give evidence that the connection between the theory of formal languages and computational complexity theory might be closer than formerly known.}, subject = {Berechnungskomplexit{\"a}t}, language = {en} } @techreport{SavvidisRothTutsch2022, type = {Working Paper}, author = {Savvidis, Dimitrios and Roth, Robert and Tutsch, Dietmar}, title = {Static Evaluation of a Wheel-Topology for an SDN-based Network Usecase}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28071}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280715}, pages = {3}, year = {2022}, abstract = {The increased occurrence of Software-Defined-Networking (SDN) not only improves the dynamics and maintenance of network architectures, but also opens up new use cases and application possibilities. Based on these observations, we propose a new network topology consisting of a star and a ring topology. This hybrid topology will be called wheel topology in this paper. We have considered the static characteristics of the wheel topology and compare them with known other topologies.}, subject = {Datennetz}, language = {en} } @article{WickHarteltPuppe2019, author = {Wick, Christoph and Hartelt, Alexander and Puppe, Frank}, title = {Staff, symbol and melody detection of Medieval manuscripts written in square notation using deep Fully Convolutional Networks}, series = {Applied Sciences}, volume = {9}, journal = {Applied Sciences}, number = {13}, issn = {2076-3417}, doi = {10.3390/app9132646}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197248}, year = {2019}, abstract = {Even today, the automatic digitisation of scanned documents in general, but especially the automatic optical music recognition (OMR) of historical manuscripts, still remains an enormous challenge, since both handwritten musical symbols and text have to be identified. This paper focuses on the Medieval so-called square notation developed in the 11th-12th century, which is already composed of staff lines, staves, clefs, accidentals, and neumes that are roughly spoken connected single notes. The aim is to develop an algorithm that captures both the neumes, and in particular its melody, which can be used to reconstruct the original writing. Our pipeline is similar to the standard OMR approach and comprises a novel staff line and symbol detection algorithm based on deep Fully Convolutional Networks (FCN), which perform pixel-based predictions for either staff lines or symbols and their respective types. Then, the staff line detection combines the extracted lines to staves and yields an F\(_1\) -score of over 99\% for both detecting lines and complete staves. For the music symbol detection, we choose a novel approach that skips the step to identify neumes and instead directly predicts note components (NCs) and their respective affiliation to a neume. Furthermore, the algorithm detects clefs and accidentals. Our algorithm predicts the symbol sequence of a staff with a diplomatic symbol accuracy rate (dSAR) of about 87\%, which includes symbol type and location. If only the NCs without their respective connection to a neume, all clefs and accidentals are of interest, the algorithm reaches an harmonic symbol accuracy rate (hSAR) of approximately 90\%. In general, the algorithm recognises a symbol in the manuscript with an F\(_1\) -score of over 96\%.}, language = {en} } @article{WienrichKommaVogtetal.2021, author = {Wienrich, Carolin and Komma, Philipp and Vogt, Stephanie and Latoschik, Marc E.}, title = {Spatial Presence in Mixed Realities - Considerations About the Concept, Measures, Design, and Experiments}, series = {Frontiers in Virtual Reality}, volume = {2}, journal = {Frontiers in Virtual Reality}, doi = {10.3389/frvir.2021.694315}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260328}, year = {2021}, abstract = {Plenty of theories, models, measures, and investigations target the understanding of virtual presence, i.e., the sense of presence in immersive Virtual Reality (VR). Other varieties of the so-called eXtended Realities (XR), e.g., Augmented and Mixed Reality (AR and MR) incorporate immersive features to a lesser degree and continuously combine spatial cues from the real physical space and the simulated virtual space. This blurred separation questions the applicability of the accumulated knowledge about the similarities of virtual presence and presence occurring in other varieties of XR, and corresponding outcomes. The present work bridges this gap by analyzing the construct of presence in mixed realities (MR). To achieve this, the following presents (1) a short review of definitions, dimensions, and measurements of presence in VR, and (2) the state of the art views on MR. Additionally, we (3) derived a working definition of MR, extending the Milgram continuum. This definition is based on entities reaching from real to virtual manifestations at one time point. Entities possess different degrees of referential power, determining the selection of the frame of reference. Furthermore, we (4) identified three research desiderata, including research questions about the frame of reference, the corresponding dimension of transportation, and the dimension of realism in MR. Mainly the relationship between the main aspects of virtual presence of immersive VR, i.e., the place-illusion, and the plausibility-illusion, and of the referential power of MR entities are discussed regarding the concept, measures, and design of presence in MR. Finally, (5) we suggested an experimental setup to reveal the research heuristic behind experiments investigating presence in MR. The present work contributes to the theories and the meaning of and approaches to simulate and measure presence in MR. We hypothesize that research about essential underlying factors determining user experience (UX) in MR simulations and experiences is still in its infancy and hopes this article provides an encouraging starting point to tackle related questions.}, language = {en} } @phdthesis{Hopfner2008, author = {Hopfner, Marbod}, title = {Source Code Analysis, Management, and Visualization for PROLOG}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-36300}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {This thesis deals with the management and analysis of source code, which is represented in XML. Using the elementary methods of the XML repository, the XML source code representation is accessed, changed, updated, and saved. We reason about the source code, refactor source code and we visualize dependency graphs for call analysis. The visualized dependencies between files, modules, or packages are used to structure the source code in order to get a system, which is easily to comprehend, to modify and to complete. Sophisticated methods have been developed to slice the source code in order to obtain a working package of a large system, containing only a specific functionality. The basic methods, on which the visualizations and analyses are built on can be changed like changing a plug-in. The visualization methods can be reused in order to handle arbitrary source code representations, e.g., JAML, PHPML, PROLOGML. Dependencies of other context can be visualized, too, e.g., ER diagrams, or website references. The tool SCAV supports source code visualization and analyzing methods.}, subject = {Refactoring}, language = {en} } @article{DavidsonDuekingZinneretal.2020, author = {Davidson, Padraig and D{\"u}king, Peter and Zinner, Christoph and Sperlich, Billy and Hotho, Andreas}, title = {Smartwatch-Derived Data and Machine Learning Algorithms Estimate Classes of Ratings of Perceived Exertion in Runners: A Pilot Study}, series = {Sensors}, volume = {20}, journal = {Sensors}, number = {9}, issn = {1424-8220}, doi = {10.3390/s20092637}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-205686}, year = {2020}, abstract = {The rating of perceived exertion (RPE) is a subjective load marker and may assist in individualizing training prescription, particularly by adjusting running intensity. Unfortunately, RPE has shortcomings (e.g., underreporting) and cannot be monitored continuously and automatically throughout a training sessions. In this pilot study, we aimed to predict two classes of RPE (≤15 "Somewhat hard to hard" on Borg's 6-20 scale vs. RPE >15 in runners by analyzing data recorded by a commercially-available smartwatch with machine learning algorithms. Twelve trained and untrained runners performed long-continuous runs at a constant self-selected pace to volitional exhaustion. Untrained runners reported their RPE each kilometer, whereas trained runners reported every five kilometers. The kinetics of heart rate, step cadence, and running velocity were recorded continuously ( 1 Hz ) with a commercially-available smartwatch (Polar V800). We trained different machine learning algorithms to estimate the two classes of RPE based on the time series sensor data derived from the smartwatch. Predictions were analyzed in different settings: accuracy overall and per runner type; i.e., accuracy for trained and untrained runners independently. We achieved top accuracies of 84.8 \% for the whole dataset, 81.8 \% for the trained runners, and 86.1 \% for the untrained runners. We predict two classes of RPE with high accuracy using machine learning and smartwatch data. This approach might aid in individualizing training prescriptions.}, language = {en} } @phdthesis{Sun2014, author = {Sun, Kaipeng}, title = {Six Degrees of Freedom Object Pose Estimation with Fusion Data from a Time-of-flight Camera and a Color Camera}, isbn = {978-3-923959-97-6}, doi = {10.25972/OPUS-10508}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-105089}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Object six Degrees of Freedom (6DOF) pose estimation is a fundamental problem in many practical robotic applications, where the target or an obstacle with a simple or complex shape can move fast in cluttered environments. In this thesis, a 6DOF pose estimation algorithm is developed based on the fused data from a time-of-flight camera and a color camera. The algorithm is divided into two stages, an annealed particle filter based coarse pose estimation stage and a gradient decent based accurate pose optimization stage. In the first stage, each particle is evaluated with sparse representation. In this stage, the large inter-frame motion of the target can be well handled. In the second stage, the range data based conventional Iterative Closest Point is extended by incorporating the target appearance information and used for calculating the accurate pose by refining the coarse estimate from the first stage. For dealing with significant illumination variations during the tracking, spherical harmonic illumination modeling is investigated and integrated into both stages. The robustness and accuracy of the proposed algorithm are demonstrated through experiments on various objects in both indoor and outdoor environments. Moreover, real-time performance can be achieved with graphics processing unit acceleration.}, subject = {Mustererkennung}, language = {en} } @article{BaierBaierSaipSchillingetal.2016, author = {Baier, Pablo A. and Baier-Saip, J{\"u}rgen A. and Schilling, Klaus and Oliveira, Jauvane C.}, title = {Simulator for Minimally Invasive Vascular Interventions: Hardware and Software}, series = {Presence}, volume = {25}, journal = {Presence}, number = {2}, issn = {1531-3263}, doi = {10.1162/PRES_a_00250}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140580}, pages = {108-128}, year = {2016}, abstract = {In the present work, a simulation system is proposed that can be used as an educational tool by physicians in training basic skills of minimally invasive vascular interventions. In order to accomplish this objective, initially the physical model of the wire proposed by Konings has been improved. As a result, a simpler and more stable method was obtained to calculate the equilibrium configuration of the wire. In addition, a geometrical method is developed to perform relaxations. It is particularly useful when the wire is hindered in the physical method because of the boundary conditions. Then a recipe is given to merge the physical and the geometrical methods, resulting in efficient relaxations. Moreover, tests have shown that the shape of the virtual wire agrees with the experiment. The proposed algorithm allows real-time executions, and furthermore, the hardware to assemble the simulator has a low cost.}, language = {en} } @phdthesis{Baier2018, author = {Baier, Pablo A.}, title = {Simulator for Minimally Invasive Vascular Interventions: Hardware and Software}, isbn = {978-3-945459-22-5}, doi = {10.25972/OPUS-16119}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161190}, school = {Universit{\"a}t W{\"u}rzburg}, pages = {118}, year = {2018}, abstract = {A complete simulation system is proposed that can be used as an educational tool by physicians in training basic skills of Minimally Invasive Vascular Interventions. In the first part, a surface model is developed to assemble arteries having a planar segmentation. It is based on Sweep Surfaces and can be extended to T- and Y-like bifurcations. A continuous force vector field is described, representing the interaction between the catheter and the surface. The computation time of the force field is almost unaffected when the resolution of the artery is increased. The mechanical properties of arteries play an essential role in the study of the circulatory system dynamics, which has been becoming increasingly important in the treatment of cardiovascular diseases. In Virtual Reality Simulators, it is crucial to have a tissue model that responds in real time. In this work, the arteries are discretized by a two dimensional mesh and the nodes are connected by three kinds of linear springs. Three tissue layers (Intima, Media, Adventitia) are considered and, starting from the stretch-energy density, some of the elasticity tensor components are calculated. The physical model linearizes and homogenizes the material response, but it still contemplates the geometric nonlinearity. In general, if the arterial stretch varies by 1\% or less, then the agreement between the linear and nonlinear models is trustworthy. In the last part, the physical model of the wire proposed by Konings is improved. As a result, a simpler and more stable method is obtained to calculate the equilibrium configuration of the wire. In addition, a geometrical method is developed to perform relaxations. It is particularly useful when the wire is hindered in the physical method because of the boundary conditions. The physical and the geometrical methods are merged, resulting in efficient relaxations. Tests show that the shape of the virtual wire agrees with the experiment. The proposed algorithm allows real-time executions and the hardware to assemble the simulator has a low cost.}, subject = {Computersimulation}, language = {en} } @article{SeufertPoigneeSeufertetal.2023, author = {Seufert, Anika and Poign{\´e}e, Fabian and Seufert, Michael and Hoßfeld, Tobias}, title = {Share and multiply: modeling communication and generated traffic in private WhatsApp groups}, series = {IEEE Access}, volume = {11}, journal = {IEEE Access}, doi = {10.1109/ACCESS.2023.3254913}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349430}, pages = {25401-25414}, year = {2023}, abstract = {Group-based communication is a highly popular communication paradigm, which is especially prominent in mobile instant messaging (MIM) applications, such as WhatsApp. Chat groups in MIM applications facilitate the sharing of various types of messages (e.g., text, voice, image, video) among a large number of participants. As each message has to be transmitted to every other member of the group, which multiplies the traffic, this has a massive impact on the underlying communication networks. However, most chat groups are private and network operators cannot obtain deep insights into MIM communication via network measurements due to end-to-end encryption. Thus, the generation of traffic is not well understood, given that it depends on sizes of communication groups, speed of communication, and exchanged message types. In this work, we provide a huge data set of 5,956 private WhatsApp chat histories, which contains over 76 million messages from more than 117,000 users. We describe and model the properties of chat groups and users, and the communication within these chat groups, which gives unprecedented insights into private MIM communication. In addition, we conduct exemplary measurements for the most popular message types, which empower the provided models to estimate the traffic over time in a chat group.}, language = {en} } @article{AnkenbrandShainbergHocketal.2021, author = {Ankenbrand, Markus J. and Shainberg, Liliia and Hock, Michael and Lohr, David and Schreiber, Laura M.}, title = {Sensitivity analysis for interpretation of machine learning based segmentation models in cardiac MRI}, series = {BMC Medical Imaging}, volume = {21}, journal = {BMC Medical Imaging}, number = {1}, doi = {10.1186/s12880-021-00551-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259169}, pages = {27}, year = {2021}, abstract = {Background Image segmentation is a common task in medical imaging e.g., for volumetry analysis in cardiac MRI. Artificial neural networks are used to automate this task with performance similar to manual operators. However, this performance is only achieved in the narrow tasks networks are trained on. Performance drops dramatically when data characteristics differ from the training set properties. Moreover, neural networks are commonly considered black boxes, because it is hard to understand how they make decisions and why they fail. Therefore, it is also hard to predict whether they will generalize and work well with new data. Here we present a generic method for segmentation model interpretation. Sensitivity analysis is an approach where model input is modified in a controlled manner and the effect of these modifications on the model output is evaluated. This method yields insights into the sensitivity of the model to these alterations and therefore to the importance of certain features on segmentation performance. Results We present an open-source Python library (misas), that facilitates the use of sensitivity analysis with arbitrary data and models. We show that this method is a suitable approach to answer practical questions regarding use and functionality of segmentation models. We demonstrate this in two case studies on cardiac magnetic resonance imaging. The first case study explores the suitability of a published network for use on a public dataset the network has not been trained on. The second case study demonstrates how sensitivity analysis can be used to evaluate the robustness of a newly trained model. Conclusions Sensitivity analysis is a useful tool for deep learning developers as well as users such as clinicians. It extends their toolbox, enabling and improving interpretability of segmentation models. Enhancing our understanding of neural networks through sensitivity analysis also assists in decision making. Although demonstrated only on cardiac magnetic resonance images this approach and software are much more broadly applicable.}, language = {en} } @article{ZimmererFischbachLatoschik2018, author = {Zimmerer, Chris and Fischbach, Martin and Latoschik, Marc Erich}, title = {Semantic Fusion for Natural Multimodal Interfaces using Concurrent Augmented Transition Networks}, series = {Multimodal Technologies and Interaction}, volume = {2}, journal = {Multimodal Technologies and Interaction}, number = {4}, issn = {2414-4088}, doi = {10.3390/mti2040081}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197573}, year = {2018}, abstract = {Semantic fusion is a central requirement of many multimodal interfaces. Procedural methods like finite-state transducers and augmented transition networks have proven to be beneficial to implement semantic fusion. They are compliant with rapid development cycles that are common for the development of user interfaces, in contrast to machine-learning approaches that require time-costly training and optimization. We identify seven fundamental requirements for the implementation of semantic fusion: Action derivation, continuous feedback, context-sensitivity, temporal relation support, access to the interaction context, as well as the support of chronologically unsorted and probabilistic input. A subsequent analysis reveals, however, that there is currently no solution for fulfilling the latter two requirements. As the main contribution of this article, we thus present the Concurrent Cursor concept to compensate these shortcomings. In addition, we showcase a reference implementation, the Concurrent Augmented Transition Network (cATN), that validates the concept's feasibility in a series of proof of concept demonstrations as well as through a comparative benchmark. The cATN fulfills all identified requirements and fills the lack amongst previous solutions. It supports the rapid prototyping of multimodal interfaces by means of five concrete traits: Its declarative nature, the recursiveness of the underlying transition network, the network abstraction constructs of its description language, the utilized semantic queries, and an abstraction layer for lexical information. Our reference implementation was and is used in various student projects, theses, as well as master-level courses. It is openly available and showcases that non-experts can effectively implement multimodal interfaces, even for non-trivial applications in mixed and virtual reality.}, language = {en} } @phdthesis{Betz2005, author = {Betz, Christian}, title = {Scalable authoring of diagnostic case based training systems}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-17885}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {Diagnostic Case Based Training Systems (D-CBT) provide learners with a means to learn and exercise knowledge in a realistic context. In medical education, D-CBT Systems present virtual patients to the learners who are asked to examine, diagnose and state therapies for these patients. Due a number of conflicting and changing requirements, e.g. time for learning, authoring effort, several systems were developed so far. These systems range from simple, easy-to-use presentation systems to highly complex knowledge based systems supporting explorative learning. This thesis presents an approach and tools to create D-CBT systems from existing sources (documents, e.g. dismissal records) using existing tools (word processors): Authors annotate and extend the documents to model the knowledge. A scalable knowledge representation is able to capture the content on multiple levels, from simple to highly structured knowledge. Thus, authoring of D-CBT systems requires less prerequisites and pre-knowledge and is faster than approaches using specialized authoring environments. Also, authors can iteratively add and structure more knowledge to adapt training cases to their learners needs. The theses also discusses the application of the same approach to other domains, especially to knowledge acquisition for the Semantic Web.}, subject = {Computerunterst{\"u}tztes Lernen}, language = {en} } @article{GuptaMinochaThapaetal.2022, author = {Gupta, Shishir K. and Minocha, Rashmi and Thapa, Prithivi Jung and Srivastava, Mugdha and Dandekar, Thomas}, title = {Role of the pangolin in origin of SARS-CoV-2: an evolutionary perspective}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {16}, issn = {1422-0067}, doi = {10.3390/ijms23169115}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285995}, year = {2022}, abstract = {After the recent emergence of SARS-CoV-2 infection, unanswered questions remain related to its evolutionary history, path of transmission or divergence and role of recombination. There is emerging evidence on amino acid substitutions occurring in key residues of the receptor-binding domain of the spike glycoprotein in coronavirus isolates from bat and pangolins. In this article, we summarize our current knowledge on the origin of SARS-CoV-2. We also analyze the host ACE2-interacting residues of the receptor-binding domain of spike glycoprotein in SARS-CoV-2 isolates from bats, and compare it to pangolin SARS-CoV-2 isolates collected from Guangdong province (GD Pangolin-CoV) and Guangxi autonomous regions (GX Pangolin-CoV) of South China. Based on our comparative analysis, we support the view that the Guangdong Pangolins are the intermediate hosts that adapted the SARS-CoV-2 and represented a significant evolutionary link in the path of transmission of SARS-CoV-2 virus. We also discuss the role of intermediate hosts in the origin of Omicron.}, language = {en} } @phdthesis{Busch2016, author = {Busch, Stephan}, title = {Robust, Flexible and Efficient Design for Miniature Satellite Systems}, isbn = {978-3-945459-10-2}, doi = {10.25972/OPUS-13652}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136523}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Small satellites contribute significantly in the rapidly evolving innovation in space engineering, in particular in distributed space systems for global Earth observation and communication services. Significant mass reduction by miniaturization, increased utilization of commercial high-tech components, and in particular standardization are the key drivers for modern miniature space technology. This thesis addresses key fields in research and development on miniature satellite technology regarding efficiency, flexibility, and robustness. Here, these challenges are addressed by the University of Wuerzburg's advanced pico-satellite bus, realizing a generic modular satellite architecture and standardized interfaces for all subsystems. The modular platform ensures reusability, scalability, and increased testability due to its flexible subsystem interface which allows efficient and compact integration of the entire satellite in a plug-and-play manner. Beside systematic design for testability, a high degree of operational robustness is achieved by the consequent implementation of redundancy of crucial subsystems. This is combined with efficient fault detection, isolation and recovery mechanisms. Thus, the UWE-3 platform, and in particular the on-board data handling system and the electrical power system, offers one of the most efficient pico-satellite architectures launched in recent years and provides a solid basis for future extensions. The in-orbit performance results of the pico-satellite UWE-3 are presented and summarize successful operations since its launch in 2013. Several software extensions and adaptations have been uploaded to UWE-3 increasing its capabilities. Thus, a very flexible platform for in-orbit software experiments and for evaluations of innovative concepts was provided and tested.}, subject = {Kleinsatellit}, language = {en} } @phdthesis{Herrmann2013, author = {Herrmann, Christian}, title = {Robotic Motion Compensation for Applications in Radiation Oncology}, isbn = {978-3-923959-88-4}, doi = {10.25972/OPUS-6727}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-79045}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Aufgrund vieler Verbesserungen der Behandlungsmethoden im Laufe der letzten 60 Jahre, erlaubt die Strahlentherapie heutzutage pr{\"a}zise Behandlungen von statischen Tumoren. Jedoch birgt die Bestrahlung von sich bewegenden Tumoren noch große Herausforderungen in sich, da bewegliche Tumore oft den Behandlungsstrahl verlassen. Dabei reduziert sich die Strahlendosis im Tumor w{\"a}hrend sich diese im umliegenden gesunden Gewebe erh{\"o}ht. Diese Forschungsarbeit zielt darauf ab, die Grenzen der Strahlentherapie zu erweitern, um pr{\"a}zise Behandlungen von beweglichen Tumoren zu erm{\"o}glichen. Der Fokus der Arbeit liegt auf der Erstellung eines Echtzeitsystems zur aktiven Kompensation von Tumorbewegungen durch robotergest{\"u}tzte Methoden. W{\"a}hrend Behandlungen befinden sich Patienten auf einer Patientenliege, mit der statische Lagerungsfehler vor Beginn einer Behandlung korrigiert werden. Die in dieser Arbeit verwendete Patientenliege "HexaPOD" ist ein paralleler Manipulator mit sechs Freiheitsgraden, der große Lasten innerhalb eines eingeschr{\"a}nkten Arbeitsbereichs pr{\"a}zise positionieren kann. Obwohl der HexaPOD urspr{\"u}nglich nicht f{\"u}r dynamische Anwendungen konzipiert wurde, wird dieser f{\"u}r eine dauerhafte Bewegungskompensation eingesetzt, in dem Patienten so bewegt werden, dass Tumore pr{\"a}zise im Zentralstrahl w{\"a}hrend der Dauer einer gesamten Behandlung verbleiben. Um ein echtzeitf{\"a}higes Kompensationssystem auf Basis des HexaPODs zu realisieren, muss eine Reihe an Herausforderungen bew{\"a}ltigt werden. Echtzeitaspekte werden einerseits durch die Verwendung eines harten Echtzeitbetriebssystems abgedeckt, andererseits durch die Messung und Sch{\"a}tzung von Latenzzeiten aller physikalischen Gr{\"o}ßen im System, z.B. Messungen der Tumor- und Atemposition. Neben der konsistenten und durchg{\"a}ngigen Ber{\"u}cksichtigung von akkuraten Zeitinformation, werden alle software-induzierten Latenzen adaptiv ausgeglichen. Dies erfordert Vorhersagen der Tumorposition in die nahe Zukunft. Zahlreiche Pr{\"a}diktoren zur Atem- und Tumorpositionsvorhersage werden vorgeschlagen und anhand verschiedenster Metriken evaluiert. Erweiterungen der Pr{\"a}diktionsalgorithmen werden eingef{\"u}hrt, die sowohl Atem- als auch Tumorpositionsinformationen fusionieren, um Vorhersagen ohne explizites Korrelationsmodell zu erm{\"o}glichen. Die Vorhersagen bestimmen den zuk{\"u}nftigen Bewegungspfad des HexaPODs, um Tumorbewegungen zu kompensieren. Dazu werden verschiedene Regler entwickelt, die eine Trajektorienverfolgung mit dem HexaPOD erm{\"o}glichen. Auf der Basis von linearer und nicht-linearer dynamischer Modellierung des HexaPODs mit Methoden der Systemidentifikation, wird zun{\"a}chst ein modellpr{\"a}diktiver Regler entwickelt. Ein zweiter Regler wird auf Basis einer Annahme {\"u}ber das Arbeitsprinzip des internen Reglers im HexaPOD entworfen. Schließlich wird ein dritter Regler vorgeschlagen, der beide vorhergehenden Regler miteinander kombiniert. F{\"u}r jeden dieser Regler werden vergleichende Ergebnisse aus Experimenten mit realer Hardware und menschlichen Versuchspersonen pr{\"a}sentiert und diskutiert. Dar{\"u}ber hinaus wird die geeignete Wahl von freien Parametern in den Reglern vorgestellt. Neben einer pr{\"a}zisen Verfolgung der Referenztrajektorie spielt der Patientenkomfort eine entscheidende Rolle f{\"u}r die Akzeptanz des Systems. Es wird gezeigt, dass die Regler glatte Trajektorien realisieren k{\"o}nnen, um zu garantieren, dass sich Patienten wohl f{\"u}hlen w{\"a}hrend ihre Tumorbewegung mit Genauigkeiten im Submillimeterbereich ausgeglichen wird. Gesamtfehler werden im Kompensationssystem analysiert, in dem diese zu Trajektorienverfolgungsfehlern und Pr{\"a}diktionsfehlern in Beziehung gesetzt werden. Durch Ausnutzung von Eigenschaften verschiedener Pr{\"a}diktoren wird gezeigt, dass die Startzeit des Systems bis die Verfolgung der Referenztrajektorie erreicht ist, wenige Sekunden betr{\"a}gt. Dies gilt insbesondere f{\"u}r den Fall eines initial ruhenden HexaPODs und ohne Vorwissen {\"u}ber Tumorbewegungen. Dies zeigt die Eignung des Systems f{\"u}r die sehr kurz fraktionierten Behandlungen von Lungentumoren. Das Tumorkompensationssystem wurde ausschließlich auf Basis von klinischer Standard-Hardware entwickelt, die in vielen Behandlungsr{\"a}umen zu finden ist. Durch ein einfaches und flexibles Design k{\"o}nnen Behandlungsr{\"a}ume in kosteneffizienter Weise um M{\"o}glichkeiten der Bewegungskompensation erg{\"a}nzt werden. Dar{\"u}ber hinaus werden aktuelle Behandlungsmethoden wie intensit{\"a}tsmodulierte Strahlentherapie oder Volumetric Modulated Arc Therapy in keiner Weise eingeschr{\"a}nkt. Aufgrund der Unterst{\"u}tzung verschiedener Kompensationsmodi kann das System auf alle beweglichen Tumore angewendet werden, unabh{\"a}ngig davon ob die Bewegungen vorhersagbar (Lungentumore) oder nicht vorhersagbar (Prostatatumore) sind. Durch Integration von geeigneten Methoden zur Tumorpositionsbestimmung kann das System auf einfache Weise zur Kompensation von anderen Tumoren erweitert werden.}, subject = {Robotik}, language = {en} } @techreport{ElsayedRizk2022, type = {Working Paper}, author = {Elsayed, Karim and Rizk, Amr}, title = {Response Times in Time-to-Live Caching Hierarchies under Random Network Delays}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28084}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280843}, pages = {4}, year = {2022}, abstract = {Time-to-Live (TTL) caches decouple the occupancy of objects in cache through object-specific validity timers. Stateof- the art techniques provide exact methods for the calculation of object-specific hit probabilities given entire cache hierarchies with random inter-cache network delays. The system hit probability is a provider-centric metric as it relates to the origin offload, i.e., the decrease in the number of requests that are served by the content origin server. In this paper we consider a user-centric metric, i.e., the response time, which is shown to be structurally different from the system hit probability. Equipped with the state-of-theart exact modeling technique using Markov-arrival processes we derive expressions for the expected object response time and pave a way for its optimization under network delays.}, subject = {Datennetz}, language = {en} } @phdthesis{Martin2008, author = {Martin, R{\"u}diger}, title = {Resilience, Provisioning, and Control for the Network of the Future}, doi = {10.25972/OPUS-2504}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-28497}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {The Internet sees an ongoing transformation process from a single best-effort service network into a multi-service network. In addition to traditional applications like e-mail,WWW-traffic, or file transfer, future generation networks (FGNs) will carry services with real-time constraints and stringent availability and reliability requirements like Voice over IP (VoIP), video conferencing, virtual private networks (VPNs) for finance, other real-time business applications, tele-medicine, or tele-robotics. Hence, quality of service (QoS) guarantees and resilience to failures are crucial characteristics of an FGN architecture. At the same time, network operations must be efficient. This necessitates sophisticated mechanisms for the provisioning and the control of future communication infrastructures. In this work we investigate such echanisms for resilient FGNs. There are many aspects of the provisioning and control of resilient FGNs such as traffic matrix estimation, traffic characterization, traffic forecasting, mechanisms for QoS enforcement also during failure cases, resilient routing, or calability concerns for future routing and addressing mechanisms. In this work we focus on three important aspects for which performance analysis can deliver substantial insights: load balancing for multipath Internet routing, fast resilience concepts, and advanced dimensioning techniques for resilient networks. Routing in modern communication networks is often based on multipath structures, e.g., equal-cost multipath routing (ECMP) in IP networks, to facilitate traffic engineering and resiliency. When multipath routing is applied, load balancing algorithms distribute the traffic over available paths towards the destination according to pre-configured distribution values. State-of-the-art load balancing algorithms operate either on the packet or the flow level. Packet level mechanisms achieve highly accurate traffic distributions, but are known to have negative effects on the performance of transport protocols and should not be applied. Flow level mechanisms avoid performance degradations, but at the expense of reduced accuracy. These inaccuracies may have unpredictable effects on link capacity requirements and complicate resource management. Thus, it is important to exactly understand the accuracy and dynamics of load balancing algorithms in order to be able to exercise better network control. Knowing about their weaknesses, it is also important to look for alternatives and to assess their applicability in different networking scenarios. This is the first aspect of this work. Component failures are inevitable during the operation of communication networks and lead to routing disruptions if no special precautions are taken. In case of a failure, the robust shortest-path routing of the Internet reconverges after some time to a state where all nodes are again reachable - provided physical connectivity still exists. But stringent availability and reliability criteria of new services make a fast reaction to failures obligatory for resilient FGNs. This led to the development of fast reroute (FRR) concepts for MPLS and IP routing. The operations of MPLS-FRR have already been standardized. Still, the standards leave some degrees of freedom for the resilient path layout and it is important to understand the tradeoffs between different options for the path layout to efficiently provision resilient FGNs. In contrast, the standardization for IP-FRR is an ongoing process. The applicability and possible combinations of different concepts still are open issues. IP-FRR also facilitates a comprehensive resilience framework for IP routing covering all steps of the failure recovery cycle. These points constitute another aspect of this work. Finally, communication networks are usually over-provisioned, i.e., they have much more capacity installed than actually required during normal operation. This is a precaution for various challenges such as network element failures. An alternative to this capacity overprovisioning (CO) approach is admission control (AC). AC blocks new flows in case of imminent overload due to unanticipated events to protect the QoS for already admitted flows. On the one hand, CO is generally viewed as a simple mechanism, AC as a more complex mechanism that complicates the network control plane and raises interoperability issues. On the other hand, AC appears more cost-efficient than CO. To obtain advanced provisioning methods for resilient FGNs, it is important to find suitable models for irregular events, such as failures and different sources of overload, and to incorporate them into capacity dimensioning methods. This allows for a fair comparison between CO and AC in various situations and yields a better understanding of the strengths and weaknesses of both concepts. Such an advanced capacity dimensioning method for resilient FGNs represents the third aspect of this work.}, subject = {Backbone-Netz}, language = {en} } @techreport{GallenmuellerScholzStubbeetal.2022, type = {Working Paper}, author = {Gallenm{\"u}ller, Sebastian and Scholz, Dominik and Stubbe, Henning and Hauser, Eric and Carle, Georg}, title = {Reproducible by Design: Network Experiments with pos}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28083}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280834}, pages = {4}, year = {2022}, abstract = {In scientific research, the independent reproduction of experiments is the source of trust. Detailed documentation is required to enable experiment reproduction. Reproducibility awards were created to honor the increased documentation effort. In this work, we propose a novel approach toward reproducible research—a structured experimental workflow that allows the creation of reproducible experiments without requiring additional efforts of the researcher. Moreover, we present our own testbed and toolchain, namely, plain orchestrating service (pos), which enables the creation of such experimental workflows. The experiment is documented by our proposed, fully scripted experiment structure. In addition, pos provides scripts enabling the automation of the bundling and release of all experimental artifacts. We provide an interactive environment where pos experiments can be executed and reproduced, available at https://gallenmu.github.io/single-server-experiment.}, subject = {Datennetz}, language = {en} } @unpublished{Nassourou2010, author = {Nassourou, Mohamadou}, title = {Reference Architecture, Design of Cascading Style Sheets Processing Model}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-51328}, year = {2010}, abstract = {The technique of using Cascading Style Sheets (CSS) to format and present structured data is called CSS processing model. For instance a CSS processing model for XML documents describes steps involved in formatting and presenting XML documents on screens or papers. Many software applications such as browsers and XML editors have their own CSS processing models which are part of their rendering engines. For instance each browser based on its CSS processing model renders CSS layout differently, as a result an inconsistency in the support of CSS features arises. Some browsers support more CSS features than others, and the rendering itself varies. Moreover the W3C standards are not even adhered by some browsers such as Internet Explorer. Test suites and other hacks and filters cannot definitely solve these problems, because these solutions are temporary and fragile. To palliate this inconsistency and browser compatibility issues with respect to CSS, a reference CSS processing model is needed. By extension it could even allow interoperability across CSS rendering engines. A reference architecture would provide common software architecture and interfaces, and facilitate refactoring, reuse, and automated unit testing. In [2] a reference architecture for browsers has been proposed. However this reference architecture is a macro reference model which does not consider separately individual components of rendering and layout engines. In this paper an attempt to develop a reference architecture for CSS processing models is discussed. In addition the Vex editor [3] rendering and layout engines, as well as an extended version of the editor used in TextGrid project [5] are also presented in order to validate the proposed reference architecture.}, subject = {Cascading Style Sheets}, language = {en} } @article{ReinhardHelmerichBorasetal.2022, author = {Reinhard, Sebastian and Helmerich, Dominic A. and Boras, Dominik and Sauer, Markus and Kollmannsberger, Philip}, title = {ReCSAI: recursive compressed sensing artificial intelligence for confocal lifetime localization microscopy}, series = {BMC Bioinformatics}, volume = {23}, journal = {BMC Bioinformatics}, number = {1}, doi = {10.1186/s12859-022-05071-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-299768}, year = {2022}, abstract = {Background Localization-based super-resolution microscopy resolves macromolecular structures down to a few nanometers by computationally reconstructing fluorescent emitter coordinates from diffraction-limited spots. The most commonly used algorithms are based on fitting parametric models of the point spread function (PSF) to a measured photon distribution. These algorithms make assumptions about the symmetry of the PSF and thus, do not work well with irregular, non-linear PSFs that occur for example in confocal lifetime imaging, where a laser is scanned across the sample. An alternative method for reconstructing sparse emitter sets from noisy, diffraction-limited images is compressed sensing, but due to its high computational cost it has not yet been widely adopted. Deep neural network fitters have recently emerged as a new competitive method for localization microscopy. They can learn to fit arbitrary PSFs, but require extensive simulated training data and do not generalize well. A method to efficiently fit the irregular PSFs from confocal lifetime localization microscopy combining the advantages of deep learning and compressed sensing would greatly improve the acquisition speed and throughput of this method. Results Here we introduce ReCSAI, a compressed sensing neural network to reconstruct localizations for confocal dSTORM, together with a simulation tool to generate training data. We implemented and compared different artificial network architectures, aiming to combine the advantages of compressed sensing and deep learning. We found that a U-Net with a recursive structure inspired by iterative compressed sensing showed the best results on realistic simulated datasets with noise, as well as on real experimentally measured confocal lifetime scanning data. Adding a trainable wavelet denoising layer as prior step further improved the reconstruction quality. Conclusions Our deep learning approach can reach a similar reconstruction accuracy for confocal dSTORM as frame binning with traditional fitting without requiring the acquisition of multiple frames. In addition, our work offers generic insights on the reconstruction of sparse measurements from noisy experimental data by combining compressed sensing and deep learning. We provide the trained networks, the code for network training and inference as well as the simulation tool as python code and Jupyter notebooks for easy reproducibility.}, language = {en} } @article{SinghKingstonGuptaetal.2015, author = {Singh, Amit K. and Kingston, Joseph J. and Gupta, Shishir K. and Batra, Harsh V.}, title = {Recombinant Bivalent Fusion Protein rVE Induces CD4+ and CD8+ T-Cell Mediated Memory Immune Response for Protection Against Yersinia enterocolitica Infection}, series = {Frontiers in Microbiology}, volume = {6}, journal = {Frontiers in Microbiology}, number = {1407}, doi = {10.3389/fmicb.2015.01407}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136114}, year = {2015}, abstract = {Studies investigating the correlates of immune protection against Yersinia infection have established that both humoral and cell mediated immune responses are required for the comprehensive protection. In our previous study, we established that the bivalent fusion protein (rVE) comprising immunologically active regions of Y pestis LcrV (100-270 aa) and YopE (50-213 aa) proteins conferred complete passive and active protection against lethal Y enterocolitica 8081 challenge. In the present study, cohort of BALB/c mice immunized with rVE or its component proteins rV, rE were assessed for cell mediated immune responses and memory immune protection against Y enterocolitica 8081 rVE immunization resulted in extensive proliferation of both CD4 and CD8 T cell subsets; significantly high antibody titer with balanced IgG1: IgG2a/IgG2b isotypes (1:1 ratio) and up regulation of both Th1 (INF-\(\alpha\), IFN-\(\gamma\), IL 2, and IL 12) and Th2 (IL 4) cytokines. On the other hand, rV immunization resulted in Th2 biased IgG response (11:1 ratio) and proliferation of CD4+ T-cell; rE group of mice exhibited considerably lower serum antibody titer with predominant Th1 response (1:3 ratio) and CD8+ T-cell proliferation. Comprehensive protection with superior survival (100\%) was observed among rVE immunized mice when compared to the significantly lower survival rates among rE (37.5\%) and rV (25\%) groups when IP challenged with Y enterocolitica 8081 after 120 days of immunization. Findings in this and our earlier studies define the bivalent fusion protein rVE as a potent candidate vaccine molecule with the capability to concurrently stimulate humoral and cell mediated immune responses and a proof of concept for developing efficient subunit vaccines against Gram negative facultative intracellular bacterial pathogens.}, language = {en} } @phdthesis{Schlosser2011, author = {Schlosser, Daniel}, title = {Quality of Experience Management in Virtual Future Networks}, doi = {10.25972/OPUS-5719}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69986}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Aktuell beobachten wir eine drastische Vervielf{\"a}ltigung der Dienste und Anwendungen, die das Internet f{\"u}r den Datentransport nutzen. Dabei unterscheiden sich die Anforderungen dieser Dienste an das Netzwerk deutlich. Das Netzwerkmanagement wird durch diese Diversit{\"a}t der nutzenden Dienste aber deutlich erschwert, da es einem Datentransportdienstleister kaum m{\"o}glich ist, die unterschiedlichen Verbindungen zu unterscheiden, ohne den Inhalt der transportierten Daten zu analysieren. Netzwerkvirtualisierung ist eine vielversprechende L{\"o}sung f{\"u}r dieses Problem, da sie es erm{\"o}glicht f{\"u}r verschiedene Dienste unterschiedliche virtuelle Netze auf dem gleichen physikalischen Substrat zu betreiben. Diese Diensttrennung erm{\"o}glicht es, jedes einzelne Netz anwendungsspezifisch zu steuern. Ziel einer solchen Netzsteuerung ist es, sowohl die vom Nutzer erfahrene Dienstg{\"u}te als auch die Kosteneffizienz des Datentransports zu optimieren. Dar{\"u}ber hinaus wird es mit Netzwerkvirtualisierung m{\"o}glich das physikalische Netz so weit zu abstrahieren, dass die aktuell fest verzahnten Rollen von Netzwerkbesitzer und Netzwerkbetreiber entkoppelt werden k{\"o}nnen. Dar{\"u}ber hinaus stellt Netzwerkvirtualisierung sicher, dass unterschiedliche Datennetze, die gleichzeitig auf dem gleichen physikalischen Netz betrieben werden, sich gegenseitig weder beeinflussen noch st{\"o}ren k{\"o}nnen. Diese Arbeit  besch{\"a}ftigt sich mit ausgew{\"a}hlten Aspekten dieses Themenkomplexes und fokussiert sich darauf, ein virtuelles Netzwerk mit bestm{\"o}glicher Dienstqualit{\"a}t f{\"u}r den Nutzer zu betreiben und zu steuern. Daf{\"u}r wird ein Top-down-Ansatz gew{\"a}hlt, der von den Anwendungsf{\"a}llen, einer m{\"o}glichen Netzwerkvirtualisierungs-Architektur und aktuellen M{\"o}glichkeiten der Hardwarevirtualisierung ausgeht. Im Weiteren fokussiert sich die Arbeit dann in Richtung Bestimmung und Optimierung der vom Nutzer erfahrenen Dienstqualit{\"a}t (QoE) auf Applikationsschicht und diskutiert M{\"o}glichkeiten zur Messung und {\"U}berwachung von wesentlichen Netzparametern in virtualisierten Netzen.}, subject = {Netzwerkmanagement}, language = {en} } @article{KoopmannStubbemannKapaetal.2021, author = {Koopmann, Tobias and Stubbemann, Maximilian and Kapa, Matthias and Paris, Michael and Buenstorf, Guido and Hanika, Tom and Hotho, Andreas and J{\"a}schke, Robert and Stumme, Gerd}, title = {Proximity dimensions and the emergence of collaboration: a HypTrails study on German AI research}, series = {Scientometrics}, volume = {126}, journal = {Scientometrics}, number = {12}, issn = {1588-2861}, doi = {10.1007/s11192-021-03922-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-269831}, pages = {9847-9868}, year = {2021}, abstract = {Creation and exchange of knowledge depends on collaboration. Recent work has suggested that the emergence of collaboration frequently relies on geographic proximity. However, being co-located tends to be associated with other dimensions of proximity, such as social ties or a shared organizational environment. To account for such factors, multiple dimensions of proximity have been proposed, including cognitive, institutional, organizational, social and geographical proximity. Since they strongly interrelate, disentangling these dimensions and their respective impact on collaboration is challenging. To address this issue, we propose various methods for measuring different dimensions of proximity. We then present an approach to compare and rank them with respect to the extent to which they indicate co-publications and co-inventions. We adapt the HypTrails approach, which was originally developed to explain human navigation, to co-author and co-inventor graphs. We evaluate this approach on a subset of the German research community, specifically academic authors and inventors active in research on artificial intelligence (AI). We find that social proximity and cognitive proximity are more important for the emergence of collaboration than geographic proximity.}, language = {en} } @phdthesis{Huber2023, author = {Huber, Stephan}, title = {Proxemo: Documenting Observed Emotions in HCI}, doi = {10.25972/OPUS-30573}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-305730}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {For formative evaluations of user experience (UX) a variety of methods have been developed over the years. However, most techniques require the users to interact with the study as a secondary task. This active involvement in the evaluation is not inclusive of all users and potentially biases the experience currently being studied. Yet there is a lack of methods for situations in which the user has no spare cognitive resources. This condition occurs when 1) users' cognitive abilities are impaired (e.g., people with dementia) or 2) users are confronted with very demanding tasks (e.g., air traffic controllers). In this work we focus on emotions as a key component of UX and propose the new structured observation method Proxemo for formative UX evaluations. Proxemo allows qualified observers to document users' emotions by proxy in real time and then directly link them to triggers. Technically this is achieved by synchronising the timestamps of emotions documented by observers with a video recording of the interaction. In order to facilitate the documentation of observed emotions in highly diverse contexts we conceptualise and implement two separate versions of a documentation aid named Proxemo App. For formative UX evaluations of technology-supported reminiscence sessions with people with dementia, we create a smartwatch app to discreetly document emotions from the categories anger, general alertness, pleasure, wistfulness and pride. For formative UX evaluations of prototypical user interfaces with air traffic controllers we create a smartphone app to efficiently document emotions from the categories anger, boredom, surprise, stress and pride. Descriptive case studies in both application domains indicate the feasibility and utility of the method Proxemo and the appropriateness of the respectively adapted design of the Proxemo App. The third part of this work is a series of meta-evaluation studies to determine quality criteria of Proxemo. We evaluate Proxemo regarding its reliability, validity, thoroughness and effectiveness, and compare Proxemo's efficiency and the observers' experience to documentation with pen and paper. Proxemo is reliable, as well as more efficient, thorough and effective than handwritten notes and provides a better UX to observers. Proxemo compares well with existing methods where benchmarks are available. With Proxemo we contribute a validated structured observation method that has shown to meet requirements formative UX evaluations in the extreme contexts of users with cognitive impairments or high task demands. Proxemo is agnostic regarding researchers' theoretical approaches and unites reductionist and holistic perspectives within one method. Future work should explore the applicability of Proxemo for further domains and extend the list of audited quality criteria to include, for instance, downstream utility. With respect to basic research we strive to better understand the sources leading observers to empathic judgments and propose reminisce and older adults as model environment for investigating mixed emotions.}, subject = {Gef{\"u}hl}, language = {en} } @article{CaliskanCrouchGiddinsetal.2022, author = {Caliskan, Aylin and Crouch, Samantha A. W. and Giddins, Sara and Dandekar, Thomas and Dangwal, Seema}, title = {Progeria and aging — Omics based comparative analysis}, series = {Biomedicines}, volume = {10}, journal = {Biomedicines}, number = {10}, issn = {2227-9059}, doi = {10.3390/biomedicines10102440}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-289868}, year = {2022}, abstract = {Since ancient times aging has also been regarded as a disease, and humankind has always strived to extend the natural lifespan. Analyzing the genes involved in aging and disease allows for finding important indicators and biological markers for pathologies and possible therapeutic targets. An example of the use of omics technologies is the research regarding aging and the rare and fatal premature aging syndrome progeria (Hutchinson-Gilford progeria syndrome, HGPS). In our study, we focused on the in silico analysis of differentially expressed genes (DEGs) in progeria and aging, using a publicly available RNA-Seq dataset (GEO dataset GSE113957) and a variety of bioinformatics tools. Despite the GSE113957 RNA-Seq dataset being well-known and frequently analyzed, the RNA-Seq data shared by Fleischer et al. is far from exhausted and reusing and repurposing the data still reveals new insights. By analyzing the literature citing the use of the dataset and subsequently conducting a comparative analysis comparing the RNA-Seq data analyses of different subsets of the dataset (healthy children, nonagenarians and progeria patients), we identified several genes involved in both natural aging and progeria (KRT8, KRT18, ACKR4, CCL2, UCP2, ADAMTS15, ACTN4P1, WNT16, IGFBP2). Further analyzing these genes and the pathways involved indicated their possible roles in aging, suggesting the need for further in vitro and in vivo research. In this paper, we (1) compare "normal aging" (nonagenarians vs. healthy children) and progeria (HGPS patients vs. healthy children), (2) enlist genes possibly involved in both the natural aging process and progeria, including the first mention of IGFBP2 in progeria, (3) predict miRNAs and interactomes for WNT16 (hsa-mir-181a-5p), UCP2 (hsa-mir-26a-5p and hsa-mir-124-3p), and IGFBP2 (hsa-mir-124-3p, hsa-mir-126-3p, and hsa-mir-27b-3p), (4) demonstrate the compatibility of well-established R packages for RNA-Seq analysis for researchers interested but not yet familiar with this kind of analysis, and (5) present comparative proteomics analyses to show an association between our RNA-Seq data analyses and corresponding changes in protein expression.}, language = {en} } @article{KammererPryssHoppenstedtetal.2020, author = {Kammerer, Klaus and Pryss, R{\"u}diger and Hoppenstedt, Burkhard and Sommer, Kevin and Reichert, Manfred}, title = {Process-driven and flow-based processing of industrial sensor data}, series = {Sensors}, volume = {20}, journal = {Sensors}, number = {18}, issn = {1424-8220}, doi = {10.3390/s20185245}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213089}, year = {2020}, abstract = {For machine manufacturing companies, besides the production of high quality and reliable machines, requirements have emerged to maintain machine-related aspects through digital services. The development of such services in the field of the Industrial Internet of Things (IIoT) is dealing with solutions such as effective condition monitoring and predictive maintenance. However, appropriate data sources are needed on which digital services can be technically based. As many powerful and cheap sensors have been introduced over the last years, their integration into complex machines is promising for developing digital services for various scenarios. It is apparent that for components handling recorded data of these sensors they must usually deal with large amounts of data. In particular, the labeling of raw sensor data must be furthered by a technical solution. To deal with these data handling challenges in a generic way, a sensor processing pipeline (SPP) was developed, which provides effective methods to capture, process, store, and visualize raw sensor data based on a processing chain. Based on the example of a machine manufacturing company, the SPP approach is presented in this work. For the company involved, the approach has revealed promising results.}, language = {en} } @inproceedings{OPUS4-24577, title = {Proceedings of the 1st Games Technology Summit}, editor = {von Mammen, Sebastian and Klemke, Roland and Lorber, Martin}, isbn = {978-3-945459-36-2}, doi = {10.25972/OPUS-24577}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245776}, pages = {vi, 46}, year = {2021}, abstract = {As part of the Clash of Realities International Conference on the Technology and Theory of Digital Games, the Game Technology Summit is a premium venue to bring together experts from academia and industry to disseminate state-of-the-art research on trending technology topics in digital games. In this first iteration of the Game Technology Summit, we specifically paid attention on how the successes in AI in Natural User Interfaces have been impacting the games industry (industry track) and which scientific, state-of-the-art ideas and approaches are currently pursued (scientific track).}, subject = {Veranstaltung}, language = {en} } @phdthesis{Wojtkowiak2018, author = {Wojtkowiak, Harald}, title = {Planungssystem zur Steigerung der Autonomie von Kleinstsatelliten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163569}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Der Betrieb von Satelliten wird sich in Zukunft gravierend {\"a}ndern. Die bisher ausge{\"u}bte konventionelle Vorgehensweise, bei der die Planung der vom Satelliten auszuf{\"u}hrenden Aktivit{\"a}ten sowie die Kontrolle hier{\"u}ber ausschließlich vom Boden aus erfolgen, st{\"o}ßt bei heutigen Anwendungen an ihre Grenzen. Im schlimmsten Fall verhindert dieser Umstand sogar die Erschließung bisher ungenutzter M{\"o}glichkeiten. Der Gewinn eines Satelliten, sei es in Form wissenschaftlicher Daten oder der Vermarktung satellitengest{\"u}tzter Dienste, wird daher nicht optimal ausgesch{\"o}pft. Die Ursache f{\"u}r dieses Problem l{\"a}sst sich im Grunde auf eine ausschlaggebende Tatsache zur{\"u}ckf{\"u}hren: Konventionelle Satelliten k{\"o}nnen ihr Verhalten, d.h. die Folge ihrer T{\"a}tigkeiten, nicht eigenst{\"a}ndig anpassen. Stattdessen erstellt das Bedienpersonal am Boden - vor allem die Operatoren - mit Hilfe von Planungssoftware feste Ablaufpl{\"a}ne, die dann in Form von Kommandosequenzen von den Bodenstationen aus an die jeweiligen Satelliten hochgeladen werden. Dort werden die Befehle lediglich {\"u}berpr{\"u}ft, interpretiert und strikt ausgef{\"u}hrt. Die Abarbeitung erfolgt linear. Situationsbedingte {\"A}nderungen, wie sie vergleichsweise bei der Codeausf{\"u}hrung von Softwareprogrammen durch Kontrollkonstrukte, zum Beispiel Schleifen und Verzweigungen, {\"u}blich sind, sind typischerweise nicht vorgesehen. Der Operator ist daher die einzige Instanz, die das Verhalten des Satelliten mittels Kommandierung, per Upload, beeinflussen kann, und auch nur dann, wenn ein direkter Funkkontakt zwischen Satellit und Bodenstation besteht. Die dadurch m{\"o}glichen Reaktionszeiten des Satelliten liegen bestenfalls bei einigen Sekunden, falls er sich im Wirkungsbereich der Bodenstation befindet. Außerhalb des Kontaktfensters kann sich die Zeitschranke, gegeben durch den Orbit und die aktuelle Position des Satelliten, von einigen Minuten bis hin zu einigen Stunden erstrecken. Die Signallaufzeiten der Funk{\"u}bertragung verl{\"a}ngern die Reaktionszeiten um weitere Sekunden im erdnahen Bereich. Im interplanetaren Raum erstrecken sich die Zeitspannen aufgrund der immensen Entfernungen sogar auf mehrere Minuten. Dadurch bedingt liegt die derzeit technologisch m{\"o}gliche, bodengest{\"u}tzte, Reaktionszeit von Satelliten bestenfalls im Bereich von einigen Sekunden. Diese Einschr{\"a}nkung stellt ein schweres Hindernis f{\"u}r neuartige Satellitenmissionen, bei denen insbesondere nichtdeterministische und kurzzeitige Ph{\"a}nomene (z.B. Blitze und Meteoreintritte in die Erdatmosph{\"a}re) Gegenstand der Beobachtungen sind, dar. Die langen Reaktionszeiten des konventionellen Satellitenbetriebs verhindern die Realisierung solcher Missionen, da die verz{\"o}gerte Reaktion erst erfolgt, nachdem das zu beobachtende Ereignis bereits abgeschlossen ist. Die vorliegende Dissertation zeigt eine M{\"o}glichkeit, das durch die langen Reaktionszeiten entstandene Problem zu l{\"o}sen, auf. Im Zentrum des L{\"o}sungsansatzes steht dabei die Autonomie. Im Wesentlichen geht es dabei darum, den Satelliten mit der F{\"a}higkeit auszustatten, sein Verhalten, d.h. die Folge seiner T{\"a}tigkeiten, eigenst{\"a}ndig zu bestimmen bzw. zu {\"a}ndern. Dadurch wird die direkte Abh{\"a}ngigkeit des Satelliten vom Operator bei Reaktionen aufgehoben. Im Grunde wird der Satellit in die Lage versetzt, sich selbst zu kommandieren. Die Idee der Autonomie wurde im Rahmen der zugrunde liegenden Forschungsarbeiten umgesetzt. Das Ergebnis ist ein autonomes Planungssystem. Dabei handelt es sich um ein Softwaresystem, mit dem sich autonomes Verhalten im Satelliten realisieren l{\"a}sst. Es kann an unterschiedliche Satellitenmissionen angepasst werden. Ferner deckt es verschiedene Aspekte des autonomen Satellitenbetriebs, angefangen bei der generellen Entscheidungsfindung der T{\"a}tigkeiten, {\"u}ber die zeitliche Ablaufplanung unter Einbeziehung von Randbedingungen (z.B. Ressourcen) bis hin zur eigentlichen Ausf{\"u}hrung, d.h. Kommandierung, ab. Das Planungssystem kommt als Anwendung in ASAP, einer autonomen Sensorplattform, zum Einsatz. Es ist ein optisches System und dient der Detektion von kurzzeitigen Ph{\"a}nomenen und Ereignissen in der Erdatmosph{\"a}re. Die Forschungsarbeiten an dem autonomen Planungssystem, an ASAP sowie an anderen zu diesen in Bezug stehenden Systemen wurden an der Professur f{\"u}r Raumfahrttechnik des Lehrstuhls Informatik VIII der Julius-Maximilians-Universit{\"a}t W{\"u}rzburg durchgef{\"u}hrt.}, subject = {Planungssystem}, language = {de} } @unpublished{Nassourou2011, author = {Nassourou, Mohamadou}, title = {Philosophical and Computational Approaches for Estimating and Visualizing Months of Revelations of Quranic Chapters}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-65784}, year = {2011}, abstract = {The question of why the Quran structure does not follow its chronology of revelation is a recurring one. Some Islamic scholars such as [1] have answered the question using hadiths, as well as other philosophical reasons based on internal evidences of the Quran itself. Unfortunately till today many are still wondering about this issue. Muslims believe that the Quran is a summary and a copy of the content of a preserved tablet called Lawhul-Mahfuz located in the heaven. Logically speaking, this suggests that the arrangement of the verses and chapters is expected to be similar to that of the Lawhul-Mahfuz. As for the arrangement of the verses in each chapter, there is unanimity that it was carried out by the Prophet himself under the guidance of Angel Gabriel with the recommendation of God. But concerning the ordering of the chapters, there are reports about some divergences [3] among the Prophet's companions as to which chapter should precede which one. This paper argues that Quranic chapters might have been arranged according to months and seasons of revelation. In fact, based on some verses of the Quran, it is defendable that the Lawhul-Mahfuz itself is understood to have been structured in terms of the months of the year. In this study, philosophical and mathematical arguments for computing chapters' months of revelation are discussed, and the result is displayed on an interactive scatter plot.}, subject = {Text Mining}, language = {en} } @phdthesis{Pries2010, author = {Pries, Jan Rastin}, title = {Performance Optimization of Wireless Infrastructure and Mesh Networks}, doi = {10.25972/OPUS-3723}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-46097}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Future broadband wireless networks should be able to support not only best effort traffic but also real-time traffic with strict Quality of Service (QoS) constraints. In addition, their available resources are scare and limit the number of users. To facilitate QoS guarantees and increase the maximum number of concurrent users, wireless networks require careful planning and optimization. In this monograph, we studied three aspects of performance optimization in wireless networks: resource optimization in WLAN infrastructure networks, quality of experience control in wireless mesh networks, and planning and optimization of wireless mesh networks. An adaptive resource management system is required to effectively utilize the limited resources on the air interface and to guarantee QoS for real-time applications. Thereby, both WLAN infrastructure and WLAN mesh networks have to be considered. An a-priori setting of the access parameters is not meaningful due to the contention-based medium access and the high dynamics of the system. Thus, a management system is required which dynamically adjusts the channel access parameters based on the network load. While this is sufficient for wireless infrastructure networks, interferences on neighboring paths and self-interferences have to be considered for wireless mesh networks. In addition, a careful channel allocation and route assignment is needed. Due to the large parameter space, standard optimization techniques fail for optimizing large wireless mesh networks. In this monograph, we reveal that biology-inspired optimization techniques, namely genetic algorithms, are well-suitable for the planning and optimization of wireless mesh networks. Although genetic algorithms generally do not always find the optimal solution, we show that with a good parameter set for the genetic algorithm, the overall throughput of the wireless mesh network can be significantly improved while still sharing the resources fairly among the users.}, subject = {IEEE 802.11}, language = {en} } @phdthesis{Maeder2008, author = {M{\"a}der, Andreas}, title = {Performance Models for UMTS 3.5G Mobile Wireless Systems}, doi = {10.25972/OPUS-2766}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-32525}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Mobile telecommunication systems of the 3.5th generation (3.5G) constitute a first step towards the requirements of an all-IP world. As the denotation suggests, 3.5G systems are not completely new designed from scratch. Instead, they are evolved from existing 3G systems like UMTS or cdma2000. 3.5G systems are primarily designed and optimized for packet-switched best-effort traffic, but they are also intended to increase system capacity by exploiting available radio resources more efficiently. Systems based on cdma2000 are enhanced with 1xEV-DO (EV-DO: evolution, data-optimized). In the UMTS domain, the 3G partnership project (3GPP) specified the High Speed Packet Access (HSPA) family, consisting of High Speed Downlink Packet Access (HSDPA) and its counterpart High Speed Uplink Packet Access (HSUPA) or Enhanced Uplink. The focus of this monograph is on HSPA systems, although the operation principles of other 3.5G systems are similar. One of the main contributions of our work are performance models which allow a holistic view on the system. The models consider user traffic on flow-level, such that only on significant changes of the system state a recalculation of parameters like bandwidth is necessary. The impact of lower layers is captured by stochastic models. This approach combines accurate modeling and the ability to cope with computational complexity. Adopting this approach to HSDPA, we develop a new physical layer abstraction model that takes radio resources, scheduling discipline, radio propagation and mobile device capabilities into account. Together with models for the calculation of network-wide interference and transmit powers, a discrete-event simulation and an analytical model based on a queuing-theoretical approach are proposed. For the Enhanced Uplink, we develop analytical models considering independent and correlated other-cell interference.}, subject = {Mobilfunk}, language = {en} } @phdthesis{Zinner2012, author = {Zinner, Thomas}, title = {Performance Modeling of QoE-Aware Multipath Video Transmission in the Future Internet}, doi = {10.25972/OPUS-6106}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72324}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Internet applications are becoming more and more flexible to support diverge user demands and network conditions. This is reflected by technical concepts, which provide new adaptation mechanisms to allow fine grained adjustment of the application quality and the corresponding bandwidth requirements. For the case of video streaming, the scalable video codec H.264/SVC allows the flexible adaptation of frame rate, video resolution and image quality with respect to the available network resources. In order to guarantee a good user-perceived quality (Quality of Experience, QoE) it is necessary to adjust and optimize the video quality accurately. But not only have the applications of the current Internet changed. Within network and transport, new technologies evolved during the last years providing a more flexible and efficient usage of data transport and network resources. One of the most promising technologies is Network Virtualization (NV) which is seen as an enabler to overcome the ossification of the Internet stack. It provides means to simultaneously operate multiple logical networks which allow for example application-specific addressing, naming and routing, or their individual resource management. New transport mechanisms like multipath transmission on the network and transport layer aim at an efficient usage of available transport resources. However, the simultaneous transmission of data via heterogeneous transport paths and communication technologies inevitably introduces packet reordering. Additional mechanisms and buffers are required to restore the correct packet order and thus to prevent a disturbance of the data transport. A proper buffer dimensioning as well as the classification of the impact of varying path characteristics like bandwidth and delay require appropriate evaluation methods. Additionally, for a path selection mechanism real time evaluation mechanisms are needed. A better application-network interaction and the corresponding exchange of information enable an efficient adaptation of the application to the network conditions and vice versa. This PhD thesis analyzes a video streaming architecture utilizing multipath transmission and scalable video coding and develops the following optimization possibilities and results: Analysis and dimensioning methods for multipath transmission, quantification of the adaptation possibilities to the current network conditions with respect to the QoE for H.264/SVC, and evaluation and optimization of a future video streaming architecture, which allows a better interaction of application and network.}, subject = {Video{\"u}bertragung}, language = {en} } @phdthesis{Klein2010, author = {Klein, Alexander}, title = {Performance Issues of MAC and Routing Protocols in Wireless Sensor Networks}, doi = {10.25972/OPUS-4465}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-52870}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {The focus of this work lies on the communication issues of Medium Access Control (MAC) and routing protocols in the context of WSNs. The communication challenges in these networks mainly result from high node density, low bandwidth, low energy constraints and the hardware limitations in terms of memory, computational power and sensing capabilities of low-power transceivers. For this reason, the structure of WSNs is always kept as simple as possible to minimize the impact of communication issues. Thus, the majority of WSNs apply a simple one hop star topology since multi-hop communication has high demands on the routing protocol since it increases the bandwidth requirements of the network. Moreover, medium access becomes a challenging problem due to the fact that low-power transceivers are very limited in their sensing capabilities. The first contribution is represented by the Backoff Preamble-based MAC Protocol with Sequential Contention Resolution (BPS-MAC) which is designed to overcome the limitations of low-power transceivers. Two communication issues, namely the Clear Channel Assessment (CCA) delay and the turnaround time, are directly addressed by the protocol. The CCA delay represents the period of time which is required by the transceiver to detect a busy radio channel while the turnaround time specifies the period of time which is required to switch between receive and transmit mode. Standard Carrier Sense Multiple Access (CSMA) protocols do not achieve high performance in terms of packet loss if the traffic is highly correlated due to the fact that the transceiver is not able to sense the medium during the switching phase. Therefore, a node may start to transmit data while another node is already transmitting since it has sensed an idle medium right before it started to switch its transceiver from receive to transmit mode. The BPS-MAC protocol uses a new sequential preamble-based medium access strategy which can be adapted to the hardware capabilities of the transceivers. The protocol achieves a very low packet loss rate even in wireless networks with high node density and event-driven traffic without the need of synchronization. This makes the protocol attractive to applications such as structural health monitoring, where event suppression is not an option. Moreover, acknowledgments or complex retransmission strategies become almost unnecessary since the sequential preamble-based contention resolution mechanism minimizes the collision probability. However, packets can still be lost as a consequence of interference or other issues which affect signal propagation. The second contribution consists of a new routing protocol which is able to quickly detect topology changes without generating a large amount of overhead. The key characteristics of the Statistic-Based Routing (SBR) protocol are high end-to-end reliability (in fixed and mobile networks), load balancing capabilities, a smooth continuous routing metric, quick adaptation to changing network conditions, low processing and memory requirements, low overhead, support of unidirectional links and simplicity. The protocol can establish routes in a hybrid or a proactive mode and uses an adaptive continuous routing metric which makes it very flexible in terms of scalability while maintaining stable routes. The hybrid mode is optimized for low-power WSNs since routes are only established on demand. The difference of the hybrid mode to reactive routing strategies is that routing messages are periodically transmitted to maintain already established routes. However, the protocol stops the transmission of routing messages if no data packets are transmitted for a certain time period in order to minimize the routing overhead and the energy consumption. The proactive mode is designed for high data rate networks which have less energy constraints. In this mode, the protocol periodically transmits routing messages to establish routes in a proactive way even in the absence of data traffic. Thus, nodes in the network can immediately transmit data since the route to the destination is already established in advance. In addition, a new delay-based routing message forwarding strategy is introduced. The forwarding strategy is part of SBR but can also be applied to many routing protocols in order to modify the established topology. The strategy can be used, e.g. in mobile networks, to decrease the packet loss by deferring routing messages with respect to the neighbor change rate. Thus, nodes with a stable neighborhood forward messages faster than nodes within a fast changing neighborhood. As a result, routes are established through nodes with correlated movement which results in fewer topology changes due to higher link durations.}, subject = {Routing}, language = {en} } @phdthesis{Henjes2010, author = {Henjes, Robert}, title = {Performance Evaluation of Publish/Subscribe Middleware Architectures}, doi = {10.25972/OPUS-4536}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-53388}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {While developing modern applications, it is necessary to ensure an efficient and performant communication between different applications. In current environments, a middleware software is used, which supports the publish/subscribe communication pattern. Using this communication pattern, a publisher sends information encapsulated in messages to the middleware. A subscriber registers its interests at the middleware. The monograph describes three different steps to determine the performance of such a system. In a first step, the message throughput performance of a publish/subscribe in different scenarios is measured using a Java Message Service (JMS) based implementation. In the second step the maximum achievable message throughput is described by adapted models depending on the filter complexity and the replication grade. Using the model, the performance characteristics of a specific system in a given scenario can be determined. These numbers are used for the queuing model described in the third part of the thesis, which supports the dimensioning of a system in realistic scenarios. Additionally, we introduce a method to approximate an M/G/1 system numerically in an efficient way, which can be used for real time analysis to predict the expected performance in a certain scenario. Finally, the analytical model is used to investigate different possibilities to ensure the scalability of the maximum achievable message throughput of the overall system.}, subject = {Middleware}, language = {en} } @phdthesis{Geissler2022, author = {Geißler, Stefan}, title = {Performance Evaluation of Next-Generation Data Plane Architectures and their Components}, issn = {1432-8801}, doi = {10.25972/OPUS-26015}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260157}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {In this doctoral thesis we cover the performance evaluation of next generation data plane architectures, comprised of complex software as well as programmable hardware components that allow fine granular configuration. In the scope of the thesis we propose mechanisms to monitor the performance of singular components and model key performance indicators of software based packet processing solutions. We present novel approaches towards network abstraction that allow the integration of heterogeneous data plane technologies into a singular network while maintaining total transparency between control and data plane. Finally, we investigate a full, complex system consisting of multiple software-based solutions and perform a detailed performance analysis. We employ simulative approaches to investigate overload control mechanisms that allow efficient operation under adversary conditions. The contributions of this work build the foundation for future research in the areas of network softwarization and network function virtualization.}, subject = {Leistungsbewertung}, language = {en} } @article{HirthSeufertLangeetal.2021, author = {Hirth, Matthias and Seufert, Michael and Lange, Stanislav and Meixner, Markus and Tran-Gia, Phuoc}, title = {Performance evaluation of hybrid crowdsensing and fixed sensor systems for event detection in urban environments}, series = {Sensors}, volume = {21}, journal = {Sensors}, number = {17}, issn = {1424-8220}, doi = {10.3390/s21175880}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245245}, year = {2021}, abstract = {Crowdsensing offers a cost-effective way to collect large amounts of environmental sensor data; however, the spatial distribution of crowdsensing sensors can hardly be influenced, as the participants carry the sensors, and, additionally, the quality of the crowdsensed data can vary significantly. Hybrid systems that use mobile users in conjunction with fixed sensors might help to overcome these limitations, as such systems allow assessing the quality of the submitted crowdsensed data and provide sensor values where no crowdsensing data are typically available. In this work, we first used a simulation study to analyze a simple crowdsensing system concerning the detection performance of spatial events to highlight the potential and limitations of a pure crowdsourcing system. The results indicate that even if only a small share of inhabitants participate in crowdsensing, events that have locations correlated with the population density can be easily and quickly detected using such a system. On the contrary, events with uniformly randomly distributed locations are much harder to detect using a simple crowdsensing-based approach. A second evaluation shows that hybrid systems improve the detection probability and time. Finally, we illustrate how to compute the minimum number of fixed sensors for the given detection time thresholds in our exemplary scenario.}, language = {en} } @phdthesis{Hossfeld2009, author = {Hoßfeld, Tobias}, title = {Performance Evaluation of Future Internet Applications and Emerging User Behavior}, doi = {10.25972/OPUS-3067}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-37570}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {In future telecommunication systems, we observe an increasing diversity of access networks. The separation of transport services and applications or services leads to multi-network services, i.e., a future service has to work transparently to the underlying network infrastructure. Multi-network services with edge-based intelligence, like P2P file sharing or the Skype VoIP service, impose new traffic control paradigms on the future Internet. Such services adapt the amount of consumed bandwidth to reach different goals. A selfish behavior tries to keep the QoE of a single user above a certain level. Skype, for instance, repeats voice samples depending on the perceived end-to-end loss. From the viewpoint of a single user, the replication of voice data overcomes the degradation caused by packet loss and enables to maintain a certain QoE. The cost for this achievement is a higher amount of consumed bandwidth. However, if the packet loss is caused by congestion in the network, this additionally required bandwidth even worsens the network situation. Altruistic behavior, on the other side, would reduce the bandwidth consumption in such a way that the pressure on the network is released and thus the overall network performance is improved. In this monograph, we analyzed the impact of the overlay, P2P, and QoE paradigms in future Internet applications and the interactions from the observing user behavior. The shift of intelligence toward the edge is accompanied by a change in the emerging user behavior and traffic profile, as well as a change from multi-service networks to multi-networks services. In addition, edge-based intelligence may lead to a higher dynamics in the network topology, since the applications are often controlled by an overlay network, which can rapidly change in size and structure as new nodes can leave or join the overlay network in an entirely distributed manner. As a result, we found that the performance evaluation of such services provides new challenges, since novel key performance factors have to be first identified, like pollution of P2P systems, and appropriate models of the emerging user behavior are required, e.g. taking into account user impatience. As common denominator of the presented studies in this work, we focus on a user-centric view when evaluating the performance of future Internet applications. For a subscriber of a certain application or service, the perceived quality expressed as QoE will be the major criterion of the user's satisfaction with the network and service providers. We selected three different case studies and characterized the application's performance from the end user's point of view. Those are (1) cooperation in mobile P2P file sharing networks, (2) modeling of online TV recording services, and (3) QoE of edge-based VoIP applications. The user-centric approach facilitates the development of new mechanisms to overcome problems arising from the changing user behavior. An example is the proposed CycPriM cooperation strategy, which copes with selfish user behavior in mobile P2P file sharing system. An adequate mechanism has also been shown to be efficient in a heterogeneous B3G network with mobile users conducting vertical handovers between different wireless access technologies. The consideration of the user behavior and the user perceived quality guides to an appropriate modeling of future Internet applications. In the case of the online TV recording service, this enables the comparison between different technical realizations of the system, e.g. using server clusters or P2P technology, to properly dimension the installed network elements and to assess the costs for service providers. Technologies like P2P help to overcome phenomena like flash crowds and improve scalability compared to server clusters, which may get overloaded in such situations. Nevertheless, P2P technology invokes additional challenges and different user behavior to that seen in traditional client/server systems. Beside the willingness to share files and the churn of users, peers may be malicious and offer fake contents to disturb the data dissemination. Finally, the understanding and the quantification of QoE with respect to QoS degradations permits designing sophisticated edge-based applications. To this end, we identified and formulated the IQX hypothesis as an exponential interdependency between QoE and QoS parameters, which we validated for different examples. The appropriate modeling of the emerging user behavior taking into account the user's perceived quality and its interactions with the overlay and P2P paradigm will finally help to design future Internet applications.}, subject = {Leistungsbewertung}, language = {en} } @phdthesis{Milbrandt2007, author = {Milbrandt, Jens}, title = {Performance Evaluation of Efficient Resource Management Concepts for Next Generation IP Networks}, doi = {10.25972/OPUS-1991}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-23332}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Next generation networks (NGNs) must integrate the services of current circuit-switched telephone networks and packet-switched data networks. This convergence towards a unified communication infrastructure necessitates from the high capital expenditures (CAPEX) and operational expenditures (OPEX) due to the coexistence of separate networks for voice and data. In the end, NGNs must offer the same services as these legacy networks and, therefore, they must provide a low-cost packet-switched solution with real-time transport capabilities for telephony and multimedia applications. In addition, NGNs must be fault-tolerant to guarantee user satisfaction and to support business-critical processes also in case of network failures. A key technology for the operation of NGNs is the Internet Protocol (IP) which evolved to a common and well accepted standard for networking in the Internet during the last 25 years. There are two basically different approaches to achieve QoS in IP networks. With capacity overprovisioning (CO), an IP network is equipped with sufficient bandwidth such that network congestion becomes very unlikely and QoS is maintained most of the time. The second option to achieve QoS in IP networks is admission control (AC). AC represents a network-inherent intelligence that admits real-time traffic flows to a single link or an entire network only if enough resources are available such that the requirements on packet loss and delay can be met. Otherwise, the request of a new flow is blocked. This work focuses on resource management and control mechanisms for NGNs, in particular on AC and associated bandwidth allocation methods. The first contribution consists of a new link-oriented AC method called experience-based admission control (EBAC) which is a hybrid approach dealing with the problems inherent to conventional AC mechanisms like parameter-based or measurement-based AC (PBAC/MBAC). PBAC provides good QoS but suffers from poor resource utilization and, vice versa, MBAC uses resources efficiently but is susceptible to QoS violations. Hence, EBAC aims at increasing the resource efficiency while maintaining the QoS which increases the revenues of ISPs and postpones their CAPEX for infrastructure upgrades. To show the advantages of EBAC, we first review today's AC approaches and then develop the concept of EBAC. EBAC is a simple mechanism that safely overbooks the capacity of a single link to increase its resource utilization. We evaluate the performance of EBAC by its simulation under various traffic conditions. The second contribution concerns dynamic resource allocation in transport networks which implement a specific network admission control (NAC) architecture. In general, the performance of different NAC systems may be evaluated by conventional methods such as call blocking analysis which has often been applied in the context of multi-service asynchronous transfer mode (ATM) networks. However, to yield more practical results than abstract blocking probabilities, we propose a new method to compare different AC approaches by their respective bandwidth requirements. To present our new method for comparing different AC systems, we first give an overview of network resource management (NRM) in general. Then we present the concept of adaptive bandwidth allocation (ABA) in capacity tunnels and illustrate the analytical performance evaluation framework to compare different AC systems by their capacity requirements. Different network characteristics influence the performance of ABA. Therefore, the impact of various traffic demand models and tunnel implementations, and the influence of resilience requirements is investigated. In conclusion, the resources in NGNs must be exclusively dedicated to admitted traffic to guarantee QoS. For that purpose, robust and efficient concepts for NRM are required to control the requested bandwidth with regard to the available transmission capacity. Sophisticated AC will be a key function for NRM in NGNs and, therefore, efficient resource management concepts like experience-based admission control and adaptive bandwidth allocation for admission-controlled capacity tunnels, as presented in this work are appealing for NGN solutions.}, subject = {Ressourcenmanagement}, language = {en} } @phdthesis{Lehrieder2013, author = {Lehrieder, Frank}, title = {Performance Evaluation and Optimization of Content Distribution using Overlay Networks}, doi = {10.25972/OPUS-6420}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-76018}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {The work presents a performance evaluation and optimization of so-called overlay networks for content distribution in the Internet. Chapter 1 describes the importance which have such networks in today's Internet, for example, for the transmission of video content. The focus of this work is on overlay networks based on the peer-to-peer principle. These are characterized by the fact that users who download content, also contribute to the distribution process by sharing parts of the data to other users. This enables efficient content distribution because each user not only consumes resources in the system, but also provides its own resources. Chapter 2 of the monograph contains a detailed description of the functionality of today's most popular overlay network BitTorrent. It explains the various components and their interaction. This is followed by an illustration of why such overlay networks for Internet service providers (ISPs) are problematic. The reason lies in the large amount of inter-ISP traffic that is produced by these overlay networks. Since this inter-ISP traffic leads to high costs for ISPs, they try to reduce it by improved mechanisms for overlay networks. One optimization approach is the use of topology awareness within the overlay networks. It provides users of the overlay networks with information about the underlying physical network topology. This allows them to avoid inter-ISP traffic by exchanging data preferrentially with other users that are connected to the same ISP. Another approach to save inter-ISP traffic is caching. In this case the ISP provides additional computers in its network, called caches, which store copies of popular content. The users of this ISP can then obtain such content from the cache. This prevents that the content must be retrieved from locations outside of the ISP's network, and saves costly inter-ISP traffic in this way. In the third chapter of the thesis, the results of a comprehensive measurement study of overlay networks, which can be found in today's Internet, are presented. After a short description of the measurement methodology, the results of the measurements are described. These results contain data on a variety of characteristics of current P2P overlay networks in the Internet. These include the popularity of content, i.e., how many users are interested in specific content, the evolution of the popularity and the size of the files. The distribution of users within the Internet is investigated in detail. Special attention is given to the number of users that exchange a particular file within the same ISP. On the basis of these measurement results, an estimation of the traffic savings that can achieved by topology awareness is derived. This new estimation is of scientific and practical importance, since it is not limited to individual ISPs and files, but considers the whole Internet and the total amount of data exchanged in overlay networks. Finally, the characteristics of regional content are considered, in which the popularity is limited to certain parts of the Internet. This is for example the case of videos in German, Italian or French language. Chapter 4 of the thesis is devoted to the optimization of overlay networks for content distribution through caching. It presents a deterministic flow model that describes the influence of caches. On the basis of this model, it derives an estimate of the inter-ISP traffic that is generated by an overlay network, and which part can be saved by caches. The results show that the influence of the cache depends on the structure of the overlay networks, and that caches can also lead to an increase in inter-ISP traffic under certain circumstances. The described model is thus an important tool for ISPs to decide for which overlay networks caches are useful and to dimension them. Chapter 5 summarizes the content of the work and emphasizes the importance of the findings. In addition, it explains how the findings can be applied to the optimization of future overlay networks. Special attention is given to the growing importance of video-on-demand and real-time video transmissions.}, subject = {Leistungsbewertung}, language = {en} } @phdthesis{Oechsner2010, author = {Oechsner, Simon}, title = {Performance Challenges and Optimization Potential of Peer-to-Peer Overlay Technologies}, doi = {10.25972/OPUS-4159}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-50015}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {In today's Internet, building overlay structures to provide a service is becoming more and more common. This approach allows for the utilization of client resources, thus being more scalable than a client-server model in this respect. However, in these architectures the quality of the provided service depends on the clients and is therefore more complex to manage. Resource utilization, both at the clients themselves and in the underlying network, determine the efficiency of the overlay application. Here, a trade-off exists between the resource providers and the end users that can be tuned via overlay mechanisms. Thus, resource management and traffic management is always quality-of-service management as well. In this monograph, the three currently significant and most widely used overlay types in the Internet are considered. These overlays are implemented in popular applications which only recently have gained importance. Thus, these overlay networks still face real-world technical challenges which are of high practical relevance. We identify the specific issues for each of the considered overlays, and show how their optimization affects the trade-offs between resource efficiency and service quality. Thus, we supply new insights and system knowledge that is not provided by previous work.}, subject = {Overlay-Netz}, language = {en} } @phdthesis{Binzenhoefer2007, author = {Binzenh{\"o}fer, Andreas}, title = {Performance Analysis of Structured Overlay Networks}, doi = {10.25972/OPUS-2250}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-26291}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Overlay networks establish logical connections between users on top of the physical network. While randomly connected overlay networks provide only a best effort service, a new generation of structured overlay systems based on Distributed Hash Tables (DHTs) was proposed by the research community. However, there is still a lack of understanding the performance of such DHTs. Additionally, those architectures are highly distributed and therefore appear as a black box to the operator. Yet an operator does not want to lose control over his system and needs to be able to continuously observe and examine its current state at runtime. This work addresses both problems and shows how the solutions can be combined into a more self-organizing overlay concept. At first, we evaluate the performance of structured overlay networks under different aspects and thereby illuminate in how far such architectures are able to support carrier-grade applications. Secondly, to enable operators to monitor and understand their deployed system in more detail, we introduce both active as well as passive methods to gather information about the current state of the overlay network.}, subject = {Overlay-Netz}, language = {en} } @techreport{HasslingerNtougiasHasslingeretal.2023, type = {Working Paper}, author = {Hasslinger, Gerhard and Ntougias, Konstantinos and Hasslinger, Frank and Hohlfeld, Oliver}, title = {Performance Analysis of Basic Web Caching Strategies (LFU, LRU, FIFO, ...) with Time-To-Live Data Validation}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32204}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322048}, pages = {5}, year = {2023}, abstract = {Web caches often use a Time-to-live (TTL) limit to validate data consistency with web servers. We study the impact of TTL constraints on the hit ratio of basic strategies in caches of fixed size. We derive analytical results and confirm their accuracy in comparison to simulations. We propose a score-based caching method with awareness of the current TTL per data for improving the hit ratio close to the upper bound.}, language = {en} }