@article{AliMontenegro2016, author = {Ali, Qasim and Montenegro, Sergio}, title = {Decentralized control for scalable quadcopter formations}, series = {International Journal of Aerospace Engineering}, volume = {2016}, journal = {International Journal of Aerospace Engineering}, doi = {10.1155/2016/9108983}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146704}, pages = {9108983}, year = {2016}, abstract = {An innovative framework has been developed for teamwork of two quadcopter formations, each having its specified formation geometry, assigned task, and matching control scheme. Position control for quadcopters in one of the formations has been implemented through a Linear Quadratic Regulator Proportional Integral (LQR PI) control scheme based on explicit model following scheme. Quadcopters in the other formation are controlled through LQR PI servomechanism control scheme. These two control schemes are compared in terms of their performance and control effort. Both formations are commanded by respective ground stations through virtual leaders. Quadcopters in formations are able to track desired trajectories as well as hovering at desired points for selected time duration. In case of communication loss between ground station and any of the quadcopters, the neighboring quadcopter provides the command data, received from the ground station, to the affected unit. Proposed control schemes have been validated through extensive simulations using MATLAB®/Simulink® that provided favorable results.}, language = {en} } @article{AliMontenegro2016, author = {Ali, Qasim and Montenegro, Sergio}, title = {Explicit Model Following Distributed Control Scheme for Formation Flying of Mini UAVs}, series = {IEEE Access}, volume = {4}, journal = {IEEE Access}, number = {397-406}, doi = {10.1109/ACCESS.2016.2517203}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146061}, year = {2016}, abstract = {A centralized heterogeneous formation flight position control scheme has been formulated using an explicit model following design, based on a Linear Quadratic Regulator Proportional Integral (LQR PI) controller. The leader quadcopter is a stable reference model with desired dynamics whose output is perfectly tracked by the two wingmen quadcopters. The leader itself is controlled through the pole placement control method with desired stability characteristics, while the two followers are controlled through a robust and adaptive LQR PI control method. Selected 3-D formation geometry and static stability are maintained under a number of possible perturbations. With this control scheme, formation geometry may also be switched to any arbitrary shape during flight, provided a suitable collision avoidance mechanism is incorporated. In case of communication loss between the leader and any of the followers, the other follower provides the data, received from the leader, to the affected follower. The stability of the closed-loop system has been analyzed using singular values. The proposed approach for the tightly coupled formation flight of mini unmanned aerial vehicles has been validated with the help of extensive simulations using MATLAB/Simulink, which provided promising results.}, language = {en} } @inproceedings{AliMontenegro2015, author = {Ali, Qasim and Montenegro, Sergio}, title = {A Simple Approach to Quadrocopter Formation Flying Test Setup for Education and Development}, series = {INTED2015 Proceedings}, booktitle = {INTED2015 Proceedings}, publisher = {International Academy of Technology, Education and Development (IATED)}, isbn = {978-84-606-5763-7}, issn = {2340-1079}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114495}, pages = {2776 -- 2784}, year = {2015}, abstract = {A simple test setup has been developed at Institute of Aerospace Information Technology, University of W{\"u}rzburg, Germany to realize basic functionalities for formation flight of quadrocopters. The test environment is planned to be utilized for developing and validating the algorithms for formation flying capability in real environment as well as for education purpose. An already existing test bed for single quadrocopter was extended with necessary inter-communication and distributed control mechanism to test the algorithms for formation flights in 2 degrees of freedom (roll / pitch). This study encompasses the domain of communication, control engineering and embedded systems programming. Bluetooth protocol has been used for inter-communication between two quadrocopters. A simple approach of PID control in combination with Kalman filter has been exploited. MATLAB Instrument Control Toolbox has been used for data display, plotting and analysis. Plots can be drawn in real-time and received information can also be stored in the form of files for later use and analysis. The test setup has been developed indigenously and at considerably low cost. Emphasis has been placed on simplicity to facilitate students learning process. Several lessons have been learnt during the course of development of this setup. Proposed setup is quite flexible that can be modified as per changing requirements.}, subject = {Flugk{\"o}rper}, language = {en} } @article{BencurovaShityakovSchaacketal.2022, author = {Bencurova, Elena and Shityakov, Sergey and Schaack, Dominik and Kaltdorf, Martin and Sarukhanyan, Edita and Hilgarth, Alexander and Rath, Christin and Montenegro, Sergio and Roth, G{\"u}nter and Lopez, Daniel and Dandekar, Thomas}, title = {Nanocellulose composites as smart devices with chassis, light-directed DNA Storage, engineered electronic properties, and chip integration}, series = {Frontiers in Bioengineering and Biotechnology}, volume = {10}, journal = {Frontiers in Bioengineering and Biotechnology}, issn = {2296-4185}, doi = {10.3389/fbioe.2022.869111}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-283033}, year = {2022}, abstract = {The rapid development of green and sustainable materials opens up new possibilities in the field of applied research. Such materials include nanocellulose composites that can integrate many components into composites and provide a good chassis for smart devices. In our study, we evaluate four approaches for turning a nanocellulose composite into an information storage or processing device: 1) nanocellulose can be a suitable carrier material and protect information stored in DNA. 2) Nucleotide-processing enzymes (polymerase and exonuclease) can be controlled by light after fusing them with light-gating domains; nucleotide substrate specificity can be changed by mutation or pH change (read-in and read-out of the information). 3) Semiconductors and electronic capabilities can be achieved: we show that nanocellulose is rendered electronic by iodine treatment replacing silicon including microstructures. Nanocellulose semiconductor properties are measured, and the resulting potential including single-electron transistors (SET) and their properties are modeled. Electric current can also be transported by DNA through G-quadruplex DNA molecules; these as well as classical silicon semiconductors can easily be integrated into the nanocellulose composite. 4) To elaborate upon miniaturization and integration for a smart nanocellulose chip device, we demonstrate pH-sensitive dyes in nanocellulose, nanopore creation, and kinase micropatterning on bacterial membranes as well as digital PCR micro-wells. Future application potential includes nano-3D printing and fast molecular processors (e.g., SETs) integrated with DNA storage and conventional electronics. This would also lead to environment-friendly nanocellulose chips for information processing as well as smart nanocellulose composites for biomedical applications and nano-factories.}, language = {en} } @article{GageikStrohmeierMontenegro2013, author = {Gageik, Nils and Strohmeier, Michael and Montenegro, Sergio}, title = {Waypoint flight parameter comparison of an autonomous UAV}, series = {International Journal of Artificial Intelligence \& Applications (IJAIA)}, journal = {International Journal of Artificial Intelligence \& Applications (IJAIA)}, doi = {10.5121/ijaia.2013.4304}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96833}, year = {2013}, abstract = {The present paper compares the effect of different waypoint parameters on the flight performance of a special autonomous indoor UAV (unmanned aerial vehicle) fusing ultrasonic, inertial, pressure and optical sensors for 3D positioning and controlling. The investigated parameters are the acceptance threshold for reaching a waypoint as well as the maximal waypoint step size or block size. The effect of these parameters on the flight time and accuracy of the flight path is investigated. Therefore the paper addresses how the acceptance threshold and step size influence the speed and accuracy of the autonomous flight and thus influence the performance of the presented autonomous quadrocopter under real indoor navigation circumstances. Furthermore the paper demonstrates a drawback of the standard potential field method for navigation of such autonomous quadrocopters and points to an improvement.}, language = {en} } @article{GageikStrohmeierMontenegro2013, author = {Gageik, Nils and Strohmeier, Michael and Montenegro, Sergio}, title = {An Autonomous UAV with an Optical Flow Sensor for Positioning and Navigation}, series = {International Journal of Advanced Robotic Systems}, journal = {International Journal of Advanced Robotic Systems}, doi = {10.5772/56813}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96368}, year = {2013}, abstract = {A procedure to control all six DOF (degrees of freedom) of a UAV (unmanned aerial vehicle) without an external reference system and to enable fully autonomous flight is presented here. For 2D positioning the principle of optical flow is used. Together with the output of height estimation, fusing ultrasonic, infrared and inertial and pressure sensor data, the 3D position of the UAV can be computed, controlled and steered. All data processing is done on the UAV. An external computer with a pathway planning interface is for commanding purposes only. The presented system is part of the AQopterI8 project, which aims to develop an autonomous flying quadrocopter for indoor application. The focus of this paper is 2D positioning using an optical flow sensor. As a result of the performed evaluation, it can be concluded that for position hold, the standard deviation of the position error is 10cm and after landing the position error is about 30cm.}, language = {en} } @article{KaiserLeschRotheetal.2020, author = {Kaiser, Dennis and Lesch, Veronika and Rothe, Julian and Strohmeier, Michael and Spieß, Florian and Krupitzer, Christian and Montenegro, Sergio and Kounev, Samuel}, title = {Towards Self-Aware Multirotor Formations}, series = {Computers}, volume = {9}, journal = {Computers}, number = {1}, issn = {2073-431X}, doi = {10.3390/computers9010007}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200572}, pages = {7}, year = {2020}, abstract = {In the present day, unmanned aerial vehicles become seemingly more popular every year, but, without regulation of the increasing number of these vehicles, the air space could become chaotic and uncontrollable. In this work, a framework is proposed to combine self-aware computing with multirotor formations to address this problem. The self-awareness is envisioned to improve the dynamic behavior of multirotors. The formation scheme that is implemented is called platooning, which arranges vehicles in a string behind the lead vehicle and is proposed to bring order into chaotic air space. Since multirotors define a general category of unmanned aerial vehicles, the focus of this thesis are quadcopters, platforms with four rotors. A modification for the LRA-M self-awareness loop is proposed and named Platooning Awareness. The implemented framework is able to offer two flight modes that enable waypoint following and the self-awareness module to find a path through scenarios, where obstacles are present on the way, onto a goal position. The evaluation of this work shows that the proposed framework is able to use self-awareness to learn about its environment, avoid obstacles, and can successfully move a platoon of drones through multiple scenarios.}, language = {en} }