@article{AtienzadeCastroCortesetal.2012, author = {Atienza, Nieves and de Castro, Natalia and Cort{\´e}s, Carmen and Garrido, M. {\´A}ngeles and Grima, Clara I. and Hern{\´a}ndez, Gregorio and M{\´a}rquez, Alberto and Moreno-Gonz{\´a}lez, Auxiliadora and N{\"o}llenburg, Martin and Portillo, Jos{\´e} Ram{\´o}n and Reyes, Pedro and Valenzuela, Jes{\´u}s and Trinidad Villar, Maria and Wolff, Alexander}, title = {Cover contact graphs}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78845}, year = {2012}, abstract = {We study problems that arise in the context of covering certain geometric objects called seeds (e.g., points or disks) by a set of other geometric objects called cover (e.g., a set of disks or homothetic triangles). We insist that the interiors of the seeds and the cover elements are pairwise disjoint, respectively, but they can touch. We call the contact graph of a cover a cover contact graph (CCG). We are interested in three types of tasks, both in the general case and in the special case of seeds on a line: (a) deciding whether a given seed set has a connected CCG, (b) deciding whether a given graph has a realization as a CCG on a given seed set, and (c) bounding the sizes of certain classes of CCG's. Concerning (a) we give efficient algorithms for the case that seeds are points and show that the problem becomes hard if seeds and covers are disks. Concerning (b) we show that this problem is hard even for point seeds and disk covers (given a fixed correspondence between graph vertices and seeds). Concerning (c) we obtain upper and lower bounds on the number of CCG's for point seeds.}, subject = {Informatik}, language = {de} } @phdthesis{Atzmueller2006, author = {Atzm{\"u}ller, Martin}, title = {Knowledge-Intensive Subgroup Mining - Techniques for Automatic and Interactive Discovery}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-21004}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Data mining has proved its significance in various domains and applications. As an important subfield of the general data mining task, subgroup mining can be used, e.g., for marketing purposes in business domains, or for quality profiling and analysis in medical domains. The goal is to efficiently discover novel, potentially useful and ultimately interesting knowledge. However, in real-world situations these requirements often cannot be fulfilled, e.g., if the applied methods do not scale for large data sets, if too many results are presented to the user, or if many of the discovered patterns are already known to the user. This thesis proposes a combination of several techniques in order to cope with the sketched problems: We discuss automatic methods, including heuristic and exhaustive approaches, and especially present the novel SD-Map algorithm for exhaustive subgroup discovery that is fast and effective. For an interactive approach we describe techniques for subgroup introspection and analysis, and we present advanced visualization methods, e.g., the zoomtable that directly shows the most important parameters of a subgroup and that can be used for optimization and exploration. We also describe various visualizations for subgroup comparison and evaluation in order to support the user during these essential steps. Furthermore, we propose to include possibly available background knowledge that is easy to formalize into the mining process. We can utilize the knowledge in many ways: To focus the search process, to restrict the search space, and ultimately to increase the efficiency of the discovery method. We especially present background knowledge to be applied for filtering the elements of the problem domain, for constructing abstractions, for aggregating values of attributes, and for the post-processing of the discovered set of patterns. Finally, the techniques are combined into a knowledge-intensive process supporting both automatic and interactive methods for subgroup mining. The practical significance of the proposed approach strongly depends on the available tools. We introduce the VIKAMINE system as a highly-integrated environment for knowledge-intensive active subgroup mining. Also, we present an evaluation consisting of two parts: With respect to objective evaluation criteria, i.e., comparing the efficiency and the effectiveness of the subgroup discovery methods, we provide an experimental evaluation using generated data. For that task we present a novel data generator that allows a simple and intuitive specification of the data characteristics. The results of the experimental evaluation indicate that the novel SD-Map method outperforms the other described algorithms using data sets similar to the intended application concerning the efficiency, and also with respect to precision and recall for the heuristic methods. Subjective evaluation criteria include the user acceptance, the benefit of the approach, and the interestingness of the results. We present five case studies utilizing the presented techniques: The approach has been successfully implemented in medical and technical applications using real-world data sets. The method was very well accepted by the users that were able to discover novel, useful, and interesting knowledge.}, subject = {Data Mining}, language = {en} } @phdthesis{Baier1998, author = {Baier, Herbert}, title = {Operators of Higher Order}, publisher = {Shaker Verlag}, isbn = {3-8265-4008-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140799}, school = {Universit{\"a}t W{\"u}rzburg}, pages = {V, 95}, year = {1998}, abstract = {Motivated by results on interactive proof systems we investigate the computational power of quantifiers applied to well-known complexity classes. In special, we are interested in existential, universal and probabilistic bounded error quantifiers ranging over words and sets of words, i.e. oracles if we think in a Turing machine model. In addition to the standard oracle access mechanism, we also consider quantifiers ranging over oracles to which access is restricted in a certain way.}, subject = {Komplexit{\"a}tstheorie}, language = {en} } @phdthesis{Baier2018, author = {Baier, Pablo A.}, title = {Simulator for Minimally Invasive Vascular Interventions: Hardware and Software}, isbn = {978-3-945459-22-5}, doi = {10.25972/OPUS-16119}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161190}, school = {Universit{\"a}t W{\"u}rzburg}, pages = {118}, year = {2018}, abstract = {A complete simulation system is proposed that can be used as an educational tool by physicians in training basic skills of Minimally Invasive Vascular Interventions. In the first part, a surface model is developed to assemble arteries having a planar segmentation. It is based on Sweep Surfaces and can be extended to T- and Y-like bifurcations. A continuous force vector field is described, representing the interaction between the catheter and the surface. The computation time of the force field is almost unaffected when the resolution of the artery is increased. The mechanical properties of arteries play an essential role in the study of the circulatory system dynamics, which has been becoming increasingly important in the treatment of cardiovascular diseases. In Virtual Reality Simulators, it is crucial to have a tissue model that responds in real time. In this work, the arteries are discretized by a two dimensional mesh and the nodes are connected by three kinds of linear springs. Three tissue layers (Intima, Media, Adventitia) are considered and, starting from the stretch-energy density, some of the elasticity tensor components are calculated. The physical model linearizes and homogenizes the material response, but it still contemplates the geometric nonlinearity. In general, if the arterial stretch varies by 1\% or less, then the agreement between the linear and nonlinear models is trustworthy. In the last part, the physical model of the wire proposed by Konings is improved. As a result, a simpler and more stable method is obtained to calculate the equilibrium configuration of the wire. In addition, a geometrical method is developed to perform relaxations. It is particularly useful when the wire is hindered in the physical method because of the boundary conditions. The physical and the geometrical methods are merged, resulting in efficient relaxations. Tests show that the shape of the virtual wire agrees with the experiment. The proposed algorithm allows real-time executions and the hardware to assemble the simulator has a low cost.}, subject = {Computersimulation}, language = {en} } @article{BaierBaierSaipSchillingetal.2016, author = {Baier, Pablo A. and Baier-Saip, J{\"u}rgen A. and Schilling, Klaus and Oliveira, Jauvane C.}, title = {Simulator for Minimally Invasive Vascular Interventions: Hardware and Software}, series = {Presence}, volume = {25}, journal = {Presence}, number = {2}, issn = {1531-3263}, doi = {10.1162/PRES_a_00250}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140580}, pages = {108-128}, year = {2016}, abstract = {In the present work, a simulation system is proposed that can be used as an educational tool by physicians in training basic skills of minimally invasive vascular interventions. In order to accomplish this objective, initially the physical model of the wire proposed by Konings has been improved. As a result, a simpler and more stable method was obtained to calculate the equilibrium configuration of the wire. In addition, a geometrical method is developed to perform relaxations. It is particularly useful when the wire is hindered in the physical method because of the boundary conditions. Then a recipe is given to merge the physical and the geometrical methods, resulting in efficient relaxations. Moreover, tests have shown that the shape of the virtual wire agrees with the experiment. The proposed algorithm allows real-time executions, and furthermore, the hardware to assemble the simulator has a low cost.}, language = {en} } @article{BartlWenningerWolfetal.2021, author = {Bartl, Andrea and Wenninger, Stephan and Wolf, Erik and Botsch, Mario and Latoschik, Marc Erich}, title = {Affordable but not cheap: a case study of the effects of two 3D-reconstruction methods of virtual humans}, series = {Frontiers in Virtual Reality}, volume = {2}, journal = {Frontiers in Virtual Reality}, doi = {10.3389/frvir.2021.694617}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260492}, year = {2021}, abstract = {Realistic and lifelike 3D-reconstruction of virtual humans has various exciting and important use cases. Our and others' appearances have notable effects on ourselves and our interaction partners in virtual environments, e.g., on acceptance, preference, trust, believability, behavior (the Proteus effect), and more. Today, multiple approaches for the 3D-reconstruction of virtual humans exist. They significantly vary in terms of the degree of achievable realism, the technical complexities, and finally, the overall reconstruction costs involved. This article compares two 3D-reconstruction approaches with very different hardware requirements. The high-cost solution uses a typical complex and elaborated camera rig consisting of 94 digital single-lens reflex (DSLR) cameras. The recently developed low-cost solution uses a smartphone camera to create videos that capture multiple views of a person. Both methods use photogrammetric reconstruction and template fitting with the same template model and differ in their adaptation to the method-specific input material. Each method generates high-quality virtual humans ready to be processed, animated, and rendered by standard XR simulation and game engines such as Unreal or Unity. We compare the results of the two 3D-reconstruction methods in an immersive virtual environment against each other in a user study. Our results indicate that the virtual humans from the low-cost approach are perceived similarly to those from the high-cost approach regarding the perceived similarity to the original, human-likeness, beauty, and uncanniness, despite significant differences in the objectively measured quality. The perceived feeling of change of the own body was higher for the low-cost virtual humans. Quality differences were perceived more strongly for one's own body than for other virtual humans.}, language = {en} } @phdthesis{Baunach2012, author = {Baunach, Marcel}, title = {Advances in Distributed Real-Time Sensor/Actuator Systems Operation - Operating Systems, Communication, and Application Design Concepts -}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-76489}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {This work takes a close look at several quite different research areas related to the design of networked embedded sensor/actuator systems. The variety of the topics illustrates the potential complexity of current sensor network applications; especially when enriched with actuators for proactivity and environmental interaction. Besides their conception, development, installation and long-term operation, we'll mainly focus on more "low-level" aspects: Compositional hardware and software design, task cooperation and collaboration, memory management, and real-time operation will be addressed from a local node perspective. In contrast, inter-node synchronization, communication, as well as sensor data acquisition, aggregation, and fusion will be discussed from a rather global network view. The diversity in the concepts was intentionally accepted to finally facilitate the reliable implementation of truly complex systems. In particular, these should go beyond the usual "sense and transmit of sensor data", but show how powerful today's networked sensor/actuator systems can be despite of their low computational performance and constrained hardware: If their resources are only coordinated efficiently!}, subject = {Eingebettetes System}, language = {en} } @article{BayerPruckner2023, author = {Bayer, Daniel and Pruckner, Marco}, title = {A digital twin of a local energy system based on real smart meter data}, series = {Energy Informatics}, volume = {6}, journal = {Energy Informatics}, doi = {10.1186/s42162-023-00263-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357456}, year = {2023}, abstract = {The steadily increasing usage of smart meters generates a valuable amount of high-resolution data about the individual energy consumption and production of local energy systems. Private households install more and more photovoltaic systems, battery storage and big consumers like heat pumps. Thus, our vision is to augment these collected smart meter time series of a complete system (e.g., a city, town or complex institutions like airports) with simulatively added previously named components. We, therefore, propose a novel digital twin of such an energy system based solely on a complete set of smart meter data including additional building data. Based on the additional geospatial data, the twin is intended to represent the addition of the abovementioned components as realistically as possible. Outputs of the twin can be used as a decision support for either system operators where to strengthen the system or for individual households where and how to install photovoltaic systems and batteries. Meanwhile, the first local energy system operators had such smart meter data of almost all residential consumers for several years. We acquire those of an exemplary operator and discuss a case study presenting some features of our digital twin and highlighting the value of the combination of smart meter and geospatial data.}, language = {en} } @article{BeckerCaminitiFiorellaetal.2013, author = {Becker, Martin and Caminiti, Saverio and Fiorella, Donato and Francis, Louise and Gravino, Pietro and Haklay, Mordechai (Muki) and Hotho, Andreas and Loreto, Virrorio and Mueller, Juergen and Ricchiuti, Ferdinando and Servedio, Vito D. P. and Sirbu, Alina and Tria, Franesca}, title = {Awareness and Learning in Participatory Noise Sensing}, series = {PLOS ONE}, volume = {8}, journal = {PLOS ONE}, number = {12}, issn = {1932-6203}, doi = {10.1371/journal.pone.0081638}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127675}, pages = {e81638}, year = {2013}, abstract = {The development of ICT infrastructures has facilitated the emergence of new paradigms for looking at society and the environment over the last few years. Participatory environmental sensing, i.e. directly involving citizens in environmental monitoring, is one example, which is hoped to encourage learning and enhance awareness of environmental issues. In this paper, an analysis of the behaviour of individuals involved in noise sensing is presented. Citizens have been involved in noise measuring activities through the WideNoise smartphone application. This application has been designed to record both objective (noise samples) and subjective (opinions, feelings) data. The application has been open to be used freely by anyone and has been widely employed worldwide. In addition, several test cases have been organised in European countries. Based on the information submitted by users, an analysis of emerging awareness and learning is performed. The data show that changes in the way the environment is perceived after repeated usage of the application do appear. Specifically, users learn how to recognise different noise levels they are exposed to. Additionally, the subjective data collected indicate an increased user involvement in time and a categorisation effect between pleasant and less pleasant environments.}, language = {en} } @article{BencurovaShityakovSchaacketal.2022, author = {Bencurova, Elena and Shityakov, Sergey and Schaack, Dominik and Kaltdorf, Martin and Sarukhanyan, Edita and Hilgarth, Alexander and Rath, Christin and Montenegro, Sergio and Roth, G{\"u}nter and Lopez, Daniel and Dandekar, Thomas}, title = {Nanocellulose composites as smart devices with chassis, light-directed DNA Storage, engineered electronic properties, and chip integration}, series = {Frontiers in Bioengineering and Biotechnology}, volume = {10}, journal = {Frontiers in Bioengineering and Biotechnology}, issn = {2296-4185}, doi = {10.3389/fbioe.2022.869111}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-283033}, year = {2022}, abstract = {The rapid development of green and sustainable materials opens up new possibilities in the field of applied research. Such materials include nanocellulose composites that can integrate many components into composites and provide a good chassis for smart devices. In our study, we evaluate four approaches for turning a nanocellulose composite into an information storage or processing device: 1) nanocellulose can be a suitable carrier material and protect information stored in DNA. 2) Nucleotide-processing enzymes (polymerase and exonuclease) can be controlled by light after fusing them with light-gating domains; nucleotide substrate specificity can be changed by mutation or pH change (read-in and read-out of the information). 3) Semiconductors and electronic capabilities can be achieved: we show that nanocellulose is rendered electronic by iodine treatment replacing silicon including microstructures. Nanocellulose semiconductor properties are measured, and the resulting potential including single-electron transistors (SET) and their properties are modeled. Electric current can also be transported by DNA through G-quadruplex DNA molecules; these as well as classical silicon semiconductors can easily be integrated into the nanocellulose composite. 4) To elaborate upon miniaturization and integration for a smart nanocellulose chip device, we demonstrate pH-sensitive dyes in nanocellulose, nanopore creation, and kinase micropatterning on bacterial membranes as well as digital PCR micro-wells. Future application potential includes nano-3D printing and fast molecular processors (e.g., SETs) integrated with DNA storage and conventional electronics. This would also lead to environment-friendly nanocellulose chips for information processing as well as smart nanocellulose composites for biomedical applications and nano-factories.}, language = {en} } @phdthesis{Betz2005, author = {Betz, Christian}, title = {Scalable authoring of diagnostic case based training systems}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-17885}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {Diagnostic Case Based Training Systems (D-CBT) provide learners with a means to learn and exercise knowledge in a realistic context. In medical education, D-CBT Systems present virtual patients to the learners who are asked to examine, diagnose and state therapies for these patients. Due a number of conflicting and changing requirements, e.g. time for learning, authoring effort, several systems were developed so far. These systems range from simple, easy-to-use presentation systems to highly complex knowledge based systems supporting explorative learning. This thesis presents an approach and tools to create D-CBT systems from existing sources (documents, e.g. dismissal records) using existing tools (word processors): Authors annotate and extend the documents to model the knowledge. A scalable knowledge representation is able to capture the content on multiple levels, from simple to highly structured knowledge. Thus, authoring of D-CBT systems requires less prerequisites and pre-knowledge and is faster than approaches using specialized authoring environments. Also, authors can iteratively add and structure more knowledge to adapt training cases to their learners needs. The theses also discusses the application of the same approach to other domains, especially to knowledge acquisition for the Semantic Web.}, subject = {Computerunterst{\"u}tztes Lernen}, language = {en} } @phdthesis{Binder2006, author = {Binder, Andreas}, title = {Die stochastische Wissenschaft und zwei Teilsysteme eines Web-basierten Informations- und Anwendungssystems zu ihrer Etablierung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-26146}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Das stochastische Denken, die Bernoullische Stochastik und dessen informationstechnologische Umsetzung, namens Stochastikon stellen die Grundlage f{\"u}r das Verst{\"a}ndnis und die erfolgreiche Nutzung einer stochastischen Wissenschaft dar. Im Rahmen dieser Arbeit erfolgt eine Kl{\"a}rung des Begriffs des stochastischen Denkens, eine anschauliche Darstellung der von Elart von Collani entwickelten Bernoullischen Stochastik und eine Beschreibung von Stochastikon. Dabei werden sowohl das Gesamtkonzept von Stochastikon, sowie die Ziele, Aufgaben und die Realisierung der beiden Teilsysteme namens Mentor und Encyclopedia vorgestellt. Das stochastische Denken erlaubt eine realit{\"a}tsnahe Sichtweise der Dinge, d.h. eine Sichtweise, die mit den menschlichen Beobachtungen und Erfahrungen im Einklang steht und somit die Unsicherheit {\"u}ber zuk{\"u}nftige Entwicklungen ber{\"u}cksichtigt. Der in diesem Kontext verwendete Begriff der Unsicherheit bezieht sich ausschließlich auf zuk{\"u}nftige Entwicklungen und {\"a}ußert sich in Variabilit{\"a}t. Quellen der Unsicherheit sind einerseits die menschliche Ignoranz und andererseits der Zufall. Unter Ignoranz wird hierbei die Unwissenheit des Menschen {\"u}ber die unbekannten, aber feststehenden Fakten verstanden, die die Anfangsbedingungen der zuk{\"u}nftigen Entwicklung repr{\"a}sentieren. Die Bernoullische Stochastik liefert ein Regelwerk und erm{\"o}glicht die Entwicklung eines quantitativen Modells zur Beschreibung der Unsicherheit und expliziter Einbeziehung der beiden Quellen Ignoranz und Zufall. Das Modell tr{\"a}gt den Namen Bernoulli-Raum und bildet die Grundlage f{\"u}r die Herleitung quantitativer Verfahren, um zuverl{\"a}ssige und genaue Aussagen sowohl {\"u}ber die nicht-existente zuf{\"a}llige Zukunft (Vorhersageverfahren), als auch {\"u}ber die unbekannte feststehende Vergangenheit (Messverfahren). Das Softwaresystem Stochastikon implementiert die Bernoullische Stochastik in Form einer Reihe autarker, miteinander kommunizierender Teilsysteme. Ziel des Teilsystems Encyclopedia ist die Bereitstellung und Bewertung stochastischen Wissens. Das Teilsystem Mentor dient der Unterst{\"u}tzung des Anwenders bei der Probleml{\"o}sungsfindung durch Identifikation eines richtigen Modells bzw. eines korrekten Bernoulli-Raums. Der L{\"o}sungsfindungsprozess selber enth{\"a}lt keinerlei Unsicherheit. Die ganze Unsicherheit steckt in der L{\"o}sung, d.h. im Bernoulli-Raum, der explizit die vorhandene Unwissenheit (Ignoranz) und den vorliegenden Zufall abdeckend enth{\"a}lt.}, subject = {Stochastik}, language = {de} } @phdthesis{Binzenhoefer2007, author = {Binzenh{\"o}fer, Andreas}, title = {Performance Analysis of Structured Overlay Networks}, doi = {10.25972/OPUS-2250}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-26291}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Overlay networks establish logical connections between users on top of the physical network. While randomly connected overlay networks provide only a best effort service, a new generation of structured overlay systems based on Distributed Hash Tables (DHTs) was proposed by the research community. However, there is still a lack of understanding the performance of such DHTs. Additionally, those architectures are highly distributed and therefore appear as a black box to the operator. Yet an operator does not want to lose control over his system and needs to be able to continuously observe and examine its current state at runtime. This work addresses both problems and shows how the solutions can be combined into a more self-organizing overlay concept. At first, we evaluate the performance of structured overlay networks under different aspects and thereby illuminate in how far such architectures are able to support carrier-grade applications. Secondly, to enable operators to monitor and understand their deployed system in more detail, we introduce both active as well as passive methods to gather information about the current state of the overlay network.}, subject = {Overlay-Netz}, language = {en} } @phdthesis{Bleier2023, author = {Bleier, Michael}, title = {Underwater Laser Scanning - Refractive Calibration, Self-calibration and Mapping for 3D Reconstruction}, isbn = {978-3-945459-45-4}, doi = {10.25972/OPUS-32269}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322693}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {There is great interest in affordable, precise and reliable metrology underwater: Archaeologists want to document artifacts in situ with high detail. In marine research, biologists require the tools to monitor coral growth and geologists need recordings to model sediment transport. Furthermore, for offshore construction projects, maintenance and inspection millimeter-accurate measurements of defects and offshore structures are essential. While the process of digitizing individual objects and complete sites on land is well understood and standard methods, such as Structure from Motion or terrestrial laser scanning, are regularly applied, precise underwater surveying with high resolution is still a complex and difficult task. Applying optical scanning techniques in water is challenging due to reduced visibility caused by turbidity and light absorption. However, optical underwater scanners provide significant advantages in terms of achievable resolution and accuracy compared to acoustic systems. This thesis proposes an underwater laser scanning system and the algorithms for creating dense and accurate 3D scans in water. It is based on laser triangulation and the main optical components are an underwater camera and a cross-line laser projector. The prototype is configured with a motorized yaw axis for capturing scans from a tripod. Alternatively, it is mounted to a moving platform for mobile mapping. The main focus lies on the refractive calibration of the underwater camera and laser projector, the image processing and 3D reconstruction. For highest accuracy, the refraction at the individual media interfaces must be taken into account. This is addressed by an optimization-based calibration framework using a physical-geometric camera model derived from an analytical formulation of a ray-tracing projection model. In addition to scanning underwater structures, this work presents the 3D acquisition of semi-submerged structures and the correction of refraction effects. As in-situ calibration in water is complex and time-consuming, the challenge of transferring an in-air scanner calibration to water without re-calibration is investigated, as well as self-calibration techniques for structured light. The system was successfully deployed in various configurations for both static scanning and mobile mapping. An evaluation of the calibration and 3D reconstruction using reference objects and a comparison of free-form surfaces in clear water demonstrate the high accuracy potential in the range of one millimeter to less than one centimeter, depending on the measurement distance. Mobile underwater mapping and motion compensation based on visual-inertial odometry is demonstrated using a new optical underwater scanner based on fringe projection. Continuous registration of individual scans allows the acquisition of 3D models from an underwater vehicle. RGB images captured in parallel are used to create 3D point clouds of underwater scenes in full color. 3D maps are useful to the operator during the remote control of underwater vehicles and provide the building blocks to enable offshore inspection and surveying tasks. The advancing automation of the measurement technology will allow non-experts to use it, significantly reduce acquisition time and increase accuracy, making underwater metrology more cost-effective.}, subject = {Selbstkalibrierung}, language = {en} } @phdthesis{Borrmann2018, author = {Borrmann, Dorit}, title = {Multi-modal 3D mapping - Combining 3D point clouds with thermal and color information}, isbn = {978-3-945459-20-1}, issn = {1868-7474}, doi = {10.25972/OPUS-15708}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157085}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Imagine a technology that automatically creates a full 3D thermal model of an environment and detects temperature peaks in it. For better orientation in the model it is enhanced with color information. The current state of the art for analyzing temperature related issues is thermal imaging. It is relevant for energy efficiency but also for securing important infrastructure such as power supplies and temperature regulation systems. Monitoring and analysis of the data for a large building is tedious as stable conditions need to be guaranteed for several hours and detailed notes about the pose and the environment conditions for each image must be taken. For some applications repeated measurements are necessary to monitor changes over time. The analysis of the scene is only possible through expertise and experience. This thesis proposes a robotic system that creates a full 3D model of the environment with color and thermal information by combining thermal imaging with the technology of terrestrial laser scanning. The addition of a color camera facilitates the interpretation of the data and allows for other application areas. The data from all sensors collected at different positions is joined in one common reference frame using calibration and scan matching. The first part of the thesis deals with 3D point cloud processing with the emphasis on accessing point cloud data efficiently, detecting planar structures in the data and registering multiple point clouds into one common coordinate system. The second part covers the autonomous exploration and data acquisition with a mobile robot with the objective to minimize the unseen area in 3D space. Furthermore, the combination of different modalities, color images, thermal images and point cloud data through calibration is elaborated. The last part presents applications for the the collected data. Among these are methods to detect the structure of building interiors for reconstruction purposes and subsequent detection and classification of windows. A system to project the gathered thermal information back into the scene is presented as well as methods to improve the color information and to join separately acquired point clouds and photo series. A full multi-modal 3D model contains all the relevant geometric information about the recorded scene and enables an expert to fully analyze it off-site. The technology clears the path for automatically detecting points of interest thereby helping the expert to analyze the heat flow as well as localize and identify heat leaks. The concept is modular and neither limited to achieving energy efficiency nor restricted to the use in combination with a mobile platform. It also finds its application in fields such as archaeology and geology and can be extended by further sensors.}, subject = {Punktwolke}, language = {en} } @article{BrevesDodel2021, author = {Breves, Priska and Dodel, Nicola}, title = {The influence of cybersickness and the media devices' mobility on the persuasive effects of 360° commercials}, series = {Multimedia Tools and Applications}, volume = {80}, journal = {Multimedia Tools and Applications}, number = {18}, issn = {1573-7721}, doi = {10.1007/s11042-021-11057-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-269194}, pages = {27299-27322}, year = {2021}, abstract = {With the rise of immersive media, advertisers have started to use 360° commercials to engage and persuade consumers. Two experiments were conducted to address research gaps and to validate the positive impact of 360° commercials in realistic settings. The first study (N = 62) compared the effects of 360° commercials using either a mobile cardboard head-mounted display (HMD) or a laptop. This experiment was conducted in the participants' living rooms and incorporated individual feelings of cybersickness as a moderator. The participants who experienced the 360° commercial with the HMD reported higher spatial presence and product evaluation, but their purchase intentions were only increased when their reported cybersickness was low. The second experiment (N = 197) was conducted online and analyzed the impact of 360° commercials that were experienced with mobile (smartphone/tablet) or static (laptop/desktop) devices instead of HMDs. The positive effects of omnidirectional videos were stronger when participants used mobile devices.}, language = {en} } @techreport{BrischKasslerVestinetal.2023, type = {Working Paper}, author = {Brisch, Fabian and Kassler, Andreas and Vestin, Jonathan and Pieska, Marcus and Amend, Markus}, title = {Accelerating Transport Layer Multipath Packet Scheduling for 5G-ATSSS}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32205}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322052}, pages = {4}, year = {2023}, abstract = {Utilizing multiple access networks such as 5G, 4G, and Wi-Fi simultaneously can lead to increased robustness, resiliency, and capacity for mobile users. However, transparently implementing packet distribution over multiple paths within the core of the network faces multiple challenges including scalability to a large number of customers, low latency, and high-capacity packet processing requirements. In this paper, we offload congestion-aware multipath packet scheduling to a smartNIC. However, such hardware acceleration faces multiple challenges due to programming language and platform limitations. We implement different multipath schedulers in P4 with different complexity in order to cope with dynamically changing path capacities. Using testbed measurements, we show that our CMon scheduler, which monitors path congestion in the data plane and dynamically adjusts scheduling weights for the different paths based on path state information, can process more than 3.5 Mpps packets 25 μs latency.}, language = {en} } @article{BuchheimKellerKoetschanetal.2011, author = {Buchheim, Mark A. and Keller, Alexander and Koetschan, Christian and F{\"o}rster, Frank and Merget, Benjamin and Wolf, Matthias}, title = {Internal Transcribed Spacer 2 (nu ITS2 rRNA) Sequence-Structure Phylogenetics: Towards an Automated Reconstruction of the Green Algal Tree of Life}, series = {PLoS ONE}, volume = {6}, journal = {PLoS ONE}, number = {2}, doi = {10.1371/journal.pone.0016931}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140866}, pages = {e16931}, year = {2011}, abstract = {Background: Chloroplast-encoded genes (matK and rbcL) have been formally proposed for use in DNA barcoding efforts targeting embryophytes. Extending such a protocol to chlorophytan green algae, though, is fraught with problems including non homology (matK) and heterogeneity that prevents the creation of a universal PCR toolkit (rbcL). Some have advocated the use of the nuclear-encoded, internal transcribed spacer two (ITS2) as an alternative to the traditional chloroplast markers. However, the ITS2 is broadly perceived to be insufficiently conserved or to be confounded by introgression or biparental inheritance patterns, precluding its broad use in phylogenetic reconstruction or as a DNA barcode. A growing body of evidence has shown that simultaneous analysis of nucleotide data with secondary structure information can overcome at least some of the limitations of ITS2. The goal of this investigation was to assess the feasibility of an automated, sequence-structure approach for analysis of IT2 data from a large sampling of phylum Chlorophyta. Methodology/Principal Findings: Sequences and secondary structures from 591 chlorophycean, 741 trebouxiophycean and 938 ulvophycean algae, all obtained from the ITS2 Database, were aligned using a sequence structure-specific scoring matrix. Phylogenetic relationships were reconstructed by Profile Neighbor-Joining coupled with a sequence structure-specific, general time reversible substitution model. Results from analyses of the ITS2 data were robust at multiple nodes and showed considerable congruence with results from published phylogenetic analyses. Conclusions/Significance: Our observations on the power of automated, sequence-structure analyses of ITS2 to reconstruct phylum-level phylogenies of the green algae validate this approach to assessing diversity for large sets of chlorophytan taxa. Moreover, our results indicate that objections to the use of ITS2 for DNA barcoding should be weighed against the utility of an automated, data analysis approach with demonstrated power to reconstruct evolutionary patterns for highly divergent lineages.}, language = {en} } @article{BuchinBuchinByrkaetal.2012, author = {Buchin, Kevin and Buchin, Maike and Byrka, Jaroslaw and N{\"o}llenburg, Martin and Okamoto, Yoshio and Silveira, Rodrigo I. and Wolff, Alexander}, title = {Drawing (Complete) Binary Tanglegrams}, series = {Algorithmica}, volume = {62}, journal = {Algorithmica}, doi = {10.1007/s00453-010-9456-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124622}, pages = {309-332}, year = {2012}, abstract = {A binary tanglegram is a drawing of a pair of rooted binary trees whose leaf sets are in one-to-one correspondence; matching leaves are connected by inter-tree edges. For applications, for example, in phylogenetics, it is essential that both trees are drawn without edge crossings and that the inter-tree edges have as few crossings as possible. It is known that finding a tanglegram with the minimum number of crossings is NP-hard and that the problem is fixed-parameter tractable with respect to that number. We prove that under the Unique Games Conjecture there is no constant-factor approximation for binary trees. We show that the problem is NP-hard even if both trees are complete binary trees. For this case we give an O(n 3)-time 2-approximation and a new, simple fixed-parameter algorithm. We show that the maximization version of the dual problem for binary trees can be reduced to a version of MaxCut for which the algorithm of Goemans and Williamson yields a 0.878-approximation.}, language = {en} } @phdthesis{Budig2018, author = {Budig, Benedikt}, title = {Extracting Spatial Information from Historical Maps: Algorithms and Interaction}, edition = {1. Auflage}, publisher = {W{\"u}rzburg University Press}, address = {W{\"u}rzburg}, isbn = {978-3-95826-092-4}, doi = {10.25972/WUP-978-3-95826-093-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-160955}, school = {W{\"u}rzburg University Press}, pages = {viii, 160}, year = {2018}, abstract = {Historical maps are fascinating documents and a valuable source of information for scientists of various disciplines. Many of these maps are available as scanned bitmap images, but in order to make them searchable in useful ways, a structured representation of the contained information is desirable. This book deals with the extraction of spatial information from historical maps. This cannot be expected to be solved fully automatically (since it involves difficult semantics), but is also too tedious to be done manually at scale. The methodology used in this book combines the strengths of both computers and humans: it describes efficient algorithms to largely automate information extraction tasks and pairs these algorithms with smart user interactions to handle what is not understood by the algorithm. The effectiveness of this approach is shown for various kinds of spatial documents from the 16th to the early 20th century.}, subject = {Karte}, language = {en} } @article{BugaScholzKumaretal.2012, author = {Buga, Ana-Maria and Scholz, Claus J{\"u}rgen and Kumar, Senthil and Herndon, James G. and Alexandru, Dragos and Cojocaru, Gabriel Radu and Dandekar, Thomas and Popa-Wagner, Aurel}, title = {Identification of New Therapeutic Targets by Genome-Wide Analysis of Gene Expression in the Ipsilateral Cortex of Aged Rats after Stroke}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {12}, doi = {10.1371/journal.pone.0050985}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130657}, pages = {e50985}, year = {2012}, abstract = {Background: Because most human stroke victims are elderly, studies of experimental stroke in the aged rather than the young rat model may be optimal for identifying clinically relevant cellular responses, as well for pinpointing beneficial interventions. Methodology/Principal Findings: We employed the Affymetrix platform to analyze the whole-gene transcriptome following temporary ligation of the middle cerebral artery in aged and young rats. The correspondence, heat map, and dendrogram analyses independently suggest a differential, age-group-specific behaviour of major gene clusters after stroke. Overall, the pattern of gene expression strongly suggests that the response of the aged rat brain is qualitatively rather than quantitatively different from the young, i.e. the total number of regulated genes is comparable in the two age groups, but the aged rats had great difficulty in mounting a timely response to stroke. Our study indicates that four genes related to neuropathic syndrome, stress, anxiety disorders and depression (Acvr1c, Cort, Htr2b and Pnoc) may have impaired response to stroke in aged rats. New therapeutic options in aged rats may also include Calcrl, Cyp11b1, Prcp, Cebpa, Cfd, Gpnmb, Fcgr2b, Fcgr3a, Tnfrsf26, Adam 17 and Mmp14. An unexpected target is the enzyme 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 in aged rats, a key enzyme in the cholesterol synthesis pathway. Post-stroke axonal growth was compromised in both age groups. Conclusion/Significance: We suggest that a multi-stage, multimodal treatment in aged animals may be more likely to produce positive results. Such a therapeutic approach should be focused on tissue restoration but should also address other aspects of patient post-stroke therapy such as neuropathic syndrome, stress, anxiety disorders, depression, neurotransmission and blood pressure.}, language = {en} } @phdthesis{Busch2016, author = {Busch, Stephan}, title = {Robust, Flexible and Efficient Design for Miniature Satellite Systems}, isbn = {978-3-945459-10-2}, doi = {10.25972/OPUS-13652}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136523}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Small satellites contribute significantly in the rapidly evolving innovation in space engineering, in particular in distributed space systems for global Earth observation and communication services. Significant mass reduction by miniaturization, increased utilization of commercial high-tech components, and in particular standardization are the key drivers for modern miniature space technology. This thesis addresses key fields in research and development on miniature satellite technology regarding efficiency, flexibility, and robustness. Here, these challenges are addressed by the University of Wuerzburg's advanced pico-satellite bus, realizing a generic modular satellite architecture and standardized interfaces for all subsystems. The modular platform ensures reusability, scalability, and increased testability due to its flexible subsystem interface which allows efficient and compact integration of the entire satellite in a plug-and-play manner. Beside systematic design for testability, a high degree of operational robustness is achieved by the consequent implementation of redundancy of crucial subsystems. This is combined with efficient fault detection, isolation and recovery mechanisms. Thus, the UWE-3 platform, and in particular the on-board data handling system and the electrical power system, offers one of the most efficient pico-satellite architectures launched in recent years and provides a solid basis for future extensions. The in-orbit performance results of the pico-satellite UWE-3 are presented and summarize successful operations since its launch in 2013. Several software extensions and adaptations have been uploaded to UWE-3 increasing its capabilities. Thus, a very flexible platform for in-orbit software experiments and for evaluations of innovative concepts was provided and tested.}, subject = {Kleinsatellit}, language = {en} } @phdthesis{Boehler2005, author = {B{\"o}hler, Elmar}, title = {Algebraic closures in complexity theory}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-16106}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {We use algebraic closures and structures which are derived from these in complexity theory. We classify problems with Boolean circuits and Boolean constraints according to their complexity. We transfer algebraic structures to structural complexity. We use the generation problem to classify important complexity classes.}, subject = {Komplexit{\"a}tstheorie}, language = {en} } @article{BoehlerCreignouGalotaetal.2012, author = {B{\"o}hler, Elmar and Creignou, Nadia and Galota, Matthias and Reith, Steffen and Schnoor, Henning and Vollmer, Heribert}, title = {Complexity Classifications for Different Equivalence and Audit Problems for Boolean Circuits}, series = {Logical Methods in Computer Science}, volume = {8}, journal = {Logical Methods in Computer Science}, number = {3:27}, doi = {10.2168/LMCS-8(3:27)2012}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131121}, pages = {1 -- 25}, year = {2012}, abstract = {We study Boolean circuits as a representation of Boolean functions and conskier different equivalence, audit, and enumeration problems. For a number of restricted sets of gate types (bases) we obtain efficient algorithms, while for all other gate types we show these problems are at least NP-hard.}, language = {en} } @article{CaliskanCrouchGiddinsetal.2022, author = {Caliskan, Aylin and Crouch, Samantha A. W. and Giddins, Sara and Dandekar, Thomas and Dangwal, Seema}, title = {Progeria and aging — Omics based comparative analysis}, series = {Biomedicines}, volume = {10}, journal = {Biomedicines}, number = {10}, issn = {2227-9059}, doi = {10.3390/biomedicines10102440}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-289868}, year = {2022}, abstract = {Since ancient times aging has also been regarded as a disease, and humankind has always strived to extend the natural lifespan. Analyzing the genes involved in aging and disease allows for finding important indicators and biological markers for pathologies and possible therapeutic targets. An example of the use of omics technologies is the research regarding aging and the rare and fatal premature aging syndrome progeria (Hutchinson-Gilford progeria syndrome, HGPS). In our study, we focused on the in silico analysis of differentially expressed genes (DEGs) in progeria and aging, using a publicly available RNA-Seq dataset (GEO dataset GSE113957) and a variety of bioinformatics tools. Despite the GSE113957 RNA-Seq dataset being well-known and frequently analyzed, the RNA-Seq data shared by Fleischer et al. is far from exhausted and reusing and repurposing the data still reveals new insights. By analyzing the literature citing the use of the dataset and subsequently conducting a comparative analysis comparing the RNA-Seq data analyses of different subsets of the dataset (healthy children, nonagenarians and progeria patients), we identified several genes involved in both natural aging and progeria (KRT8, KRT18, ACKR4, CCL2, UCP2, ADAMTS15, ACTN4P1, WNT16, IGFBP2). Further analyzing these genes and the pathways involved indicated their possible roles in aging, suggesting the need for further in vitro and in vivo research. In this paper, we (1) compare "normal aging" (nonagenarians vs. healthy children) and progeria (HGPS patients vs. healthy children), (2) enlist genes possibly involved in both the natural aging process and progeria, including the first mention of IGFBP2 in progeria, (3) predict miRNAs and interactomes for WNT16 (hsa-mir-181a-5p), UCP2 (hsa-mir-26a-5p and hsa-mir-124-3p), and IGFBP2 (hsa-mir-124-3p, hsa-mir-126-3p, and hsa-mir-27b-3p), (4) demonstrate the compatibility of well-established R packages for RNA-Seq analysis for researchers interested but not yet familiar with this kind of analysis, and (5) present comparative proteomics analyses to show an association between our RNA-Seq data analyses and corresponding changes in protein expression.}, language = {en} } @article{CarolusWienrichToerkeetal.2021, author = {Carolus, Astrid and Wienrich, Carolin and T{\"o}rke, Anna and Friedel, Tobias and Schwietering, Christian and Sperzel, Mareike}, title = {'Alexa, I feel for you!' Observers' empathetic reactions towards a conversational agent}, series = {Frontiers in Computer Science}, volume = {3}, journal = {Frontiers in Computer Science}, doi = {10.3389/fcomp.2021.682982}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258807}, year = {2021}, abstract = {Conversational agents and smart speakers have grown in popularity offering a variety of options for use, which are available through intuitive speech operation. In contrast to the standard dyad of a single user and a device, voice-controlled operations can be observed by further attendees resulting in new, more social usage scenarios. Referring to the concept of 'media equation' and to research on the idea of 'computers as social actors,' which describes the potential of technology to trigger emotional reactions in users, this paper asks for the capacity of smart speakers to elicit empathy in observers of interactions. In a 2 × 2 online experiment, 140 participants watched a video of a man talking to an Amazon Echo either rudely or neutrally (factor 1), addressing it as 'Alexa' or 'Computer' (factor 2). Controlling for participants' trait empathy, the rude treatment results in participants' significantly higher ratings of empathy with the device, compared to the neutral treatment. The form of address had no significant effect. Results were independent of the participants' gender and usage experience indicating a rather universal effect, which confirms the basic idea of the media equation. Implications for users, developers and researchers were discussed in the light of (future) omnipresent voice-based technology interaction scenarios.}, language = {en} } @unpublished{Dandekar2019, author = {Dandekar, Thomas}, title = {Biological heuristics applied to cosmology suggests a condensation nucleus as start of our universe and inflation cosmology replaced by a period of rapid Weiss domain-like crystal growth}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-183945}, pages = {24}, year = {2019}, abstract = {Cosmology often uses intricate formulas and mathematics to derive new theories and concepts. We do something different in this paper: We look at biological processes and derive from these heuristics so that the revised cosmology agrees with astronomical observations but does also agree with standard biological observations. We show that we then have to replace any type of singularity at the start of the universe by a condensation nucleus and that the very early period of the universe usually assumed to be inflation has to be replaced by a period of rapid crystal growth as in Weiss magnetization domains. Impressively, these minor modifications agree well with astronomical observations including removing the strong inflation perturbations which were never observed in the recent BICEP2 experiments. Furthermore, looking at biological principles suggests that such a new theory with a condensation nucleus at start and a first rapid phase of magnetization-like growth of the ordered, physical laws obeying lattice we live in is in fact the only convincing theory of the early phases of our universe that also is compatible with current observations. We show in detail in the following that such a process of crystal creation, breaking of new crystal seeds and ultimate evaporation of the present crystal readily leads over several generations to an evolution and selection of better, more stable and more self-organizing crystals. Moreover, this explains the "fine-tuning" question why our universe is fine-tuned to favor life: Our Universe is so self-organizing to have enough offspring and the detailed physics involved is at the same time highly favorable for all self-organizing processes including life. This biological theory contrasts with current standard inflation cosmologies. The latter do not perform well in explaining any phenomena of sophisticated structure creation or self-organization. As proteins can only thermodynamically fold by increasing the entropy in the solution around them we suggest for cosmology a condensation nucleus for a universe can form only in a "chaotic ocean" of string-soup or quantum foam if the entropy outside of the nucleus rapidly increases. We derive an interaction potential for 1 to n-dimensional strings or quantum-foams and show that they allow only 1D, 2D, 4D or octonion interactions. The latter is the richest structure and agrees to the E8 symmetry fundamental to particle physics and also compatible with the ten dimensional string theory E8 which is part of the M-theory. Interestingly, any other interactions of other dimensionality can be ruled out using Hurwitz compositional theorem. Crystallization explains also extremely well why we have only one macroscopic reality and where the worldlines of alternative trajectories exist: They are in other planes of the crystal and for energy reasons they crystallize mostly at the same time, yielding a beautiful and stable crystal. This explains decoherence and allows to determine the size of Planck´s quantum h (very small as separation of crystal layers by energy is extremely strong). Ultimate dissolution of real crystals suggests an explanation for dark energy agreeing with estimates for the "big rip". The halo distribution of dark matter favoring galaxy formation is readily explained by a crystal seed starting with unit cells made of normal and dark matter. That we have only matter and not antimatter can be explained as there may be right handed mattercrystals and left-handed antimatter crystals. Similarly, real crystals are never perfect and we argue that exactly such irregularities allow formation of galaxies, clusters and superclusters. Finally, heuristics from genetics suggest to look for a systems perspective to derive correct vacuum and Higgs Boson energies.}, language = {en} } @unpublished{Dandekar2023, author = {Dandekar, Thomas}, title = {Analysing the phase space of the standard model and its basic four forces from a qubit phase transition perspective: implications for large-scale structure generation and early cosmological events}, doi = {10.25972/OPUS-29858}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-298580}, pages = {42}, year = {2023}, abstract = {The phase space for the standard model of the basic four forces for n quanta includes all possible ensemble combinations of their quantum states m, a total of n**m states. Neighbor states reach according to transition possibilities (S-matrix) with emergent time from entropic ensemble gradients. We replace the "big bang" by a condensation event (interacting qubits become decoherent) and inflation by a crystallization event - the crystal unit cell guarantees same symmetries everywhere. Interacting qubits solidify and form a rapidly growing domain where the n**m states become separated ensemble states, rising long-range forces stop ultimately further growth. After that very early events, standard cosmology with the hot fireball model takes over. Our theory agrees well with lack of inflation traces in cosmic background measurements, large-scale structure of voids and filaments, supercluster formation, galaxy formation, dominance of matter and life-friendliness. We prove qubit interactions to be 1,2,4 or 8 dimensional (agrees with E8 symmetry of our universe). Repulsive forces at ultrashort distances result from quantization, long-range forces limit crystal growth. Crystals come and go in the qubit ocean. This selects for the ability to lay seeds for new crystals, for self-organization and life-friendliness. We give energy estimates for free qubits vs bound qubits, misplacements in the qubit crystal and entropy increase during qubit decoherence / crystal formation. Scalar fields for color interaction and gravity derive from the permeating qubit-interaction field. Hence, vacuum energy gets low only inside the qubit crystal. Condensed mathematics may advantageously model free / bound qubits in phase space.}, language = {en} } @phdthesis{Dang2012, author = {Dang, Nghia Duc}, title = {Konzeption und Evaluation eines hybriden, skalierbaren Werkzeugs zur mechatronischen Systemdiagnose am Beispiel eines Diagnosesystems f{\"u}r freie Kfz-Werkst{\"a}tten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-70774}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Die Entwicklung eines wissensbasierten Systems, speziell eines Diagnosesystems, ist eine Teildisziplin der k{\"u}nstlichen Intelligenz und angewandten Informatik. Im Laufe der Forschung auf diesem Gebiet wurden verschiedene L{\"o}sungsans{\"a}tze mit unterschiedlichem Erfolg bei der Anwendung in der Kraftfahrzeugdiagnose entwickelt. Diagnosesysteme in Vertragswerkst{\"a}tten, das heißt in Fahrzeughersteller gebundenen Werkst{\"a}tten, wenden haupts{\"a}chlich die fallbasierte Diagnostik an. Zum einen h{\"a}lt sich hier die Fahrzeugvielfalt in Grenzen und zum anderen besteht eine Meldepflicht bei neuen, nicht im System vorhandenen F{\"a}llen. Die freien Werkst{\"a}tten verf{\"u}gen nicht {\"u}ber eine solche Datenbank. Somit ist der fallbasierte Ansatz schwer umsetzbar. In freien Werkst{\"a}tten - Fahrzeughersteller unabh{\"a}ngigen Werkst{\"a}tten - basiert die Fehlersuche haupts{\"a}chlich auf Fehlerb{\"a}umen. Wegen der wachsenden Fahrzeugkomplexit{\"a}t, welche wesentlich durch die stark zunehmende Anzahl der durch mechatronische Systeme realisierten Funktionen bedingt ist, und der steigenden Typenvielfalt ist die gef{\"u}hrte Fehlersuche in freien Werkst{\"a}tten nicht immer zielf{\"u}hrend. Um die Unterst{\"u}tzung des Personals von freien Werkst{\"a}tten bei der zuk{\"u}nftigen Fehlersuche zu gew{\"a}hrleisten, werden neue Generationen von herstellerunabh{\"a}ngigen Diagnosetools ben{\"o}tigt, die die Probleme der Variantenvielfalt und Komplexit{\"a}t l{\"o}sen. In der vorliegenden Arbeit wird ein L{\"o}sungsansatz vorgestellt, der einen qualitativen, modellbasierten Diagnoseansatz mit einem auf heuristischem Diagnosewissen basierenden Ansatz vereint. Neben der Grundlage zur Wissenserhebung werden in dieser Arbeit die theoretische Grundlage zur Beherrschung der Variantenvielfalt sowie die Tests f{\"u}r die erstellten Diagnosemodelle behandelt. Die Diagnose ist symptombasiert und die Inferenzmechanismen zur Verarbeitung des Diagnosewissens sind eine Kombination aus Propagierung der abweichenden physikalischen Gr{\"o}ßen im Modell und der Auswertung des heuristischen Wissens. Des Weiteren werden in dieser Arbeit verschiedene Aspekte der Realisierung der entwickelten theoretischen Grundlagen dargestellt, zum Beispiel: Systemarchitektur, Wissenserhebungsprozess, Ablauf des Diagnosevorgangs in den Werkst{\"a}tten. Die Evaluierung der entwickelten L{\"o}sung bei der Wissenserhebung in Form von Modellerstellungen und Modellierungsworkshops sowie Feldtests dient nicht nur zur Best{\"a}tigung des entwickelten Ansatzes, sondern auch zur Ideenfindung f{\"u}r die Integration der entwickelten Tools in die existierende IT-Infrastruktur.}, subject = {Diagnosesystem}, language = {de} } @article{DavidsonDuekingZinneretal.2020, author = {Davidson, Padraig and D{\"u}king, Peter and Zinner, Christoph and Sperlich, Billy and Hotho, Andreas}, title = {Smartwatch-Derived Data and Machine Learning Algorithms Estimate Classes of Ratings of Perceived Exertion in Runners: A Pilot Study}, series = {Sensors}, volume = {20}, journal = {Sensors}, number = {9}, issn = {1424-8220}, doi = {10.3390/s20092637}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-205686}, year = {2020}, abstract = {The rating of perceived exertion (RPE) is a subjective load marker and may assist in individualizing training prescription, particularly by adjusting running intensity. Unfortunately, RPE has shortcomings (e.g., underreporting) and cannot be monitored continuously and automatically throughout a training sessions. In this pilot study, we aimed to predict two classes of RPE (≤15 "Somewhat hard to hard" on Borg's 6-20 scale vs. RPE >15 in runners by analyzing data recorded by a commercially-available smartwatch with machine learning algorithms. Twelve trained and untrained runners performed long-continuous runs at a constant self-selected pace to volitional exhaustion. Untrained runners reported their RPE each kilometer, whereas trained runners reported every five kilometers. The kinetics of heart rate, step cadence, and running velocity were recorded continuously ( 1 Hz ) with a commercially-available smartwatch (Polar V800). We trained different machine learning algorithms to estimate the two classes of RPE based on the time series sensor data derived from the smartwatch. Predictions were analyzed in different settings: accuracy overall and per runner type; i.e., accuracy for trained and untrained runners independently. We achieved top accuracies of 84.8 \% for the whole dataset, 81.8 \% for the trained runners, and 86.1 \% for the untrained runners. We predict two classes of RPE with high accuracy using machine learning and smartwatch data. This approach might aid in individualizing training prescriptions.}, language = {en} } @inproceedings{DaviesDewellHarvey2021, author = {Davies, Richard and Dewell, Nathan and Harvey, Carlo}, title = {A framework for interactive, autonomous and semantic dialogue generation in games}, series = {Proceedings of the 1st Games Technology Summit}, booktitle = {Proceedings of the 1st Games Technology Summit}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246023}, pages = {16-28}, year = {2021}, abstract = {Immersive virtual environments provide users with the opportunity to escape from the real world, but scripted dialogues can disrupt the presence within the world the user is trying to escape within. Both Non-Playable Character (NPC) to Player and NPC to NPC dialogue can be non-natural and the reliance on responding with pre-defined dialogue does not always meet the players emotional expectations or provide responses appropriate to the given context or world states. This paper investigates the application of Artificial Intelligence (AI) and Natural Language Processing to generate dynamic human-like responses within a themed virtual world. Each thematic has been analysed against humangenerated responses for the same seed and demonstrates invariance of rating across a range of model sizes, but shows an effect of theme and the size of the corpus used for fine-tuning the context for the game world.}, language = {en} } @techreport{DeutschmannHielscherGerman2022, type = {Working Paper}, author = {Deutschmann, J{\"o}rg and Hielscher, Kai-Steffen and German, Reinhard}, title = {Next-Generation Satellite Communication Networks}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28073}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280732}, pages = {4}, year = {2022}, abstract = {This paper gives an overview of our recent activities in the field of satellite communication networks, including an introduction to geostationary satellite systems and Low Earth Orbit megaconstellations. To mitigate the high latencies of geostationary satellite networks, TCP-splitting Performance Enhancing Proxies are deployed. However, these cannot be applied in the case of encrypted transport headers as it is the case for VPNs or QUIC. We summarize performance evaluation results from multiple measurement campaigns. In a recently concluded project, multipath communication was used to combine the advantages of very heterogeneous communication paths: low data rate, low latency (e.g., DSL light) and high data rate, high latency (e.g., geostationary satellite).}, subject = {Datennetz}, language = {en} } @article{DjebkoPuppeKayal2019, author = {Djebko, Kirill and Puppe, Frank and Kayal, Hakan}, title = {Model-based fault detection and diagnosis for spacecraft with an application for the SONATE triple cube nano-satellite}, series = {Aerospace}, volume = {6}, journal = {Aerospace}, number = {10}, issn = {2226-4310}, doi = {10.3390/aerospace6100105}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-198836}, pages = {105}, year = {2019}, abstract = {The correct behavior of spacecraft components is the foundation of unhindered mission operation. However, no technical system is free of wear and degradation. A malfunction of one single component might significantly alter the behavior of the whole spacecraft and may even lead to a complete mission failure. Therefore, abnormal component behavior must be detected early in order to be able to perform counter measures. A dedicated fault detection system can be employed, as opposed to classical health monitoring, performed by human operators, to decrease the response time to a malfunction. In this paper, we present a generic model-based diagnosis system, which detects faults by analyzing the spacecraft's housekeeping data. The observed behavior of the spacecraft components, given by the housekeeping data is compared to their expected behavior, obtained through simulation. Each discrepancy between the observed and the expected behavior of a component generates a so-called symptom. Given the symptoms, the diagnoses are derived by computing sets of components whose malfunction might cause the observed discrepancies. We demonstrate the applicability of the diagnosis system by using modified housekeeping data of the qualification model of an actual spacecraft and outline the advantages and drawbacks of our approach.}, language = {en} } @phdthesis{Driewer2008, author = {Driewer, Frauke}, title = {Teleoperation Interfaces in Human-Robot Teams}, isbn = {978-3-923959-57-0}, doi = {10.25972/OPUS-2955}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-36351}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Diese Arbeit besch{\"a}ftigt sich mit der Verbesserung von Mensch-Roboter Interaktion in Mensch-Roboter Teams f{\"u}r Teleoperation Szenarien, wie z.B. robotergest{\"u}tzte Feuerwehreins{\"a}tze. Hierbei wird ein Konzept und eine Architektur f{\"u}r ein System zur Unterst{\"u}tzung von Teleoperation von Mensch-Roboter Teams vorgestellt. Die Anforderungen an Informationsaustausch und -verarbeitung, insbesondere f{\"u}r die Anwendung Rettungseinsatz, werden ausgearbeitet. Weiterhin wird das Design der Benutzerschnittstellen f{\"u}r Mensch-Roboter Teams dargestellt und Prinzipien f{\"u}r Teleoperation-Systeme und Benutzerschnittstellen erarbeitet. Alle Studien und Ans{\"a}tze werden in einem Prototypen-System implementiert und in verschiedenen Benutzertests abgesichert. Erweiterungsm{\"o}glichkeiten zum Einbinden von 3D Sensordaten und die Darstellung auf Stereovisualisierungssystemen werden gezeigt.}, subject = {Robotik}, language = {en} } @article{DuLauterbachLietal.2020, author = {Du, Shitong and Lauterbach, Helge A. and Li, Xuyou and Demisse, Girum G. and Borrmann, Dorit and N{\"u}chter, Andreas}, title = {Curvefusion — A Method for Combining Estimated Trajectories with Applications to SLAM and Time-Calibration}, series = {Sensors}, volume = {20}, journal = {Sensors}, number = {23}, issn = {1424-8220}, doi = {10.3390/s20236918}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-219988}, year = {2020}, abstract = {Mapping and localization of mobile robots in an unknown environment are essential for most high-level operations like autonomous navigation or exploration. This paper presents a novel approach for combining estimated trajectories, namely curvefusion. The robot used in the experiments is equipped with a horizontally mounted 2D profiler, a constantly spinning 3D laser scanner and a GPS module. The proposed algorithm first combines trajectories from different sensors to optimize poses of the planar three degrees of freedom (DoF) trajectory, which is then fed into continuous-time simultaneous localization and mapping (SLAM) to further improve the trajectory. While state-of-the-art multi-sensor fusion methods mainly focus on probabilistic methods, our approach instead adopts a deformation-based method to optimize poses. To this end, a similarity metric for curved shapes is introduced into the robotics community to fuse the estimated trajectories. Additionally, a shape-based point correspondence estimation method is applied to the multi-sensor time calibration. Experiments show that the proposed fusion method can achieve relatively better accuracy, even if the error of the trajectory before fusion is large, which demonstrates that our method can still maintain a certain degree of accuracy in an environment where typical pose estimation methods have poor performance. In addition, the proposed time-calibration method also achieves high accuracy in estimating point correspondences.}, language = {en} } @phdthesis{Duelli2012, author = {Duelli, Michael}, title = {Heuristic Design and Provisioning of Resilient Multi-Layer Networks}, doi = {10.25972/OPUS-5600}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69433}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {To jointly provide different services/technologies, like IP and Ethernet or IP and SDH/SONET, in a single network, equipment of multiple technologies needs to be deployed to the sites/Points of Presence (PoP) and interconnected with each other. Therein, a technology may provide transport functionality to other technologies and increase the number of available resources by using multiplexing techniques. By providing its own switching functionality, each technology creates connections in a logical layer which leads to the notion of multi-layer networks. The design of such networks comprises the deployment and interconnection of components to suit to given traffic demands. To prevent traffic loss due to failures of networking equipment, protection mechanisms need to be established. In multi-layer networks, protection usually can be applied in any of the considered layers. In turn, the hierarchical structure of multi-layer networks also bears shared risk groups (SRG). To achieve a cost-optimal resilient network, an appropriate combination of multiplexing techniques, technologies, and their interconnections needs to be found. Thus, network design is a combinatorial problem with a large parameter and solution space. After the design stage, the resources of a multi-layer network can be provided to traffic demands. Especially, dynamic capacity provisioning requires interaction of sites and layers, as well as accurate retrieval of constraint information. In recent years, generalized multiprotocol label switching (GMPLS) and path computation elements (PCE) have emerged as possible approaches for these challenges. Like the design, the provisioning of multi-layer networks comprises a variety of optimization parameters, like blocking probability, resilience, and energy efficiency. In this work, we introduce several efficient heuristics to approach the considered optimization problems. We perform capital expenditure (CAPEX)-aware design of multi-layer networks from scratch, based on IST NOBEL phase 2 project's cost and equipment data. We comprise traffic and resilience requirements in different and multiple layers as well as different network architectures. On top of the designed networks, we consider the dynamic provisioning of multi-layer traffic based on the GMPLS and PCE architecture. We evaluate different PCE deployments, information retrieval strategies, and re-optimization. Finally, we show how information about provisioning utilization can be used to provide a feedback for network design.}, subject = {Mehrschichtsystem}, language = {en} } @article{DumicBjeloperaNuechter2021, author = {Dumic, Emil and Bjelopera, Anamaria and N{\"u}chter, Andreas}, title = {Dynamic point cloud compression based on projections, surface reconstruction and video compression}, series = {Sensors}, volume = {22}, journal = {Sensors}, number = {1}, issn = {1424-8220}, doi = {10.3390/s22010197}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252231}, year = {2021}, abstract = {In this paper we will present a new dynamic point cloud compression based on different projection types and bit depth, combined with the surface reconstruction algorithm and video compression for obtained geometry and texture maps. Texture maps have been compressed after creating Voronoi diagrams. Used video compression is specific for geometry (FFV1) and texture (H.265/HEVC). Decompressed point clouds are reconstructed using a Poisson surface reconstruction algorithm. Comparison with the original point clouds was performed using point-to-point and point-to-plane measures. Comprehensive experiments show better performance for some projection maps: cylindrical, Miller and Mercator projections.}, language = {en} } @techreport{DworzakGrossmannLe2023, type = {Working Paper}, author = {Dworzak, Manuel and Großmann, Marcel and Le, Duy Thanh}, title = {Federated Learning for Service Placement in Fog and Edge Computing}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32219}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322193}, pages = {4}, year = {2023}, abstract = {Service orchestration requires enormous attention and is a struggle nowadays. Of course, virtualization provides a base level of abstraction for services to be deployable on a lot of infrastructures. With container virtualization, the trend to migrate applications to a micro-services level in order to be executable in Fog and Edge Computing environments increases manageability and maintenance efforts rapidly. Similarly, network virtualization adds effort to calibrate IP flows for Software-Defined Networks and eventually route it by means of Network Function Virtualization. Nevertheless, there are concepts like MAPE-K to support micro-service distribution in next-generation cloud and network environments. We want to explore, how a service distribution can be improved by adopting machine learning concepts for infrastructure or service changes. Therefore, we show how federated machine learning is integrated into a cloud-to-fog-continuum without burdening single nodes.}, language = {en} } @article{DoellingerWienrichLatoschik2021, author = {D{\"o}llinger, Nina and Wienrich, Carolin and Latoschik, Marc Erich}, title = {Challenges and opportunities of immersive technologies for mindfulness meditation: a systematic review}, series = {Frontiers in Virtual Reality}, volume = {2}, journal = {Frontiers in Virtual Reality}, doi = {10.3389/frvir.2021.644683}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259047}, pages = {644683}, year = {2021}, abstract = {Mindfulness is considered an important factor of an individual's subjective well-being. Consequently, Human-Computer Interaction (HCI) has investigated approaches that strengthen mindfulness, i.e., by inventing multimedia technologies to support mindfulness meditation. These approaches often use smartphones, tablets, or consumer-grade desktop systems to allow everyday usage in users' private lives or in the scope of organized therapies. Virtual, Augmented, and Mixed Reality (VR, AR, MR; in short: XR) significantly extend the design space for such approaches. XR covers a wide range of potential sensory stimulation, perceptive and cognitive manipulations, content presentation, interaction, and agency. These facilities are linked to typical XR-specific perceptions that are conceptually closely related to mindfulness research, such as (virtual) presence and (virtual) embodiment. However, a successful exploitation of XR that strengthens mindfulness requires a systematic analysis of the potential interrelation and influencing mechanisms between XR technology, its properties, factors, and phenomena and existing models and theories of the construct of mindfulness. This article reports such a systematic analysis of XR-related research from HCI and life sciences to determine the extent to which existing research frameworks on HCI and mindfulness can be applied to XR technologies, the potential of XR technologies to support mindfulness, and open research gaps. Fifty papers of ACM Digital Library and National Institutes of Health's National Library of Medicine (PubMed) with and without empirical efficacy evaluation were included in our analysis. The results reveal that at the current time, empirical research on XR-based mindfulness support mainly focuses on therapy and therapeutic outcomes. Furthermore, most of the currently investigated XR-supported mindfulness interactions are limited to vocally guided meditations within nature-inspired virtual environments. While an analysis of empirical research on those systems did not reveal differences in mindfulness compared to non-mediated mindfulness practices, various design proposals illustrate that XR has the potential to provide interactive and body-based innovations for mindfulness practice. We propose a structured approach for future work to specify and further explore the potential of XR as mindfulness-support. The resulting framework provides design guidelines for XR-based mindfulness support based on the elements and psychological mechanisms of XR interactions.}, language = {en} } @phdthesis{Eichelberger2005, author = {Eichelberger, Holger}, title = {Aesthetics and automatic layout of UML class diagrams}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-14831}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {In the last years, visual methods have been introduced in industrial software production and teaching of software engineering. In particular, the international standardization of a graphical software engineering language, the Unified Modeling Language (UML) was a reason for this tendency. Unfortunately, various problems exist in concrete realizations of tools, e.g. due to a missing compliance to the standard. One problem is the automatic layout, which is required for a consistent automatic software design. The thesis derives reasons and criteria for an automatic layout method, which produces drawings of UML class diagrams according to the UML specification and issues of human computer interaction, e.g. readability. A unique set of aesthetic criteria is combined from four different disciplines involved in this topic. Based on these aethetic rules, a hierarchical layout algorithm is developed, analyzed, measured by specialized measuring techniques and compared to related work. Then, the realization of the algorithm as a Java framework is given as an architectural description. Finally, adaptions to anticipated future changes of the UML, improvements of the framework and example drawings of the implementation are given.}, subject = {URL}, language = {en} } @techreport{ElsayedRizk2022, type = {Working Paper}, author = {Elsayed, Karim and Rizk, Amr}, title = {Response Times in Time-to-Live Caching Hierarchies under Random Network Delays}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28084}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280843}, pages = {4}, year = {2022}, abstract = {Time-to-Live (TTL) caches decouple the occupancy of objects in cache through object-specific validity timers. Stateof- the art techniques provide exact methods for the calculation of object-specific hit probabilities given entire cache hierarchies with random inter-cache network delays. The system hit probability is a provider-centric metric as it relates to the origin offload, i.e., the decrease in the number of requests that are served by the content origin server. In this paper we consider a user-centric metric, i.e., the response time, which is shown to be structurally different from the system hit probability. Equipped with the state-of-theart exact modeling technique using Markov-arrival processes we derive expressions for the expected object response time and pave a way for its optimization under network delays.}, subject = {Datennetz}, language = {en} } @inproceedings{EppleeLangbehn2021, author = {Eppl{\´e}e, Rafael and Langbehn, Eike}, title = {Overlapping Architecture: Implementation of Impossible Spaces in Virtual Reality Games}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246045}, pages = {37-46}, year = {2021}, abstract = {Natural walking in virtual reality games is constrained by the physical boundaries defined by the size of the player's tracking space. Impossible spaces, a redirected walking technique, enlarge the virtual environment by creating overlapping architecture and letting multiple locations occupy the same physical space. Within certain thresholds, this is subtle to the player. In this paper, we present our approach to implement such impossible spaces and describe how we handled challenges like objects with simulated physics or precomputed global illumination.}, language = {en} } @article{FathyDarwishAbdelhamidetal.2022, author = {Fathy, Moustafa and Darwish, Mostafa A. and Abdelhamid, Al-Shaimaa M. and Alrashedy, Gehad M. and Othman, Othman Ali and Naseem, Muhammad and Dandekar, Thomas and Othman, Eman M.}, title = {Kinetin ameliorates cisplatin-induced hepatotoxicity and lymphotoxicity via attenuating oxidative damage, cell apoptosis and inflammation in rats}, series = {Biomedicines}, volume = {10}, journal = {Biomedicines}, number = {7}, issn = {2227-9059}, doi = {10.3390/biomedicines10071620}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-281686}, year = {2022}, abstract = {Though several previous studies reported the in vitro and in vivo antioxidant effect of kinetin (Kn), details on its action in cisplatin-induced toxicity are still scarce. In this study we evaluated, for the first time, the effects of kinetin in cisplatin (cp)- induced liver and lymphocyte toxicity in rats. Wistar male albino rats were divided into nine groups: (i) the control (C), (ii) groups 2,3 and 4, which received 0.25, 0.5 and 1 mg/kg kinetin for 10 days; (iii) the cisplatin (cp) group, which received a single intraperitoneal injection of CP (7.0 mg/kg); and (iv) groups 6, 7, 8 and 9, which received, for 10 days, 0.25, 0.5 and 1 mg/kg kinetin or 200 mg/kg vitamin C, respectively, and Cp on the fourth day. CP-injected rats showed a significant impairment in biochemical, oxidative stress and inflammatory parameters in hepatic tissue and lymphocytes. PCR showed a profound increase in caspase-3, and a significant decline in AKT gene expression. Intriguingly, Kn treatment restored the biochemical, redox status and inflammatory parameters. Hepatic AKT and caspase-3 expression as well as CD95 levels in lymphocytes were also restored. In conclusion, Kn mitigated oxidative imbalance, inflammation and apoptosis in CP-induced liver and lymphocyte toxicity; therefore, it can be considered as a promising therapy.}, language = {en} } @phdthesis{Fehler2010, author = {Fehler, Manuel}, title = {Kalibrierung Agenten-basierter Simulationen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-64762}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {In der vorliegenden Arbeit wird das Problem der Kalibrierung Agenten-basierter Simulationen (ABS) behandelt, also das Problem, die Parameterwerte eines Agenten-basierten Simulationsmodells so einzustellen, dass valides Simulationsverhalten erreicht wird. Das Kalibrierungsproblem f{\"u}r Simulationen an sich ist nicht neu und ist im Rahmen klassischer Simulationsparadigmen, wie z.B. der Makro-Simulation, fester Bestandteil der Forschung. Im Vergleich zu den dort betrachteten Kalibrierungsproblemen zeichnet sich das Kalibrierungsproblem f{\"u}r ABS jedoch durch eine Reihe zus{\"a}tzlicher Herausforderungen aus, welche die direkte Anwendung existierender Kalibrierungsverfahren in begrenzter Zeit erschweren, bzw. nicht mehr sinnvoll zulassen. Die L{\"o}sung dieser Probleme steht im Zentrum dieser Dissertation: Das Ziel besteht darin, den Nutzer bei der Kalibrierung von ABS auf der Basis von unzureichenden, potentiell fehlerhaften Daten und Wissen zu unterst{\"u}tzen. Dabei sollen drei Hauptprobleme gel{\"o}st werden: 1)Vereinfachung der Kalibrierung großer Agenten-Parametermengen auf der Mikro- Ebene in Agenten-basierten Simulationen durch Ausnutzung der spezifischen Struktur von ABS (n{\"a}mlich dem Aufbau aus einer Menge von Agentenmodellen). 2)Kalibrierung Agenten-basierter Simulationen, so dass auf allen relevanten Beobachtungsebenen valides Simulationsverhalten erzeugt wird (mindestens Mikro und Makro-Ebene). Als erschwerende Randbedingung muss die Kalibrierung unter der Voraussetzung einer Makro-Mikro-Wissensl{\"u}cke durchgef{\"u}hrt werden. 3)Kalibrierung Agenten-basierter Simulationen auf der Mikro-Ebene unter der Voraussetzung, dass zur Kalibrierung einzelner Agentenmodelle nicht ausreichend und potentiell verf{\"a}lschte Daten zur Verhaltensvalidierung zur Verf{\"u}gung stehen. Hierzu wird in dieser Arbeit das sogenannte Makro-Mikro-Verfahren zur Kalibrierung von Agenten-basierten Simulationen entwickelt. Das Verfahren besteht aus einem Basisverfahren, das im Verlauf der Arbeit um verschiedene Zusatzverfahren erweitert wird. Das Makro-Mikro-Verfahren und seine Erweiterungen sollen dazu dienen, die Modellkalibrierung trotz stark verrauschter Daten und eingeschr{\"a}nktem Wissen {\"u}ber die Wirkungszusammenh{\"a}nge im Originalsystem geeignet zu erm{\"o}glichen und dabei den Kalibrierungsprozess zu beschleunigen: 1) Makro-Mikro-Kalibrierungsverfahren: Das in dieser Arbeit entwickelte Makro- Mikro-Verfahren unterst{\"u}tzt den Nutzer durch eine kombinierte Kalibrierung auf der Mikro- und der Makro-Beobachtungsebene, die gegebenenfalls durch Zwischenebenen erweitert werden kann. Der Grundgedanke des Verfahrens besteht darin, das Kalibrierungsproblem in eines auf aggregierter Verhaltensebene und eines auf der Ebene des Mikro-Agentenverhaltens aufzuteilen. Auf der Makro-Ebene wird nach validen idealen aggregierten Verhaltensmodellen (IVM) der Agenten gesucht. Auf der Mikro-Ebene wird versucht die individuellen Modelle der Agenten auf Basis des erw{\"u}nschten Gesamtverhaltens und der ermittelten IVM so zu kalibrieren, das insgesamt Simulationsverhalten entsteht, das sowohl auf Mikro- als auch auf Makro-Ebene valide ist. 2) Erweiterung 1: Robuste Kalibrierung: Um den Umgang mit potentiell verrauschten Validierungskriterien (d.h. mit verrauschten Daten {\"u}ber ein Originalsystem, auf denen die Validierungskriterien der Simulation beruhen) und Modellteilen w{\"a}hrend der Kalibrierung von ABS zu erm{\"o}glichen, wird eine robuste Kalibrierungstechnik zur Anwendung im Makro-Mikro-Verfahren entwickelt. 3) Erweiterung 2: Kalibrierung mit Heterogenit{\"a}tssuche: Als zweite Erweiterung des Makro-Mikro-Verfahrens wird ein Verfahren entwickelt, das das Problem des unklaren Detaillierungsgrades von ABS auf der Ebene der Parameterwerte adressiert. Prinzipiell kann zwar jeder Agent unterschiedliche Parameterwerte verwenden, obwohl eine geringere Heterogenit{\"a}t zur Erzeugung validen Verhaltens ausreichend w{\"a}re. Die entwickelte Erweiterung versucht, w{\"a}hrend der Kalibrierung, eine geeignete Heterogenit{\"a}tsauspr{\"a}gung f{\"u}r die Parameterwerte der Agenten zu ermitteln. Unter einer Heterogenit{\"a}tsauspr{\"a}gung wird dabei eine Einteilung der simulierten Agenten in Gruppen mit jeweils gleichen Parameterwerten verstanden. Die Heterogenit{\"a}tssuche dient dazu, einen Kompromiss zu finden zwischen der Notwendigkeit, sehr große Parametersuchr{\"a}ume durchsuchen zu m{\"u}ssen und gleichzeitig den Suchraum so klein wie m{\"o}glich halten zu wollen.}, subject = {Computersimulation}, language = {de} } @misc{Feineis2008, type = {Master Thesis}, author = {Feineis, Markus}, title = {Wortgenaue Annotation digitalisierter mittelalterlicher Handschriften}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-30448}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {No abstract available}, subject = {Annotation}, language = {de} } @phdthesis{Fink2014, author = {Fink, Martin}, title = {Crossings, Curves, and Constraints in Graph Drawing}, publisher = {W{\"u}rzburg University Press}, isbn = {978-3-95826-002-3 (print)}, doi = {10.25972/WUP-978-3-95826-003-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-98235}, school = {W{\"u}rzburg University Press}, pages = {222}, year = {2014}, abstract = {In many cases, problems, data, or information can be modeled as graphs. Graphs can be used as a tool for modeling in any case where connections between distinguishable objects occur. Any graph consists of a set of objects, called vertices, and a set of connections, called edges, such that any edge connects a pair of vertices. For example, a social network can be modeled by a graph by transforming the users of the network into vertices and friendship relations between users into edges. Also physical networks like computer networks or transportation networks, for example, the metro network of a city, can be seen as graphs. For making graphs and, thereby, the data that is modeled, well-understandable for users, we need a visualization. Graph drawing deals with algorithms for visualizing graphs. In this thesis, especially the use of crossings and curves is investigated for graph drawing problems under additional constraints. The constraints that occur in the problems investigated in this thesis especially restrict the positions of (a part of) the vertices; this is done either as a hard constraint or as an optimization criterion.}, subject = {Graphenzeichnen}, language = {en} } @article{FischerHarteltPuppe2023, author = {Fischer, Norbert and Hartelt, Alexander and Puppe, Frank}, title = {Line-level layout recognition of historical documents with background knowledge}, series = {Algorithms}, volume = {16}, journal = {Algorithms}, number = {3}, issn = {1999-4893}, doi = {10.3390/a16030136}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-310938}, year = {2023}, abstract = {Digitization and transcription of historic documents offer new research opportunities for humanists and are the topics of many edition projects. However, manual work is still required for the main phases of layout recognition and the subsequent optical character recognition (OCR) of early printed documents. This paper describes and evaluates how deep learning approaches recognize text lines and can be extended to layout recognition using background knowledge. The evaluation was performed on five corpora of early prints from the 15th and 16th Centuries, representing a variety of layout features. While the main text with standard layouts could be recognized in the correct reading order with a precision and recall of up to 99.9\%, also complex layouts were recognized at a rate as high as 90\% by using background knowledge, the full potential of which was revealed if many pages of the same source were transcribed.}, language = {en} } @article{FisselerMuellerWeichert2017, author = {Fisseler, Denis and M{\"u}ller, Gerfrid G. W. and Weichert, Frank}, title = {Web-Based scientific exploration and analysis of 3D scanned cuneiform datasets for collaborative research}, series = {Informatics}, volume = {4}, journal = {Informatics}, number = {4}, issn = {2227-9709}, doi = {10.3390/informatics4040044}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197958}, pages = {44}, year = {2017}, abstract = {The three-dimensional cuneiform script is one of the oldest known writing systems and a central object of research in Ancient Near Eastern Studies and Hittitology. An important step towards the understanding of the cuneiform script is the provision of opportunities and tools for joint analysis. This paper presents an approach that contributes to this challenge: a collaborative compatible web-based scientific exploration and analysis of 3D scanned cuneiform fragments. The WebGL -based concept incorporates methods for compressed web-based content delivery of large 3D datasets and high quality visualization. To maximize accessibility and to promote acceptance of 3D techniques in the field of Hittitology, the introduced concept is integrated into the Hethitologie-Portal Mainz, an established leading online research resource in the field of Hittitology, which until now exclusively included 2D content. The paper shows that increasing the availability of 3D scanned archaeological data through a web-based interface can provide significant scientific value while at the same time finding a trade-off between copyright induced restrictions and scientific usability.}, language = {en} } @phdthesis{Fleszar2018, author = {Fleszar, Krzysztof}, title = {Network-Design Problems in Graphs and on the Plane}, edition = {1. Auflage}, publisher = {W{\"u}rzburg University Press}, address = {W{\"u}rzburg}, isbn = {978-3-95826-076-4 (Print)}, doi = {10.25972/WUP-978-3-95826-077-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154904}, school = {W{\"u}rzburg University Press}, pages = {xi, 204}, year = {2018}, abstract = {A network design problem defines an infinite set whose elements, called instances, describe relationships and network constraints. It asks for an algorithm that, given an instance of this set, designs a network that respects the given constraints and at the same time optimizes some given criterion. In my thesis, I develop algorithms whose solutions are optimum or close to an optimum value within some guaranteed bound. I also examine the computational complexity of these problems. Problems from two vast areas are considered: graphs and the Euclidean plane. In the Maximum Edge Disjoint Paths problem, we are given a graph and a subset of vertex pairs that are called terminal pairs. We are asked for a set of paths where the endpoints of each path form a terminal pair. The constraint is that any two paths share at most one inner vertex. The optimization criterion is to maximize the cardinality of the set. In the hard-capacitated k-Facility Location problem, we are given an integer k and a complete graph where the distances obey a given metric and where each node has two numerical values: a capacity and an opening cost. We are asked for a subset of k nodes, called facilities, and an assignment of all the nodes, called clients, to the facilities. The constraint is that the number of clients assigned to a facility cannot exceed the facility's capacity value. The optimization criterion is to minimize the total cost which consists of the total opening cost of the facilities and the total distance between the clients and the facilities they are assigned to. In the Stabbing problem, we are given a set of axis-aligned rectangles in the plane. We are asked for a set of horizontal line segments such that, for every rectangle, there is a line segment crossing its left and right edge. The optimization criterion is to minimize the total length of the line segments. In the k-Colored Non-Crossing Euclidean Steiner Forest problem, we are given an integer k and a finite set of points in the plane where each point has one of k colors. For every color, we are asked for a drawing that connects all the points of the same color. The constraint is that drawings of different colors are not allowed to cross each other. The optimization criterion is to minimize the total length of the drawings. In the Minimum Rectilinear Polygon for Given Angle Sequence problem, we are given an angle sequence of left (+90°) turns and right (-90°) turns. We are asked for an axis-parallel simple polygon where the angles of the vertices yield the given sequence when walking around the polygon in counter-clockwise manner. The optimization criteria considered are to minimize the perimeter, the area, and the size of the axis-parallel bounding box of the polygon.}, subject = {Euklidische Ebene}, language = {en} } @phdthesis{Freiberg2015, author = {Freiberg, Martina}, title = {UI-, User-, \& Usability-Oriented Engineering of Participative Knowledge-Based Systems}, publisher = {W{\"u}rzburg University Press}, isbn = {978-3-95826-012-2 (print)}, doi = {10.25972/WUP-978-3-95826-013-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-106072}, school = {W{\"u}rzburg University Press}, pages = {232}, year = {2015}, abstract = {Knowledge-based systems (KBS) face an ever-increasing interest in various disciplines and contexts. Yet, the former aim to construct the 'perfect intelligent software' continuously shifts to user-centered, participative solutions. Such systems enable users to contribute their personal knowledge to the problem solving process for increased efficiency and an ameliorated user experience. More precisely, we define non-functional key requirements of participative KBS as: Transparency (encompassing KBS status mediation), configurability (user adaptability, degree of user control/exploration), quality of the KB and UI, and evolvability (enabling the KBS to grow mature with their users). Many of those requirements depend on the respective target users, thus calling for a more user-centered development. Often, also highly expertise domains are targeted — inducing highly complex KBs — which requires a more careful and considerate UI/interaction design. Still, current KBS engineering (KBSE) approaches mostly focus on knowledge acquisition (KA) This often leads to non-optimal, little reusable, and non/little evaluated KBS front-end solutions. In this thesis we propose a more encompassing KBSE approach. Due to the strong mutual influences between KB and UI, we suggest a novel form of intertwined UI and KB development. We base the approach on three core components for encompassing KBSE: (1) Extensible prototyping, a tailored form of evolutionary prototyping; this builds on mature UI prototypes and offers two extension steps for the anytime creation of core KBS prototypes (KB + core UI) and fully productive KBS (core KBS prototype + common framing functionality). (2) KBS UI patterns, that define reusable solutions for the core KBS UI/interaction; we provide a basic collection of such patterns in this work. (3) Suitable usability instruments for the assessment of the KBS artifacts. Therewith, we do not strive for 'yet another' self-contained KBS engineering methodology. Rather, we motivate to extend existing approaches by the proposed key components. We demonstrate this based on an agile KBSE model. For practical support, we introduce the tailored KBSE tool ProKEt. ProKEt offers a basic selection of KBS core UI patterns and corresponding configuration options out of the box; their further adaption/extension is possible on various levels of expertise. For practical usability support, ProKEt offers facilities for quantitative and qualitative data collection. ProKEt explicitly fosters the suggested, intertwined development of UI and KB. For seamlessly integrating KA activities, it provides extension points for two selected external KA tools: For KnowOF, a standard office based KA environment. And for KnowWE, a semantic wiki for collaborative KA. Therewith, ProKEt offers powerful support for encompassing, user-centered KBSE. Finally, based on the approach and the tool, we also developed a novel KBS type: Clarification KBS as a mashup of consultation and justification KBS modules. Those denote a specifically suitable realization for participative KBS in highly expertise contexts and consequently require a specific design. In this thesis, apart from more common UI solutions, we particularly also introduce KBS UI patterns especially tailored towards Clarification KBS.}, subject = {Wissensbasiertes System}, language = {en} }