@phdthesis{Sun2014, author = {Sun, Kaipeng}, title = {Six Degrees of Freedom Object Pose Estimation with Fusion Data from a Time-of-flight Camera and a Color Camera}, isbn = {978-3-923959-97-6}, doi = {10.25972/OPUS-10508}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-105089}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Object six Degrees of Freedom (6DOF) pose estimation is a fundamental problem in many practical robotic applications, where the target or an obstacle with a simple or complex shape can move fast in cluttered environments. In this thesis, a 6DOF pose estimation algorithm is developed based on the fused data from a time-of-flight camera and a color camera. The algorithm is divided into two stages, an annealed particle filter based coarse pose estimation stage and a gradient decent based accurate pose optimization stage. In the first stage, each particle is evaluated with sparse representation. In this stage, the large inter-frame motion of the target can be well handled. In the second stage, the range data based conventional Iterative Closest Point is extended by incorporating the target appearance information and used for calculating the accurate pose by refining the coarse estimate from the first stage. For dealing with significant illumination variations during the tracking, spherical harmonic illumination modeling is investigated and integrated into both stages. The robustness and accuracy of the proposed algorithm are demonstrated through experiments on various objects in both indoor and outdoor environments. Moreover, real-time performance can be achieved with graphics processing unit acceleration.}, subject = {Mustererkennung}, language = {en} } @phdthesis{Klein2014, author = {Klein, Dominik Werner}, title = {Design and Evaluation of Components for Future Internet Architectures}, issn = {1432-8801}, doi = {10.25972/OPUS-9313}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-93134}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Die derzeitige Internetarchitektur wurde nicht in einem geplanten Prozess konzipiert und entwickelt, sondern hat vielmehr eine evolutionsartige Entwicklung hinter sich. Ausl{\"o}ser f{\"u}r die jeweiligen Evolutionsschritte waren dabei meist aufstrebende Anwendungen, welche neue Anforderungen an die zugrundeliegende Netzarchitektur gestellt haben. Um diese Anforderungen zu erf{\"u}llen, wurden h{\"a}ufig neuartige Dienste oder Protokolle spezifiziert und in die bestehende Architektur integriert. Dieser Prozess ist jedoch meist mit hohem Aufwand verbunden und daher sehr tr{\"a}ge, was die Entwicklung und Verbreitung innovativer Dienste beeintr{\"a}chtigt. Derzeitig diskutierte Konzepte wie Software-Defined Networking (SDN) oder Netzvirtualisierung (NV) werden als eine M{\"o}glichkeit angesehen, die Altlasten der bestehenden Internetarchitektur zu l{\"o}sen. Beiden Konzepten gemein ist die Idee, logische Netze {\"u}ber dem physikalischen Substrat zu betreiben. Diese logischen Netze sind hochdynamisch und k{\"o}nnen so flexibel an die Anforderungen der jeweiligen Anwendungen angepasst werden. Insbesondere erlaubt das Konzept der Virtualisierung intelligentere Netzknoten, was innovative neue Anwendungsf{\"a}lle erm{\"o}glicht. Ein h{\"a}ufig in diesem Zusammenhang diskutierter Anwendungsfall ist die Mobilit{\"a}t sowohl von Endger{\"a}ten als auch von Diensten an sich. Die Mobilit{\"a}t der Dienste wird hierbei ausgenutzt, um die Zugriffsverz{\"o}gerung oder die belegten Ressourcen im Netz zu reduzieren, indem die Dienste zum Beispiel in f{\"u}r den Nutzer geographisch nahe Datenzentren migriert werden. Neben den reinen Mechanismen bez{\"u}glich Dienst- und Endger{\"a}temobilit{\"a}t sind in diesem Zusammenhang auch geeignete {\"U}berwachungsl{\"o}sungen relevant, welche die vom Nutzer wahrgenommene Dienstg{\"u}te bewerten k{\"o}nnen. Diese L{\"o}sungen liefern wichtige Entscheidungshilfen f{\"u}r die Migration oder {\"u}berwachen m{\"o}gliche Effekte der Migration auf die erfahrene Dienstg{\"u}te beim Nutzer. Im Falle von Video Streaming erm{\"o}glicht ein solcher Anwendungsfall die flexible Anpassung der Streaming Topologie f{\"u}r mobile Nutzer, um so die Videoqualit{\"a}t unabh{\"a}ngig vom Zugangsnetz aufrechterhalten zu k{\"o}nnen. Im Rahmen dieser Doktorarbeit wird der beschriebene Anwendungsfall am Beispiel einer Video Streaming Anwendung n{\"a}her analysiert und auftretende Herausforderungen werden diskutiert. Des Weiteren werden L{\"o}sungsans{\"a}tze vorgestellt und bez{\"u}glich ihrer Effizienz ausgewertet. Im Detail besch{\"a}ftigt sich die Arbeit mit der Leistungsanalyse von Mechanismen f{\"u}r die Dienstmobilit{\"a}t und entwickelt eine Architektur zur Optimierung der Dienstmobilit{\"a}t. Im Bereich Endger{\"a}temobilit{\"a}t werden Verbesserungen entwickelt, welche die Latenz zwischen Endger{\"a}t und Dienst reduzieren oder die Konnektivit{\"a}t unabh{\"a}ngig vom Zugangsnetz gew{\"a}hrleisten. Im letzten Teilbereich wird eine L{\"o}sung zur {\"U}berwachung der Videoqualit{\"a}t im Netz entwickelt und bez{\"u}glich ihrer Genauigkeit analysiert.}, subject = {Leistungsbewertung}, language = {en} } @phdthesis{Fink2014, author = {Fink, Martin}, title = {Crossings, Curves, and Constraints in Graph Drawing}, publisher = {W{\"u}rzburg University Press}, isbn = {978-3-95826-002-3 (print)}, doi = {10.25972/WUP-978-3-95826-003-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-98235}, school = {W{\"u}rzburg University Press}, pages = {222}, year = {2014}, abstract = {In many cases, problems, data, or information can be modeled as graphs. Graphs can be used as a tool for modeling in any case where connections between distinguishable objects occur. Any graph consists of a set of objects, called vertices, and a set of connections, called edges, such that any edge connects a pair of vertices. For example, a social network can be modeled by a graph by transforming the users of the network into vertices and friendship relations between users into edges. Also physical networks like computer networks or transportation networks, for example, the metro network of a city, can be seen as graphs. For making graphs and, thereby, the data that is modeled, well-understandable for users, we need a visualization. Graph drawing deals with algorithms for visualizing graphs. In this thesis, especially the use of crossings and curves is investigated for graph drawing problems under additional constraints. The constraints that occur in the problems investigated in this thesis especially restrict the positions of (a part of) the vertices; this is done either as a hard constraint or as an optimization criterion.}, subject = {Graphenzeichnen}, language = {en} } @phdthesis{Jarschel2014, author = {Jarschel, Michael}, title = {An Assessment of Applications and Performance Analysis of Software Defined Networking}, issn = {1432-8801}, doi = {10.25972/OPUS-10079}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-100795}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {With the introduction of OpenFlow by the Stanford University in 2008, a process began in the area of network research, which questions the predominant approach of fully distributed network control. OpenFlow is a communication protocol that allows the externalization of the network control plane from the network devices, such as a router, and to realize it as a logically-centralized entity in software. For this concept, the term "Software Defined Networking" (SDN) was coined during scientific discourse. For the network operators, this concept has several advantages. The two most important can be summarized under the points cost savings and flexibility. Firstly, it is possible through the uniform interface for network hardware ("Southbound API"), as implemented by OpenFlow, to combine devices and software from different manufacturers, which increases the innovation and price pressure on them. Secondly, the realization of the network control plane as a freely programmable software with open interfaces ("Northbound API") provides the opportunity to adapt it to the individual circumstances of the operator's network and to exchange information with the applications it serves. This allows the network to be more flexible and to react more quickly to changing circumstances as well as transport the traffic more effectively and tailored to the user's "Quality of Experience" (QoE). The approach of a separate network control layer for packet-based networks is not new and has already been proposed several times in the past. Therefore, the SDN approach has raised many questions about its feasibility in terms of efficiency and applicability. These questions are caused to some extent by the fact that there is no generally accepted definition of the SDN concept to date. It is therefore a part of this thesis to derive such a definition. In addition, several of the open issues are investigated. This Investigations follow the three aspects: Performance Evaluation of Software Defined Networking, applications on the SDN control layer, and the usability of SDN Northbound-API for creation application-awareness in network operation. Performance Evaluation of Software Defined Networking: The question of the efficiency of an SDN-based system was from the beginning one of the most important. In this thesis, experimental measurements of the performance of OpenFlow-enabled switch hardware and control software were conducted for the purpose of answering this question. The results of these measurements were used as input parameters for establishing an analytical model of the reactive SDN approach. Through the model it could be determined that the performance of the software control layer, often called "Controller", is crucial for the overall performance of the system, but that the approach is generally viable. Based on this finding a software for analyzing the performance of SDN controllers was developed. This software allows the emulation of the forwarding layer of an SDN network towards the control software and can thus determine its performance in different situations and configurations. The measurements with this software showed that there are quite significant differences in the behavior of different control software implementations. Among other things it has been shown that some show different characteristics for various switches, in particular in terms of message processing speed. Under certain circumstances this can lead to network failures. Applications on the SDN control layer: The core piece of software defined networking are the intelligent network applications that operate on the control layer. However, their development is still in its infancy and little is known about the technical possibilities and their limitations. Therefore, the relationship between an SDN-based and classical implementation of a network function is investigated in this thesis. This function is the monitoring of network links and the traffic they carry. A typical approach for this task has been built based on Wiretapping and specialized measurement hardware and compared with an implementation based on OpenFlow switches and a special SDN control application. The results of the comparison show that the SDN version can compete in terms of measurement accuracy for bandwidth and delay estimation with the traditional measurement set-up. However, a compromise has to be found for measurements below the millisecond range. Another question regarding the SDN control applications is whether and how well they can solve existing problems in networks. Two programs have been developed based on SDN in this thesis to solve two typical network issues. Firstly, the tool "IPOM", which enables considerably more flexibility in the study of effects of network structures for a researcher, who is confined to a fixed physical test network topology. The second software provides an interface between the Cloud Orchestration Software "OpenNebula" and an OpenFlow controller. The purpose of this software was to investigate experimentally whether a pre-notification of the network of an impending relocation of a virtual service in a data center is sufficient to ensure the continuous operation of that service. This was demonstrated on the example of a video service. Usability of the SDN Northbound API for creating application-awareness in network operation: Currently, the fact that the network and the applications that run on it are developed and operated separately leads to problems in network operation. SDN offers with the Northbound-API an open interface that enables the exchange between information of both worlds during operation. One aim of this thesis was to investigate whether this interface can be exploited so that the QoE experienced by the user can be maintained on high level. For this purpose, the QoE influence factors were determined on a challenging application by means of a subjective survey study. The application is cloud gaming, in which the calculation of video game environments takes place in the cloud and is transported via video over the network to the user. It was shown that apart from the most important factor influencing QoS, i.e., packet loss on the downlink, also the type of game type and its speed play a role. This demonstrates that in addition to QoS the application state is important and should be communicated to the network. Since an implementation of such a state conscious SDN for the example of Cloud Gaming was not possible due to its proprietary implementation, in this thesis the application "YouTube video streaming" was chosen as an alternative. For this application, status information is retrievable via the "Yomo" tool and can be used for network control. It was shown that an SDN-based implementation of an application-aware network has distinct advantages over traditional network management methods and the user quality can be obtained in spite of disturbances.}, subject = {Leistungsbewertung}, language = {en} } @phdthesis{Hock2014, author = {Hock, David Rog{\´e}r}, title = {Analysis and Optimization of Resilient Routing in Core Communication Networks}, issn = {1432-8801}, doi = {10.25972/OPUS-10168}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-101681}, school = {Universit{\"a}t W{\"u}rzburg}, pages = {175}, year = {2014}, abstract = {Routing is one of the most important issues in any communication network. It defines on which path packets are transmitted from the source of a connection to the destination. It allows to control the distribution of flows between different locations in the network and thereby is a means to influence the load distribution or to reach certain constraints imposed by particular applications. As failures in communication networks appear regularly and cannot be completely avoided, routing is required to be resilient against such outages, i.e., routing still has to be able to forward packets on backup paths even if primary paths are not working any more. Throughout the years, various routing technologies have been introduced that are very different in their control structure, in their way of working, and in their ability to handle certain failure cases. Each of the different routing approaches opens up their own specific questions regarding configuration, optimization, and inclusion of resilience issues. This monograph investigates, with the example of three particular routing technologies, some concrete issues regarding the analysis and optimization of resilience. It thereby contributes to a better general, technology-independent understanding of these approaches and of their diverse potential for the use in future network architectures. The first considered routing type, is decentralized intra-domain routing based on administrative IP link costs and the shortest path principle. Typical examples are common today's intra-domain routing protocols OSPF and IS-IS. This type of routing includes automatic restoration abilities in case of failures what makes it in general very robust even in the case of severe network outages including several failed components. Furthermore, special IP-Fast Reroute mechanisms allow for a faster reaction on outages. For routing based on link costs, traffic engineering, e.g. the optimization of the maximum relative link load in the network, can be done indirectly by changing the administrative link costs to adequate values. The second considered routing type, MPLS-based routing, is based on the a priori configuration of primary and backup paths, so-called Label Switched Paths. The routing layout of MPLS paths offers more freedom compared to IP-based routing as it is not restricted by any shortest path constraints but any paths can be setup. However, this in general involves a higher configuration effort. Finally, in the third considered routing type, typically centralized routing using a Software Defined Networking (SDN) architecture, simple switches only forward packets according to routing decisions made by centralized controller units. SDN-based routing layouts offer the same freedom as for explicit paths configured using MPLS. In case of a failure, new rules can be setup by the controllers to continue the routing in the reduced topology. However, new resilience issues arise caused by the centralized architecture. If controllers are not reachable anymore, the forwarding rules in the single nodes cannot be adapted anymore. This might render a rerouting in case of connection problems in severe failure scenarios infeasible.}, subject = {Leistungsbewertung}, language = {en} }