@article{UnruhLandeckOberdoerferetal.2021, author = {Unruh, Fabian and Landeck, Maximilian and Oberd{\"o}rfer, Sebastian and Lugrin, Jean-Luc and Latoschik, Marc Erich}, title = {The Influence of Avatar Embodiment on Time Perception - Towards VR for Time-Based Therapy}, series = {Frontiers in Virtual Reality}, volume = {2}, journal = {Frontiers in Virtual Reality}, doi = {10.3389/frvir.2021.658509}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259076}, pages = {658509}, year = {2021}, abstract = {Psycho-pathological conditions, such as depression or schizophrenia, are often accompanied by a distorted perception of time. People suffering from this conditions often report that the passage of time slows down considerably and that they are "stuck in time." Virtual Reality (VR) could potentially help to diagnose and maybe treat such mental conditions. However, the conditions in which a VR simulation could correctly diagnose a time perception deviation are still unknown. In this paper, we present an experiment investigating the difference in time experience with and without a virtual body in VR, also known as avatar. The process of substituting a person's body with a virtual body is called avatar embodiment. Numerous studies demonstrated interesting perceptual, emotional, behavioral, and psychological effects caused by avatar embodiment. However, the relations between time perception and avatar embodiment are still unclear. Whether or not the presence or absence of an avatar is already influencing time perception is still open to question. Therefore, we conducted a between-subjects design with and without avatar embodiment as well as a real condition (avatar vs. no-avatar vs. real). A group of 105 healthy subjects had to wait for seven and a half minutes in a room without any distractors (e.g., no window, magazine, people, decoration) or time indicators (e.g., clocks, sunlight). The virtual environment replicates the real physical environment. Participants were unaware that they will be asked to estimate their waiting time duration as well as describing their experience of the passage of time at a later stage. Our main finding shows that the presence of an avatar is leading to a significantly faster perceived passage of time. It seems to be promising to integrate avatar embodiment in future VR time-based therapy applications as they potentially could modulate a user's perception of the passage of time. We also found no significant difference in time perception between the real and the VR conditions (avatar, no-avatar), but further research is needed to better understand this outcome.}, language = {en} } @article{SteinhaeusserOberdoerfervonMammenetal.2022, author = {Steinhaeusser, Sophia C. and Oberd{\"o}rfer, Sebastian and von Mammen, Sebastian and Latoschik, Marc Erich and Lugrin, Birgit}, title = {Joyful adventures and frightening places - designing emotion-inducing virtual environments}, series = {Frontiers in Virtual Reality}, volume = {3}, journal = {Frontiers in Virtual Reality}, issn = {2673-4192}, doi = {10.3389/frvir.2022.919163}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284831}, year = {2022}, abstract = {Virtual environments (VEs) can evoke and support emotions, as experienced when playing emotionally arousing games. We theoretically approach the design of fear and joy evoking VEs based on a literature review of empirical studies on virtual and real environments as well as video games' reviews and content analyses. We define the design space and identify central design elements that evoke specific positive and negative emotions. Based on that, we derive and present guidelines for emotion-inducing VE design with respect to design themes, colors and textures, and lighting configurations. To validate our guidelines in two user studies, we 1) expose participants to 360° videos of VEs designed following the individual guidelines and 2) immerse them in a neutral, positive and negative emotion-inducing VEs combining all respective guidelines in Virtual Reality. The results support our theoretically derived guidelines by revealing significant differences in terms of fear and joy induction.}, language = {en} } @article{OberdoerferHeidrichBirnstieletal.2021, author = {Oberd{\"o}rfer, Sebastian and Heidrich, David and Birnstiel, Sandra and Latoschik, Marc Erich}, title = {Enchanted by Your Surrounding? Measuring the Effects of Immersion and Design of Virtual Environments on Decision-Making}, series = {Frontiers in Virtual Reality}, volume = {2}, journal = {Frontiers in Virtual Reality}, doi = {10.3389/frvir.2021.679277}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260101}, pages = {679277}, year = {2021}, abstract = {Impaired decision-making leads to the inability to distinguish between advantageous and disadvantageous choices. The impairment of a person's decision-making is a common goal of gambling games. Given the recent trend of gambling using immersive Virtual Reality it is crucial to investigate the effects of both immersion and the virtual environment (VE) on decision-making. In a novel user study, we measured decision-making using three virtual versions of the Iowa Gambling Task (IGT). The versions differed with regard to the degree of immersion and design of the virtual environment. While emotions affect decision-making, we further measured the positive and negative affect of participants. A higher visual angle on a stimulus leads to an increased emotional response. Thus, we kept the visual angle on the Iowa Gambling Task the same between our conditions. Our results revealed no significant impact of immersion or the VE on the IGT. We further found no significant difference between the conditions with regard to positive and negative affect. This suggests that neither the medium used nor the design of the VE causes an impairment of decision-making. However, in combination with a recent study, we provide first evidence that a higher visual angle on the IGT leads to an effect of impairment.}, language = {en} } @article{OberdoerferBirnstielLatoschiketal.2021, author = {Oberd{\"o}rfer, Sebastian and Birnstiel, Sandra and Latoschik, Marc Erich and Grafe, Silke}, title = {Mutual Benefits: Interdisciplinary Education of Pre-Service Teachers and HCI Students in VR/AR Learning Environment Design}, series = {Frontiers in Education}, volume = {6}, journal = {Frontiers in Education}, issn = {2504-284X}, doi = {10.3389/feduc.2021.693012}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241612}, year = {2021}, abstract = {The successful development and classroom integration of Virtual (VR) and Augmented Reality (AR) learning environments requires competencies and content knowledge with respect to media didactics and the respective technologies. The paper discusses a pedagogical concept specifically aiming at the interdisciplinary education of pre-service teachers in collaboration with human-computer interaction students. The students' overarching goal is the interdisciplinary realization and integration of VR/AR learning environments in teaching and learning concepts. To assist this approach, we developed a specific tutorial guiding the developmental process. We evaluate and validate the effectiveness of the overall pedagogical concept by analyzing the change in attitudes regarding 1) the use of VR/AR for educational purposes and in competencies and content knowledge regarding 2) media didactics and 3) technology. Our results indicate a significant improvement in the knowledge of media didactics and technology. We further report on four STEM learning environments that have been developed during the seminar.}, language = {en} } @article{MadeiraGromerLatoschiketal.2021, author = {Madeira, Octavia and Gromer, Daniel and Latoschik, Marc Erich and Pauli, Paul}, title = {Effects of Acrophobic Fear and Trait Anxiety on Human Behavior in a Virtual Elevated Plus-Maze}, series = {Frontiers in Virtual Reality}, volume = {2}, journal = {Frontiers in Virtual Reality}, doi = {10.3389/frvir.2021.635048}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258709}, year = {2021}, abstract = {The Elevated Plus-Maze (EPM) is a well-established apparatus to measure anxiety in rodents, i.e., animals exhibiting an increased relative time spent in the closed vs. the open arms are considered anxious. To examine whether such anxiety-modulated behaviors are conserved in humans, we re-translated this paradigm to a human setting using virtual reality in a Cave Automatic Virtual Environment (CAVE) system. In two studies, we examined whether the EPM exploration behavior of humans is modulated by their trait anxiety and also assessed the individuals' levels of acrophobia (fear of height), claustrophobia (fear of confined spaces), sensation seeking, and the reported anxiety when on the maze. First, we constructed an exact virtual copy of the animal EPM adjusted to human proportions. In analogy to animal EPM studies, participants (N = 30) freely explored the EPM for 5 min. In the second study (N = 61), we redesigned the EPM to make it more human-adapted and to differentiate influences of trait anxiety and acrophobia by introducing various floor textures and lower walls of closed arms to the height of standard handrails. In the first experiment, hierarchical regression analyses of exploration behavior revealed the expected association between open arm avoidance and Trait Anxiety, an even stronger association with acrophobic fear. In the second study, results revealed that acrophobia was associated with avoidance of open arms with mesh-floor texture, whereas for trait anxiety, claustrophobia, and sensation seeking, no effect was detected. Also, subjects' fear rating was moderated by all psychometrics but trait anxiety. In sum, both studies consistently indicate that humans show no general open arm avoidance analogous to rodents and that human EPM behavior is modulated strongest by acrophobic fear, whereas trait anxiety plays a subordinate role. Thus, we conclude that the criteria for cross-species validity are met insufficiently in this case. Despite the exploratory nature, our studies provide in-depth insights into human exploration behavior on the virtual EPM.}, language = {en} } @article{LandeckAlvarezIgarzabalUnruhetal.2022, author = {Landeck, Maximilian and Alvarez Igarz{\´a}bal, Federico and Unruh, Fabian and Habenicht, Hannah and Khoshnoud, Shiva and Wittmann, Marc and Lugrin, Jean-Luc and Latoschik, Marc Erich}, title = {Journey through a virtual tunnel: Simulated motion and its effects on the experience of time}, series = {Frontiers in Virtual Reality}, volume = {3}, journal = {Frontiers in Virtual Reality}, issn = {2673-4192}, doi = {10.3389/frvir.2022.1059971}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301519}, year = {2022}, abstract = {This paper examines the relationship between time and motion perception in virtual environments. Previous work has shown that the perception of motion can affect the perception of time. We developed a virtual environment that simulates motion in a tunnel and measured its effects on the estimation of the duration of time, the speed at which perceived time passes, and the illusion of self-motion, also known as vection. When large areas of the visual field move in the same direction, vection can occur; observers often perceive this as self-motion rather than motion of the environment. To generate different levels of vection and investigate its effects on time perception, we developed an abstract procedural tunnel generator. The generator can simulate different speeds and densities of tunnel sections (visibly distinguishable sections that form the virtual tunnel), as well as the degree of embodiment of the user avatar (with or without virtual hands). We exposed participants to various tunnel simulations with different durations, speeds, and densities in a remote desktop and a virtual reality (VR) laboratory study. Time passed subjectively faster under high-speed and high-density conditions in both studies. The experience of self-motion was also stronger under high-speed and high-density conditions. Both studies revealed a significant correlation between the perceived passage of time and perceived self-motion. Subjects in the virtual reality study reported a stronger self-motion experience, a faster perceived passage of time, and shorter time estimates than subjects in the desktop study. Our results suggest that a virtual tunnel simulation can manipulate time perception in virtual reality. We will explore these results for the development of virtual reality applications for therapeutic approaches in our future work. This could be particularly useful in treating disorders like depression, autism, and schizophrenia, which are known to be associated with distortions in time perception. For example, the tunnel could be therapeutically applied by resetting patients' time perceptions by exposing them to the tunnel under different conditions, such as increasing or decreasing perceived time.}, language = {en} } @article{KernKullmannGanaletal.2021, author = {Kern, Florian and Kullmann, Peter and Ganal, Elisabeth and Korwisi, Kristof and Stingl, Ren{\´e} and Niebling, Florian and Latoschik, Marc Erich}, title = {Off-The-Shelf Stylus: Using XR Devices for Handwriting and Sketching on Physically Aligned Virtual Surfaces}, series = {Frontiers in Virtual Reality}, volume = {2}, journal = {Frontiers in Virtual Reality}, doi = {10.3389/frvir.2021.684498}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260219}, year = {2021}, abstract = {This article introduces the Off-The-Shelf Stylus (OTSS), a framework for 2D interaction (in 3D) as well as for handwriting and sketching with digital pen, ink, and paper on physically aligned virtual surfaces in Virtual, Augmented, and Mixed Reality (VR, AR, MR: XR for short). OTSS supports self-made XR styluses based on consumer-grade six-degrees-of-freedom XR controllers and commercially available styluses. The framework provides separate modules for three basic but vital features: 1) The stylus module provides stylus construction and calibration features. 2) The surface module provides surface calibration and visual feedback features for virtual-physical 2D surface alignment using our so-called 3ViSuAl procedure, and surface interaction features. 3) The evaluation suite provides a comprehensive test bed combining technical measurements for precision, accuracy, and latency with extensive usability evaluations including handwriting and sketching tasks based on established visuomotor, graphomotor, and handwriting research. The framework's development is accompanied by an extensive open source reference implementation targeting the Unity game engine using an Oculus Rift S headset and Oculus Touch controllers. The development compares three low-cost and low-tech options to equip controllers with a tip and includes a web browser-based surface providing support for interacting, handwriting, and sketching. The evaluation of the reference implementation based on the OTSS framework identified an average stylus precision of 0.98 mm (SD = 0.54 mm) and an average surface accuracy of 0.60 mm (SD = 0.32 mm) in a seated VR environment. The time for displaying the stylus movement as digital ink on the web browser surface in VR was 79.40 ms on average (SD = 23.26 ms), including the physical controller's motion-to-photon latency visualized by its virtual representation (M = 42.57 ms, SD = 15.70 ms). The usability evaluation (N = 10) revealed a low task load, high usability, and high user experience. Participants successfully reproduced given shapes and created legible handwriting, indicating that the OTSS and it's reference implementation is ready for everyday use. We provide source code access to our implementation, including stylus and surface calibration and surface interaction features, making it easy to reuse, extend, adapt and/or replicate previous results (https://go.uniwue.de/hci-otss).}, language = {en} } @article{HeinLatoschikWienrich2022, author = {Hein, Rebecca M. and Latoschik, Marc Erich and Wienrich, Carolin}, title = {Inter- and transcultural learning in cocial virtual reality: a proposal for an inter- and transcultural virtual object database to be used in the implementation, reflection, and evaluation of virtual encounters}, series = {Multimodal Technologies and Interaction}, volume = {6}, journal = {Multimodal Technologies and Interaction}, number = {7}, issn = {2414-4088}, doi = {10.3390/mti6070050}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-278974}, year = {2022}, abstract = {Visual stimuli are frequently used to improve memory, language learning or perception, and understanding of metacognitive processes. However, in virtual reality (VR), there are few systematically and empirically derived databases. This paper proposes the first collection of virtual objects based on empirical evaluation for inter-and transcultural encounters between English- and German-speaking learners. We used explicit and implicit measurement methods to identify cultural associations and the degree of stereotypical perception for each virtual stimuli (n = 293) through two online studies, including native German and English-speaking participants. The analysis resulted in a final well-describable database of 128 objects (called InteractionSuitcase). In future applications, the objects can be used as a great interaction or conversation asset and behavioral measurement tool in social VR applications, especially in the field of foreign language education. For example, encounters can use the objects to describe their culture, or teachers can intuitively assess stereotyped attitudes of the encounters.}, language = {en} } @article{HalbigLatoschik2021, author = {Halbig, Andreas and Latoschik, Marc Erich}, title = {A systematic review of physiological measurements, factors, methods, and applications in virtual reality}, series = {Frontiers in Virtual Reality}, volume = {2}, journal = {Frontiers in Virtual Reality}, doi = {10.3389/frvir.2021.694567}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260503}, year = {2021}, abstract = {Measurements of physiological parameters provide an objective, often non-intrusive, and (at least semi-)automatic evaluation and utilization of user behavior. In addition, specific hardware devices of Virtual Reality (VR) often ship with built-in sensors, i.e. eye-tracking and movements sensors. Hence, the combination of physiological measurements and VR applications seems promising. Several approaches have investigated the applicability and benefits of this combination for various fields of applications. However, the range of possible application fields, coupled with potentially useful and beneficial physiological parameters, types of sensor, target variables and factors, and analysis approaches and techniques is manifold. This article provides a systematic overview and an extensive state-of-the-art review of the usage of physiological measurements in VR. We identified 1,119 works that make use of physiological measurements in VR. Within these, we identified 32 approaches that focus on the classification of characteristics of experience, common in VR applications. The first part of this review categorizes the 1,119 works by field of application, i.e. therapy, training, entertainment, and communication and interaction, as well as by the specific target factors and variables measured by the physiological parameters. An additional category summarizes general VR approaches applicable to all specific fields of application since they target typical VR qualities. In the second part of this review, we analyze the target factors and variables regarding the respective methods used for an automatic analysis and, potentially, classification. For example, we highlight which measurement setups have been proven to be sensitive enough to distinguish different levels of arousal, valence, anxiety, stress, or cognitive workload in the virtual realm. This work may prove useful for all researchers wanting to use physiological data in VR and who want to have a good overview of prior approaches taken, their benefits and potential drawbacks.}, language = {en} } @article{GlemarecLugrinBosseretal.2022, author = {Gl{\´e}marec, Yann and Lugrin, Jean-Luc and Bosser, Anne-Gwenn and Buche, C{\´e}dric and Latoschik, Marc Erich}, title = {Controlling the stage: a high-level control system for virtual audiences in Virtual Reality}, series = {Frontiers in Virtual Reality}, volume = {3}, journal = {Frontiers in Virtual Reality}, issn = {2673-4192}, doi = {10.3389/frvir.2022.876433}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284601}, year = {2022}, abstract = {This article presents a novel method for controlling a virtual audience system (VAS) in Virtual Reality (VR) application, called STAGE, which has been originally designed for supervised public speaking training in university seminars dedicated to the preparation and delivery of scientific talks. We are interested in creating pedagogical narratives: narratives encompass affective phenomenon and rather than organizing events changing the course of a training scenario, pedagogical plans using our system focus on organizing the affects it arouses for the trainees. Efficiently controlling a virtual audience towards a specific training objective while evaluating the speaker's performance presents a challenge for a seminar instructor: the high level of cognitive and physical demands required to be able to control the virtual audience, whilst evaluating speaker's performance, adjusting and allowing it to quickly react to the user's behaviors and interactions. It is indeed a critical limitation of a number of existing systems that they rely on a Wizard of Oz approach, where the tutor drives the audience in reaction to the user's performance. We address this problem by integrating with a VAS a high-level control component for tutors, which allows using predefined audience behavior rules, defining custom ones, as well as intervening during run-time for finer control of the unfolding of the pedagogical plan. At its core, this component offers a tool to program, select, modify and monitor interactive training narratives using a high-level representation. The STAGE offers the following features: i) a high-level API to program pedagogical narratives focusing on a specific public speaking situation and training objectives, ii) an interactive visualization interface iii) computation and visualization of user metrics, iv) a semi-autonomous virtual audience composed of virtual spectators with automatic reactions to the speaker and surrounding spectators while following the pedagogical plan V) and the possibility for the instructor to embody a virtual spectator to ask questions or guide the speaker from within the Virtual Environment. We present here the design, and implementation of the tutoring system and its integration in STAGE, and discuss its reception by end-users.}, language = {en} }