@article{WamserSeufertHalletal.2021, author = {Wamser, Florian and Seufert, Anika and Hall, Andrew and Wunderer, Stefan and Hoßfeld, Tobias}, title = {Valid statements by the crowd: statistical measures for precision in crowdsourced mobile measurements}, series = {Network}, volume = {1}, journal = {Network}, number = {2}, issn = {2673-8732}, doi = {10.3390/network1020013}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284154}, pages = {215 -- 232}, year = {2021}, abstract = {Crowdsourced network measurements (CNMs) are becoming increasingly popular as they assess the performance of a mobile network from the end user's perspective on a large scale. Here, network measurements are performed directly on the end-users' devices, thus taking advantage of the real-world conditions end-users encounter. However, this type of uncontrolled measurement raises questions about its validity and reliability. The problem lies in the nature of this type of data collection. In CNMs, mobile network subscribers are involved to a large extent in the measurement process, and collect data themselves for the operator. The collection of data on user devices in arbitrary locations and at uncontrolled times requires means to ensure validity and reliability. To address this issue, our paper defines concepts and guidelines for analyzing the precision of CNMs; specifically, the number of measurements required to make valid statements. In addition to the formal definition of the aspect, we illustrate the problem and use an extensive sample data set to show possible assessment approaches. This data set consists of more than 20.4 million crowdsourced mobile measurements from across France, measured by a commercial data provider.}, language = {en} } @techreport{GrigorjewSchumannDiederichetal.2023, type = {Working Paper}, author = {Grigorjew, Alexej and Schumann, Lukas Kilian and Diederich, Philip and Hoßfeld, Tobias and Kellerer, Wolfgang}, title = {Understanding the Performance of Different Packet Reception and Timestamping Methods in Linux}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32206}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322064}, pages = {5}, year = {2023}, abstract = {This document briefly presents some renowned packet reception techniques for network packets in Linux systems. Further, it compares their performance when measuring packet timestamps with respect to throughput and accuracy. Both software and hardware timestamps are compared, and various parameters are examined, including frame size, link speed, network interface card, and CPU load. The results indicate that hardware timestamping offers significantly better accuracy with no downsides, and that packet reception techniques that avoid system calls offer superior measurement throughput.}, language = {en} } @phdthesis{Somody2023, author = {Somody, Joseph Christian Campbell}, title = {Leveraging deep learning for identification and structural determination of novel protein complexes from \(in\) \(situ\) electron cryotomography of \(Mycoplasma\) \(pneumoniae\)}, doi = {10.25972/OPUS-31344}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313447}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The holy grail of structural biology is to study a protein in situ, and this goal has been fast approaching since the resolution revolution and the achievement of atomic resolution. A cell's interior is not a dilute environment, and proteins have evolved to fold and function as needed in that environment; as such, an investigation of a cellular component should ideally include the full complexity of the cellular environment. Imaging whole cells in three dimensions using electron cryotomography is the best method to accomplish this goal, but it comes with a limitation on sample thickness and produces noisy data unamenable to direct analysis. This thesis establishes a novel workflow to systematically analyse whole-cell electron cryotomography data in three dimensions and to find and identify instances of protein complexes in the data to set up a determination of their structure and identity for success. Mycoplasma pneumoniae is a very small parasitic bacterium with fewer than 700 protein-coding genes, is thin enough and small enough to be imaged in large quantities by electron cryotomography, and can grow directly on the grids used for imaging, making it ideal for exploratory studies in structural proteomics. As part of the workflow, a methodology for training deep-learning-based particle-picking models is established. As a proof of principle, a dataset of whole-cell Mycoplasma pneumoniae tomograms is used with this workflow to characterize a novel membrane-associated complex observed in the data. Ultimately, 25431 such particles are picked from 353 tomograms and refined to a density map with a resolution of 11 {\AA}. Making good use of orthogonal datasets to filter search space and verify results, structures were predicted for candidate proteins and checked for suitable fit in the density map. In the end, with this approach, nine proteins were found to be part of the complex, which appears to be associated with chaperone activity and interact with translocon machinery. Visual proteomics refers to the ultimate potential of in situ electron cryotomography: the comprehensive interpretation of tomograms. The workflow presented here is demonstrated to help in reaching that potential.}, subject = {Kryoelektronenmikroskopie}, language = {en} } @techreport{ElsayedRizk2022, type = {Working Paper}, author = {Elsayed, Karim and Rizk, Amr}, title = {Response Times in Time-to-Live Caching Hierarchies under Random Network Delays}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28084}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280843}, pages = {4}, year = {2022}, abstract = {Time-to-Live (TTL) caches decouple the occupancy of objects in cache through object-specific validity timers. Stateof- the art techniques provide exact methods for the calculation of object-specific hit probabilities given entire cache hierarchies with random inter-cache network delays. The system hit probability is a provider-centric metric as it relates to the origin offload, i.e., the decrease in the number of requests that are served by the content origin server. In this paper we consider a user-centric metric, i.e., the response time, which is shown to be structurally different from the system hit probability. Equipped with the state-of-theart exact modeling technique using Markov-arrival processes we derive expressions for the expected object response time and pave a way for its optimization under network delays.}, subject = {Datennetz}, language = {en} } @techreport{AlfredssonKasslerVestinetal.2022, type = {Working Paper}, author = {Alfredsson, Rebecka and Kassler, Andreas and Vestin, Jonathan and Pieska, Marcus and Amend, Markus}, title = {Accelerating a Transport Layer based 5G Multi-Access Proxy on SmartNIC}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28079}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280798}, pages = {4}, year = {2022}, abstract = {Utilizing multiple access technologies such as 5G, 4G, and Wi-Fi within a coherent framework is currently standardized by 3GPP within 5G ATSSS. Indeed, distributing packets over multiple networks can lead to increased robustness, resiliency and capacity. A key part of such a framework is the multi-access proxy, which transparently distributes packets over multiple paths. As the proxy needs to serve thousands of customers, scalability and performance are crucial for operator deployments. In this paper, we leverage recent advancements in data plane programming, implement a multi-access proxy based on the MP-DCCP tunneling approach in P4 and hardware accelerate it by deploying the pipeline on a smartNIC. This is challenging due to the complex scheduling and congestion control operations involved. We present our pipeline and data structures design for congestion control and packet scheduling state management. Initial measurements in our testbed show that packet latency is in the range of 25 μs demonstrating the feasibility of our approach.}, subject = {Datennetz}, language = {en} } @article{BencurovaShityakovSchaacketal.2022, author = {Bencurova, Elena and Shityakov, Sergey and Schaack, Dominik and Kaltdorf, Martin and Sarukhanyan, Edita and Hilgarth, Alexander and Rath, Christin and Montenegro, Sergio and Roth, G{\"u}nter and Lopez, Daniel and Dandekar, Thomas}, title = {Nanocellulose composites as smart devices with chassis, light-directed DNA Storage, engineered electronic properties, and chip integration}, series = {Frontiers in Bioengineering and Biotechnology}, volume = {10}, journal = {Frontiers in Bioengineering and Biotechnology}, issn = {2296-4185}, doi = {10.3389/fbioe.2022.869111}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-283033}, year = {2022}, abstract = {The rapid development of green and sustainable materials opens up new possibilities in the field of applied research. Such materials include nanocellulose composites that can integrate many components into composites and provide a good chassis for smart devices. In our study, we evaluate four approaches for turning a nanocellulose composite into an information storage or processing device: 1) nanocellulose can be a suitable carrier material and protect information stored in DNA. 2) Nucleotide-processing enzymes (polymerase and exonuclease) can be controlled by light after fusing them with light-gating domains; nucleotide substrate specificity can be changed by mutation or pH change (read-in and read-out of the information). 3) Semiconductors and electronic capabilities can be achieved: we show that nanocellulose is rendered electronic by iodine treatment replacing silicon including microstructures. Nanocellulose semiconductor properties are measured, and the resulting potential including single-electron transistors (SET) and their properties are modeled. Electric current can also be transported by DNA through G-quadruplex DNA molecules; these as well as classical silicon semiconductors can easily be integrated into the nanocellulose composite. 4) To elaborate upon miniaturization and integration for a smart nanocellulose chip device, we demonstrate pH-sensitive dyes in nanocellulose, nanopore creation, and kinase micropatterning on bacterial membranes as well as digital PCR micro-wells. Future application potential includes nano-3D printing and fast molecular processors (e.g., SETs) integrated with DNA storage and conventional electronics. This would also lead to environment-friendly nanocellulose chips for information processing as well as smart nanocellulose composites for biomedical applications and nano-factories.}, language = {en} } @article{KrenzerMakowskiHekaloetal.2022, author = {Krenzer, Adrian and Makowski, Kevin and Hekalo, Amar and Fitting, Daniel and Troya, Joel and Zoller, Wolfram G. and Hann, Alexander and Puppe, Frank}, title = {Fast machine learning annotation in the medical domain: a semi-automated video annotation tool for gastroenterologists}, series = {BioMedical Engineering OnLine}, volume = {21}, journal = {BioMedical Engineering OnLine}, number = {1}, doi = {10.1186/s12938-022-01001-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300231}, year = {2022}, abstract = {Background Machine learning, especially deep learning, is becoming more and more relevant in research and development in the medical domain. For all the supervised deep learning applications, data is the most critical factor in securing successful implementation and sustaining the progress of the machine learning model. Especially gastroenterological data, which often involves endoscopic videos, are cumbersome to annotate. Domain experts are needed to interpret and annotate the videos. To support those domain experts, we generated a framework. With this framework, instead of annotating every frame in the video sequence, experts are just performing key annotations at the beginning and the end of sequences with pathologies, e.g., visible polyps. Subsequently, non-expert annotators supported by machine learning add the missing annotations for the frames in-between. Methods In our framework, an expert reviews the video and annotates a few video frames to verify the object's annotations for the non-expert. In a second step, a non-expert has visual confirmation of the given object and can annotate all following and preceding frames with AI assistance. After the expert has finished, relevant frames will be selected and passed on to an AI model. This information allows the AI model to detect and mark the desired object on all following and preceding frames with an annotation. Therefore, the non-expert can adjust and modify the AI predictions and export the results, which can then be used to train the AI model. Results Using this framework, we were able to reduce workload of domain experts on average by a factor of 20 on our data. This is primarily due to the structure of the framework, which is designed to minimize the workload of the domain expert. Pairing this framework with a state-of-the-art semi-automated AI model enhances the annotation speed further. Through a prospective study with 10 participants, we show that semi-automated annotation using our tool doubles the annotation speed of non-expert annotators compared to a well-known state-of-the-art annotation tool. Conclusion In summary, we introduce a framework for fast expert annotation for gastroenterologists, which reduces the workload of the domain expert considerably while maintaining a very high annotation quality. The framework incorporates a semi-automated annotation system utilizing trained object detection models. The software and framework are open-source.}, language = {en} } @article{KaltdorfSchulzeHelmprobstetal.2017, author = {Kaltdorf, Kristin Verena and Schulze, Katja and Helmprobst, Frederik and Kollmannsberger, Philip and Dandekar, Thomas and Stigloher, Christian}, title = {Fiji macro 3D ART VeSElecT: 3D automated reconstruction tool for vesicle structures of electron tomograms}, series = {PLoS Computational Biology}, volume = {13}, journal = {PLoS Computational Biology}, number = {1}, doi = {10.1371/journal.pcbi.1005317}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172112}, year = {2017}, abstract = {Automatic image reconstruction is critical to cope with steadily increasing data from advanced microscopy. We describe here the Fiji macro 3D ART VeSElecT which we developed to study synaptic vesicles in electron tomograms. We apply this tool to quantify vesicle properties (i) in embryonic Danio rerio 4 and 8 days past fertilization (dpf) and (ii) to compare Caenorhabditis elegans N2 neuromuscular junctions (NMJ) wild-type and its septin mutant (unc-59(e261)). We demonstrate development-specific and mutant-specific changes in synaptic vesicle pools in both models. We confirm the functionality of our macro by applying our 3D ART VeSElecT on zebrafish NMJ showing smaller vesicles in 8 dpf embryos then 4 dpf, which was validated by manual reconstruction of the vesicle pool. Furthermore, we analyze the impact of C. elegans septin mutant unc-59(e261) on vesicle pool formation and vesicle size. Automated vesicle registration and characterization was implemented in Fiji as two macros (registration and measurement). This flexible arrangement allows in particular reducing false positives by an optional manual revision step. Preprocessing and contrast enhancement work on image-stacks of 1nm/pixel in x and y direction. Semi-automated cell selection was integrated. 3D ART VeSElecT removes interfering components, detects vesicles by 3D segmentation and calculates vesicle volume and diameter (spherical approximation, inner/outer diameter). Results are collected in color using the RoiManager plugin including the possibility of manual removal of non-matching confounder vesicles. Detailed evaluation considered performance (detected vesicles) and specificity (true vesicles) as well as precision and recall. We furthermore show gain in segmentation and morphological filtering compared to learning based methods and a large time gain compared to manual segmentation. 3D ART VeSElecT shows small error rates and its speed gain can be up to 68 times faster in comparison to manual annotation. Both automatic and semi-automatic modes are explained including a tutorial.}, language = {en} } @article{DoellingerWienrichLatoschik2021, author = {D{\"o}llinger, Nina and Wienrich, Carolin and Latoschik, Marc Erich}, title = {Challenges and opportunities of immersive technologies for mindfulness meditation: a systematic review}, series = {Frontiers in Virtual Reality}, volume = {2}, journal = {Frontiers in Virtual Reality}, doi = {10.3389/frvir.2021.644683}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259047}, pages = {644683}, year = {2021}, abstract = {Mindfulness is considered an important factor of an individual's subjective well-being. Consequently, Human-Computer Interaction (HCI) has investigated approaches that strengthen mindfulness, i.e., by inventing multimedia technologies to support mindfulness meditation. These approaches often use smartphones, tablets, or consumer-grade desktop systems to allow everyday usage in users' private lives or in the scope of organized therapies. Virtual, Augmented, and Mixed Reality (VR, AR, MR; in short: XR) significantly extend the design space for such approaches. XR covers a wide range of potential sensory stimulation, perceptive and cognitive manipulations, content presentation, interaction, and agency. These facilities are linked to typical XR-specific perceptions that are conceptually closely related to mindfulness research, such as (virtual) presence and (virtual) embodiment. However, a successful exploitation of XR that strengthens mindfulness requires a systematic analysis of the potential interrelation and influencing mechanisms between XR technology, its properties, factors, and phenomena and existing models and theories of the construct of mindfulness. This article reports such a systematic analysis of XR-related research from HCI and life sciences to determine the extent to which existing research frameworks on HCI and mindfulness can be applied to XR technologies, the potential of XR technologies to support mindfulness, and open research gaps. Fifty papers of ACM Digital Library and National Institutes of Health's National Library of Medicine (PubMed) with and without empirical efficacy evaluation were included in our analysis. The results reveal that at the current time, empirical research on XR-based mindfulness support mainly focuses on therapy and therapeutic outcomes. Furthermore, most of the currently investigated XR-supported mindfulness interactions are limited to vocally guided meditations within nature-inspired virtual environments. While an analysis of empirical research on those systems did not reveal differences in mindfulness compared to non-mediated mindfulness practices, various design proposals illustrate that XR has the potential to provide interactive and body-based innovations for mindfulness practice. We propose a structured approach for future work to specify and further explore the potential of XR as mindfulness-support. The resulting framework provides design guidelines for XR-based mindfulness support based on the elements and psychological mechanisms of XR interactions.}, language = {en} } @article{PrakashUnnikrishnanPryssetal.2021, author = {Prakash, Subash and Unnikrishnan, Vishnu and Pryss, R{\"u}diger and Kraft, Robin and Schobel, Johannes and Hannemann, Ronny and Langguth, Berthold and Schlee, Winfried and Spiliopoulou, Myra}, title = {Interactive system for similarity-based inspection and assessment of the well-being of mHealth users}, series = {Entropy}, volume = {23}, journal = {Entropy}, number = {12}, issn = {1099-4300}, doi = {10.3390/e23121695}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252333}, year = {2021}, abstract = {Recent digitization technologies empower mHealth users to conveniently record their Ecological Momentary Assessments (EMA) through web applications, smartphones, and wearable devices. These recordings can help clinicians understand how the users' condition changes, but appropriate learning and visualization mechanisms are required for this purpose. We propose a web-based visual analytics tool, which processes clinical data as well as EMAs that were recorded through a mHealth application. The goals we pursue are (1) to predict the condition of the user in the near and the far future, while also identifying the clinical data that mostly contribute to EMA predictions, (2) to identify users with outlier EMA, and (3) to show to what extent the EMAs of a user are in line with or diverge from those users similar to him/her. We report our findings based on a pilot study on patient empowerment, involving tinnitus patients who recorded EMAs with the mHealth app TinnitusTips. To validate our method, we also derived synthetic data from the same pilot study. Based on this setting, results for different use cases are reported.}, language = {en} }