@phdthesis{Geissler2022, author = {Geißler, Stefan}, title = {Performance Evaluation of Next-Generation Data Plane Architectures and their Components}, issn = {1432-8801}, doi = {10.25972/OPUS-26015}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260157}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {In this doctoral thesis we cover the performance evaluation of next generation data plane architectures, comprised of complex software as well as programmable hardware components that allow fine granular configuration. In the scope of the thesis we propose mechanisms to monitor the performance of singular components and model key performance indicators of software based packet processing solutions. We present novel approaches towards network abstraction that allow the integration of heterogeneous data plane technologies into a singular network while maintaining total transparency between control and data plane. Finally, we investigate a full, complex system consisting of multiple software-based solutions and perform a detailed performance analysis. We employ simulative approaches to investigate overload control mechanisms that allow efficient operation under adversary conditions. The contributions of this work build the foundation for future research in the areas of network softwarization and network function virtualization.}, subject = {Leistungsbewertung}, language = {en} } @article{KammererPryssHoppenstedtetal.2020, author = {Kammerer, Klaus and Pryss, R{\"u}diger and Hoppenstedt, Burkhard and Sommer, Kevin and Reichert, Manfred}, title = {Process-driven and flow-based processing of industrial sensor data}, series = {Sensors}, volume = {20}, journal = {Sensors}, number = {18}, issn = {1424-8220}, doi = {10.3390/s20185245}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213089}, year = {2020}, abstract = {For machine manufacturing companies, besides the production of high quality and reliable machines, requirements have emerged to maintain machine-related aspects through digital services. The development of such services in the field of the Industrial Internet of Things (IIoT) is dealing with solutions such as effective condition monitoring and predictive maintenance. However, appropriate data sources are needed on which digital services can be technically based. As many powerful and cheap sensors have been introduced over the last years, their integration into complex machines is promising for developing digital services for various scenarios. It is apparent that for components handling recorded data of these sensors they must usually deal with large amounts of data. In particular, the labeling of raw sensor data must be furthered by a technical solution. To deal with these data handling challenges in a generic way, a sensor processing pipeline (SPP) was developed, which provides effective methods to capture, process, store, and visualize raw sensor data based on a processing chain. Based on the example of a machine manufacturing company, the SPP approach is presented in this work. For the company involved, the approach has revealed promising results.}, language = {en} } @article{WickHarteltPuppe2019, author = {Wick, Christoph and Hartelt, Alexander and Puppe, Frank}, title = {Staff, symbol and melody detection of Medieval manuscripts written in square notation using deep Fully Convolutional Networks}, series = {Applied Sciences}, volume = {9}, journal = {Applied Sciences}, number = {13}, issn = {2076-3417}, doi = {10.3390/app9132646}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197248}, year = {2019}, abstract = {Even today, the automatic digitisation of scanned documents in general, but especially the automatic optical music recognition (OMR) of historical manuscripts, still remains an enormous challenge, since both handwritten musical symbols and text have to be identified. This paper focuses on the Medieval so-called square notation developed in the 11th-12th century, which is already composed of staff lines, staves, clefs, accidentals, and neumes that are roughly spoken connected single notes. The aim is to develop an algorithm that captures both the neumes, and in particular its melody, which can be used to reconstruct the original writing. Our pipeline is similar to the standard OMR approach and comprises a novel staff line and symbol detection algorithm based on deep Fully Convolutional Networks (FCN), which perform pixel-based predictions for either staff lines or symbols and their respective types. Then, the staff line detection combines the extracted lines to staves and yields an F\(_1\) -score of over 99\% for both detecting lines and complete staves. For the music symbol detection, we choose a novel approach that skips the step to identify neumes and instead directly predicts note components (NCs) and their respective affiliation to a neume. Furthermore, the algorithm detects clefs and accidentals. Our algorithm predicts the symbol sequence of a staff with a diplomatic symbol accuracy rate (dSAR) of about 87\%, which includes symbol type and location. If only the NCs without their respective connection to a neume, all clefs and accidentals are of interest, the algorithm reaches an harmonic symbol accuracy rate (hSAR) of approximately 90\%. In general, the algorithm recognises a symbol in the manuscript with an F\(_1\) -score of over 96\%.}, language = {en} } @techreport{Metzger2020, type = {Working Paper}, author = {Metzger, Florian}, title = {Crowdsensed QoE for the community - a concept to make QoE assessment accessible}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203748}, pages = {7}, year = {2020}, abstract = {In recent years several community testbeds as well as participatory sensing platforms have successfully established themselves to provide open data to everyone interested. Each of them with a specific goal in mind, ranging from collecting radio coverage data up to environmental and radiation data. Such data can be used by the community in their decision making, whether to subscribe to a specific mobile phone service that provides good coverage in an area or in finding a sunny and warm region for the summer holidays. However, the existing platforms are usually limiting themselves to directly measurable network QoS. If such a crowdsourced data set provides more in-depth derived measures, this would enable an even better decision making. A community-driven crowdsensing platform that derives spatial application-layer user experience from resource-friendly bandwidth estimates would be such a case, video streaming services come to mind as a prime example. In this paper we present a concept for such a system based on an initial prototype that eases the collection of data necessary to determine mobile-specific QoE at large scale. In addition we reason why the simple quality metric proposed here can hold its own.}, subject = {Quality of Experience}, language = {en} } @article{SeufertSchroederSeufert2021, author = {Seufert, Anika and Schr{\"o}der, Svenja and Seufert, Michael}, title = {Delivering User Experience over Networks: Towards a Quality of Experience Centered Design Cycle for Improved Design of Networked Applications}, series = {SN Computer Science}, volume = {2}, journal = {SN Computer Science}, number = {6}, issn = {2661-8907}, doi = {10.1007/s42979-021-00851-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-271762}, year = {2021}, abstract = {To deliver the best user experience (UX), the human-centered design cycle (HCDC) serves as a well-established guideline to application developers. However, it does not yet cover network-specific requirements, which become increasingly crucial, as most applications deliver experience over the Internet. The missing network-centric view is provided by Quality of Experience (QoE), which could team up with UX towards an improved overall experience. By considering QoE aspects during the development process, it can be achieved that applications become network-aware by design. In this paper, the Quality of Experience Centered Design Cycle (QoE-CDC) is proposed, which provides guidelines on how to design applications with respect to network-specific requirements and QoE. Its practical value is showcased for popular application types and validated by outlining the design of a new smartphone application. We show that combining HCDC and QoE-CDC will result in an application design, which reaches a high UX and avoids QoE degradation.}, language = {en} } @article{KrupitzerEberhardingerGerostathopoulosetal.2020, author = {Krupitzer, Christian and Eberhardinger, Benedikt and Gerostathopoulos, Ilias and Raibulet, Claudia}, title = {Introduction to the special issue "Applications in Self-Aware Computing Systems and their Evaluation"}, series = {Computers}, volume = {9}, journal = {Computers}, number = {1}, issn = {2073-431X}, doi = {10.3390/computers9010022}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203439}, year = {2020}, abstract = {The joint 1st Workshop on Evaluations and Measurements in Self-Aware Computing Systems (EMSAC 2019) and Workshop on Self-Aware Computing (SeAC) was held as part of the FAS* conference alliance in conjunction with the 16th IEEE International Conference on Autonomic Computing (ICAC) and the 13th IEEE International Conference on Self-Adaptive and Self-Organizing Systems (SASO) in Ume{\aa}, Sweden on 20 June 2019. The goal of this one-day workshop was to bring together researchers and practitioners from academic environments and from the industry to share their solutions, ideas, visions, and doubts in self-aware computing systems in general and in the evaluation and measurements of such systems in particular. The workshop aimed to enable discussions, partnerships, and collaborations among the participants. This special issue follows the theme of the workshop. It contains extended versions of workshop presentations as well as additional contributions.}, language = {en} } @phdthesis{Peng2019, author = {Peng, Dongliang}, title = {An Optimization-Based Approach for Continuous Map Generalization}, edition = {1. Auflage}, publisher = {W{\"u}rzburg University Press}, address = {W{\"u}rzburg}, isbn = {978-3-95826-104-4}, doi = {10.25972/WUP-978-3-95826-105-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-174427}, school = {W{\"u}rzburg University Press}, pages = {xv, 132}, year = {2019}, abstract = {Maps are the main tool to represent geographical information. Geographical information is usually scale-dependent, so users need to have access to maps at different scales. In our digital age, the access is realized by zooming. As discrete changes during the zooming tend to distract users, smooth changes are preferred. This is why some digital maps are trying to make the zooming as continuous as they can. The process of producing maps at different scales with smooth changes is called continuous map generalization. In order to produce maps of high quality, cartographers often take into account additional requirements. These requirements are transferred to models in map generalization. Optimization for map generalization is important not only because it finds optimal solutions in the sense of the models, but also because it helps us to evaluate the quality of the models. Optimization, however, becomes more delicate when we deal with continuous map generalization. In this area, there are requirements not only for a specific map but also for relations between maps at difference scales. This thesis is about continuous map generalization based on optimization. First, we show the background of our research topics. Second, we find optimal sequences for aggregating land-cover areas. We compare the A\$^{\!\star}\$\xspace algorithm and integer linear programming in completing this task. Third, we continuously generalize county boundaries to provincial boundaries based on compatible triangulations. We morph between the two sets of boundaries, using dynamic programming to compute the correspondence. Fourth, we continuously generalize buildings to built-up areas by aggregating and growing. In this work, we group buildings with the help of a minimum spanning tree. Fifth, we define vertex trajectories that allow us to morph between polylines. We require that both the angles and the edge lengths change linearly over time. As it is impossible to fulfill all of these requirements simultaneously, we mediate between them using least-squares adjustment. Sixth, we discuss the performance of some commonly used data structures for a specific spatial problem. Seventh, we conclude this thesis and present open problems.}, subject = {Generalisierung }, language = {en} } @article{PfitznerMayNuechter2018, author = {Pfitzner, Christian and May, Stefan and N{\"u}chter, Andreas}, title = {Body weight estimation for dose-finding and health monitoring of lying, standing and walking patients based on RGB-D data}, series = {Sensors}, volume = {18}, journal = {Sensors}, number = {5}, doi = {10.3390/s18051311}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176642}, pages = {1311}, year = {2018}, abstract = {This paper describes the estimation of the body weight of a person in front of an RGB-D camera. A survey of different methods for body weight estimation based on depth sensors is given. First, an estimation of people standing in front of a camera is presented. Second, an approach based on a stream of depth images is used to obtain the body weight of a person walking towards a sensor. The algorithm first extracts features from a point cloud and forwards them to an artificial neural network (ANN) to obtain an estimation of body weight. Besides the algorithm for the estimation, this paper further presents an open-access dataset based on measurements from a trauma room in a hospital as well as data from visitors of a public event. In total, the dataset contains 439 measurements. The article illustrates the efficiency of the approach with experiments with persons lying down in a hospital, standing persons, and walking persons. Applicable scenarios for the presented algorithm are body weight-related dosing of emergency patients.}, language = {en} } @article{SirbuBeckerCaminitietal.2015, author = {S{\^i}rbu, Alina and Becker, Martin and Caminiti, Saverio and De Baets, Bernard and Elen, Bart and Francis, Louise and Gravino, Pietro and Hotho, Andreas and Ingarra, Stefano and Loreto, Vittorio and Molino, Andrea and Mueller, Juergen and Peters, Jan and Ricchiuti, Ferdinando and Saracino, Fabio and Servedio, Vito D.P. and Stumme, Gerd and Theunis, Jan and Tria, Francesca and Van den Bossche, Joris}, title = {Participatory Patterns in an International Air Quality Monitoring Initiative}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {8}, doi = {10.1371/journal. pone.0136763}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151379}, pages = {e0136763}, year = {2015}, abstract = {The issue of sustainability is at the top of the political and societal agenda, being considered of extreme importance and urgency. Human individual action impacts the environment both locally (e.g., local air/water quality, noise disturbance) and globally (e.g., climate change, resource use). Urban environments represent a crucial example, with an increasing realization that the most effective way of producing a change is involving the citizens themselves in monitoring campaigns (a citizen science bottom-up approach). This is possible by developing novel technologies and IT infrastructures enabling large citizen participation. Here, in the wider framework of one of the first such projects, we show results from an international competition where citizens were involved in mobile air pollution monitoring using low cost sensing devices, combined with a web-based game to monitor perceived levels of pollution. Measures of shift in perceptions over the course of the campaign are provided, together with insights into participatory patterns emerging from this study. Interesting effects related to inertia and to direct involvement in measurement activities rather than indirect information exposure are also highlighted, indicating that direct involvement can enhance learning and environmental awareness. In the future, this could result in better adoption of policies towards decreasing pollution.}, language = {en} } @phdthesis{Fleszar2018, author = {Fleszar, Krzysztof}, title = {Network-Design Problems in Graphs and on the Plane}, edition = {1. Auflage}, publisher = {W{\"u}rzburg University Press}, address = {W{\"u}rzburg}, isbn = {978-3-95826-076-4 (Print)}, doi = {10.25972/WUP-978-3-95826-077-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154904}, school = {W{\"u}rzburg University Press}, pages = {xi, 204}, year = {2018}, abstract = {A network design problem defines an infinite set whose elements, called instances, describe relationships and network constraints. It asks for an algorithm that, given an instance of this set, designs a network that respects the given constraints and at the same time optimizes some given criterion. In my thesis, I develop algorithms whose solutions are optimum or close to an optimum value within some guaranteed bound. I also examine the computational complexity of these problems. Problems from two vast areas are considered: graphs and the Euclidean plane. In the Maximum Edge Disjoint Paths problem, we are given a graph and a subset of vertex pairs that are called terminal pairs. We are asked for a set of paths where the endpoints of each path form a terminal pair. The constraint is that any two paths share at most one inner vertex. The optimization criterion is to maximize the cardinality of the set. In the hard-capacitated k-Facility Location problem, we are given an integer k and a complete graph where the distances obey a given metric and where each node has two numerical values: a capacity and an opening cost. We are asked for a subset of k nodes, called facilities, and an assignment of all the nodes, called clients, to the facilities. The constraint is that the number of clients assigned to a facility cannot exceed the facility's capacity value. The optimization criterion is to minimize the total cost which consists of the total opening cost of the facilities and the total distance between the clients and the facilities they are assigned to. In the Stabbing problem, we are given a set of axis-aligned rectangles in the plane. We are asked for a set of horizontal line segments such that, for every rectangle, there is a line segment crossing its left and right edge. The optimization criterion is to minimize the total length of the line segments. In the k-Colored Non-Crossing Euclidean Steiner Forest problem, we are given an integer k and a finite set of points in the plane where each point has one of k colors. For every color, we are asked for a drawing that connects all the points of the same color. The constraint is that drawings of different colors are not allowed to cross each other. The optimization criterion is to minimize the total length of the drawings. In the Minimum Rectilinear Polygon for Given Angle Sequence problem, we are given an angle sequence of left (+90°) turns and right (-90°) turns. We are asked for an axis-parallel simple polygon where the angles of the vertices yield the given sequence when walking around the polygon in counter-clockwise manner. The optimization criteria considered are to minimize the perimeter, the area, and the size of the axis-parallel bounding box of the polygon.}, subject = {Euklidische Ebene}, language = {en} }