@techreport{RossiMaurelliUnnithanetal.2021, author = {Rossi, Angelo Pio and Maurelli, Francesco and Unnithan, Vikram and Dreger, Hendrik and Mathewos, Kedus and Pradhan, Nayan and Corbeanu, Dan-Andrei and Pozzobon, Riccardo and Massironi, Matteo and Ferrari, Sabrina and Pernechele, Claudia and Paoletti, Lorenzo and Simioni, Emanuele and Maurizio, Pajola and Santagata, Tommaso and Borrmann, Dorit and N{\"u}chter, Andreas and Bredenbeck, Anton and Zevering, Jasper and Arzberger, Fabian and Reyes Mantilla, Camilo Andr{\´e}s}, title = {DAEDALUS - Descent And Exploration in Deep Autonomy of Lava Underground Structures}, isbn = {978-3-945459-33-1}, issn = {1868-7466}, doi = {10.25972/OPUS-22791}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227911}, pages = {188}, year = {2021}, abstract = {The DAEDALUS mission concept aims at exploring and characterising the entrance and initial part of Lunar lava tubes within a compact, tightly integrated spherical robotic device, with a complementary payload set and autonomous capabilities. The mission concept addresses specifically the identification and characterisation of potential resources for future ESA exploration, the local environment of the subsurface and its geologic and compositional structure. A sphere is ideally suited to protect sensors and scientific equipment in rough, uneven environments. It will house laser scanners, cameras and ancillary payloads. The sphere will be lowered into the skylight and will explore the entrance shaft, associated caverns and conduits. Lidar (light detection and ranging) systems produce 3D models with high spatial accuracy independent of lighting conditions and visible features. Hence this will be the primary exploration toolset within the sphere. The additional payload that can be accommodated in the robotic sphere consists of camera systems with panoramic lenses and scanners such as multi-wavelength or single-photon scanners. A moving mass will trigger movements. The tether for lowering the sphere will be used for data communication and powering the equipment during the descending phase. Furthermore, the connector tether-sphere will host a WIFI access point, such that data of the conduit can be transferred to the surface relay station. During the exploration phase, the robot will be disconnected from the cable, and will use wireless communication. Emergency autonomy software will ensure that in case of loss of communication, the robot will continue the nominal mission.}, subject = {Mond}, language = {en} } @phdthesis{Niebler2019, author = {Niebler, Thomas}, title = {Extracting and Learning Semantics from Social Web Data}, doi = {10.25972/OPUS-17866}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178666}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Making machines understand natural language is a dream of mankind that existed since a very long time. Early attempts at programming machines to converse with humans in a supposedly intelligent way with humans relied on phrase lists and simple keyword matching. However, such approaches cannot provide semantically adequate answers, as they do not consider the specific meaning of the conversation. Thus, if we want to enable machines to actually understand language, we need to be able to access semantically relevant background knowledge. For this, it is possible to query so-called ontologies, which are large networks containing knowledge about real-world entities and their semantic relations. However, creating such ontologies is a tedious task, as often extensive expert knowledge is required. Thus, we need to find ways to automatically construct and update ontologies that fit human intuition of semantics and semantic relations. More specifically, we need to determine semantic entities and find relations between them. While this is usually done on large corpora of unstructured text, previous work has shown that we can at least facilitate the first issue of extracting entities by considering special data such as tagging data or human navigational paths. Here, we do not need to detect the actual semantic entities, as they are already provided because of the way those data are collected. Thus we can mainly focus on the problem of assessing the degree of semantic relatedness between tags or web pages. However, there exist several issues which need to be overcome, if we want to approximate human intuition of semantic relatedness. For this, it is necessary to represent words and concepts in a way that allows easy and highly precise semantic characterization. This also largely depends on the quality of data from which these representations are constructed. In this thesis, we extract semantic information from both tagging data created by users of social tagging systems and human navigation data in different semantic-driven social web systems. Our main goal is to construct high quality and robust vector representations of words which can the be used to measure the relatedness of semantic concepts. First, we show that navigation in the social media systems Wikipedia and BibSonomy is driven by a semantic component. After this, we discuss and extend methods to model the semantic information in tagging data as low-dimensional vectors. Furthermore, we show that tagging pragmatics influences different facets of tagging semantics. We then investigate the usefulness of human navigational paths in several different settings on Wikipedia and BibSonomy for measuring semantic relatedness. Finally, we propose a metric-learning based algorithm in adapt pre-trained word embeddings to datasets containing human judgment of semantic relatedness. This work contributes to the field of studying semantic relatedness between words by proposing methods to extract semantic relatedness from web navigation, learn highquality and low-dimensional word representations from tagging data, and to learn semantic relatedness from any kind of vector representation by exploiting human feedback. Applications first and foremest lie in ontology learning for the Semantic Web, but also semantic search or query expansion.}, subject = {Semantik}, language = {en} } @article{HeinLatoschikWienrich2022, author = {Hein, Rebecca M. and Latoschik, Marc Erich and Wienrich, Carolin}, title = {Inter- and transcultural learning in cocial virtual reality: a proposal for an inter- and transcultural virtual object database to be used in the implementation, reflection, and evaluation of virtual encounters}, series = {Multimodal Technologies and Interaction}, volume = {6}, journal = {Multimodal Technologies and Interaction}, number = {7}, issn = {2414-4088}, doi = {10.3390/mti6070050}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-278974}, year = {2022}, abstract = {Visual stimuli are frequently used to improve memory, language learning or perception, and understanding of metacognitive processes. However, in virtual reality (VR), there are few systematically and empirically derived databases. This paper proposes the first collection of virtual objects based on empirical evaluation for inter-and transcultural encounters between English- and German-speaking learners. We used explicit and implicit measurement methods to identify cultural associations and the degree of stereotypical perception for each virtual stimuli (n = 293) through two online studies, including native German and English-speaking participants. The analysis resulted in a final well-describable database of 128 objects (called InteractionSuitcase). In future applications, the objects can be used as a great interaction or conversation asset and behavioral measurement tool in social VR applications, especially in the field of foreign language education. For example, encounters can use the objects to describe their culture, or teachers can intuitively assess stereotyped attitudes of the encounters.}, language = {en} } @article{DjebkoPuppeKayal2019, author = {Djebko, Kirill and Puppe, Frank and Kayal, Hakan}, title = {Model-based fault detection and diagnosis for spacecraft with an application for the SONATE triple cube nano-satellite}, series = {Aerospace}, volume = {6}, journal = {Aerospace}, number = {10}, issn = {2226-4310}, doi = {10.3390/aerospace6100105}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-198836}, pages = {105}, year = {2019}, abstract = {The correct behavior of spacecraft components is the foundation of unhindered mission operation. However, no technical system is free of wear and degradation. A malfunction of one single component might significantly alter the behavior of the whole spacecraft and may even lead to a complete mission failure. Therefore, abnormal component behavior must be detected early in order to be able to perform counter measures. A dedicated fault detection system can be employed, as opposed to classical health monitoring, performed by human operators, to decrease the response time to a malfunction. In this paper, we present a generic model-based diagnosis system, which detects faults by analyzing the spacecraft's housekeeping data. The observed behavior of the spacecraft components, given by the housekeeping data is compared to their expected behavior, obtained through simulation. Each discrepancy between the observed and the expected behavior of a component generates a so-called symptom. Given the symptoms, the diagnoses are derived by computing sets of components whose malfunction might cause the observed discrepancies. We demonstrate the applicability of the diagnosis system by using modified housekeeping data of the qualification model of an actual spacecraft and outline the advantages and drawbacks of our approach.}, language = {en} } @article{ZimmererFischbachLatoschik2018, author = {Zimmerer, Chris and Fischbach, Martin and Latoschik, Marc Erich}, title = {Semantic Fusion for Natural Multimodal Interfaces using Concurrent Augmented Transition Networks}, series = {Multimodal Technologies and Interaction}, volume = {2}, journal = {Multimodal Technologies and Interaction}, number = {4}, issn = {2414-4088}, doi = {10.3390/mti2040081}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197573}, year = {2018}, abstract = {Semantic fusion is a central requirement of many multimodal interfaces. Procedural methods like finite-state transducers and augmented transition networks have proven to be beneficial to implement semantic fusion. They are compliant with rapid development cycles that are common for the development of user interfaces, in contrast to machine-learning approaches that require time-costly training and optimization. We identify seven fundamental requirements for the implementation of semantic fusion: Action derivation, continuous feedback, context-sensitivity, temporal relation support, access to the interaction context, as well as the support of chronologically unsorted and probabilistic input. A subsequent analysis reveals, however, that there is currently no solution for fulfilling the latter two requirements. As the main contribution of this article, we thus present the Concurrent Cursor concept to compensate these shortcomings. In addition, we showcase a reference implementation, the Concurrent Augmented Transition Network (cATN), that validates the concept's feasibility in a series of proof of concept demonstrations as well as through a comparative benchmark. The cATN fulfills all identified requirements and fills the lack amongst previous solutions. It supports the rapid prototyping of multimodal interfaces by means of five concrete traits: Its declarative nature, the recursiveness of the underlying transition network, the network abstraction constructs of its description language, the utilized semantic queries, and an abstraction layer for lexical information. Our reference implementation was and is used in various student projects, theses, as well as master-level courses. It is openly available and showcases that non-experts can effectively implement multimodal interfaces, even for non-trivial applications in mixed and virtual reality.}, language = {en} } @article{LodaKrebsDanhofetal.2019, author = {Loda, Sophia and Krebs, Jonathan and Danhof, Sophia and Schreder, Martin and Solimando, Antonio G. and Strifler, Susanne and Rasche, Leo and Kort{\"u}m, Martin and Kerscher, Alexander and Knop, Stefan and Puppe, Frank and Einsele, Hermann and Bittrich, Max}, title = {Exploration of artificial intelligence use with ARIES in multiple myeloma research}, series = {Journal of Clinical Medicine}, volume = {8}, journal = {Journal of Clinical Medicine}, number = {7}, issn = {2077-0383}, doi = {10.3390/jcm8070999}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197231}, pages = {999}, year = {2019}, abstract = {Background: Natural language processing (NLP) is a powerful tool supporting the generation of Real-World Evidence (RWE). There is no NLP system that enables the extensive querying of parameters specific to multiple myeloma (MM) out of unstructured medical reports. We therefore created a MM-specific ontology to accelerate the information extraction (IE) out of unstructured text. Methods: Our MM ontology consists of extensive MM-specific and hierarchically structured attributes and values. We implemented "A Rule-based Information Extraction System" (ARIES) that uses this ontology. We evaluated ARIES on 200 randomly selected medical reports of patients diagnosed with MM. Results: Our system achieved a high F1-Score of 0.92 on the evaluation dataset with a precision of 0.87 and recall of 0.98. Conclusions: Our rule-based IE system enables the comprehensive querying of medical reports. The IE accelerates the extraction of data and enables clinicians to faster generate RWE on hematological issues. RWE helps clinicians to make decisions in an evidence-based manner. Our tool easily accelerates the integration of research evidence into everyday clinical practice.}, language = {en} } @article{LopezArreguinMontenegro2019, author = {Lopez-Arreguin, A. J. R. and Montenegro, S.}, title = {Improving engineering models of terramechanics for planetary exploration}, series = {Results in Engineering}, volume = {3}, journal = {Results in Engineering}, doi = {10.1016/j.rineng.2019.100027}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202490}, pages = {100027}, year = {2019}, abstract = {This short letter proposes more consolidated explicit solutions for the forces and torques acting on typical rover wheels, that can be used as a method to determine their average mobility characteristics in planetary soils. The closed loop solutions stand in one of the verified methods, but at difference of the previous, observables are decoupled requiring a less amount of physical parameters to measure. As a result, we show that with knowledge of terrain properties, wheel driving performance rely in a single observable only. Because of their generality, the formulated equations established here can have further implications in autonomy and control of rovers or planetary soil characterization.}, language = {en} } @phdthesis{Budig2018, author = {Budig, Benedikt}, title = {Extracting Spatial Information from Historical Maps: Algorithms and Interaction}, edition = {1. Auflage}, publisher = {W{\"u}rzburg University Press}, address = {W{\"u}rzburg}, isbn = {978-3-95826-092-4}, doi = {10.25972/WUP-978-3-95826-093-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-160955}, school = {W{\"u}rzburg University Press}, pages = {viii, 160}, year = {2018}, abstract = {Historical maps are fascinating documents and a valuable source of information for scientists of various disciplines. Many of these maps are available as scanned bitmap images, but in order to make them searchable in useful ways, a structured representation of the contained information is desirable. This book deals with the extraction of spatial information from historical maps. This cannot be expected to be solved fully automatically (since it involves difficult semantics), but is also too tedious to be done manually at scale. The methodology used in this book combines the strengths of both computers and humans: it describes efficient algorithms to largely automate information extraction tasks and pairs these algorithms with smart user interactions to handle what is not understood by the algorithm. The effectiveness of this approach is shown for various kinds of spatial documents from the 16th to the early 20th century.}, subject = {Karte}, language = {en} } @article{RodriguesWeissHewigetal.2021, author = {Rodrigues, Johannes and Weiß, Martin and Hewig, Johannes and Allen, John J. B.}, title = {EPOS: EEG Processing Open-Source Scripts}, series = {Frontiers in Neuroscience}, volume = {15}, journal = {Frontiers in Neuroscience}, issn = {1662-453X}, doi = {10.3389/fnins.2021.660449}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240221}, year = {2021}, abstract = {Background: Since the replication crisis, standardization has become even more important in psychological science and neuroscience. As a result, many methods are being reconsidered, and researchers' degrees of freedom in these methods are being discussed as a potential source of inconsistencies across studies. New Method: With the aim of addressing these subjectivity issues, we have been working on a tutorial-like EEG (pre-)processing pipeline to achieve an automated method based on the semi-automated analysis proposed by Delorme and Makeig. Results: Two scripts are presented and explained step-by-step to perform basic, informed ERP and frequency-domain analyses, including data export to statistical programs and visual representations of the data. The open-source software EEGlab in MATLAB is used as the data handling platform, but scripts based on code provided by Mike Cohen (2014) are also included. Comparison with existing methods: This accompanying tutorial-like article explains and shows how the processing of our automated pipeline affects the data and addresses, especially beginners in EEG-analysis, as other (pre)-processing chains are mostly targeting rather informed users in specialized areas or only parts of a complete procedure. In this context, we compared our pipeline with a selection of existing approaches. Conclusion: The need for standardization and replication is evident, yet it is equally important to control the plausibility of the suggested solution by data exploration. Here, we provide the community with a tool to enhance the understanding and capability of EEG-analysis. We aim to contribute to comprehensive and reliable analyses for neuro-scientific research.}, language = {en} } @article{HirthSeufertLangeetal.2021, author = {Hirth, Matthias and Seufert, Michael and Lange, Stanislav and Meixner, Markus and Tran-Gia, Phuoc}, title = {Performance evaluation of hybrid crowdsensing and fixed sensor systems for event detection in urban environments}, series = {Sensors}, volume = {21}, journal = {Sensors}, number = {17}, issn = {1424-8220}, doi = {10.3390/s21175880}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245245}, year = {2021}, abstract = {Crowdsensing offers a cost-effective way to collect large amounts of environmental sensor data; however, the spatial distribution of crowdsensing sensors can hardly be influenced, as the participants carry the sensors, and, additionally, the quality of the crowdsensed data can vary significantly. Hybrid systems that use mobile users in conjunction with fixed sensors might help to overcome these limitations, as such systems allow assessing the quality of the submitted crowdsensed data and provide sensor values where no crowdsensing data are typically available. In this work, we first used a simulation study to analyze a simple crowdsensing system concerning the detection performance of spatial events to highlight the potential and limitations of a pure crowdsourcing system. The results indicate that even if only a small share of inhabitants participate in crowdsensing, events that have locations correlated with the population density can be easily and quickly detected using such a system. On the contrary, events with uniformly randomly distributed locations are much harder to detect using a simple crowdsensing-based approach. A second evaluation shows that hybrid systems improve the detection probability and time. Finally, we illustrate how to compute the minimum number of fixed sensors for the given detection time thresholds in our exemplary scenario.}, language = {en} } @unpublished{Dandekar2023, author = {Dandekar, Thomas}, title = {Analysing the phase space of the standard model and its basic four forces from a qubit phase transition perspective: implications for large-scale structure generation and early cosmological events}, doi = {10.25972/OPUS-29858}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-298580}, pages = {42}, year = {2023}, abstract = {The phase space for the standard model of the basic four forces for n quanta includes all possible ensemble combinations of their quantum states m, a total of n**m states. Neighbor states reach according to transition possibilities (S-matrix) with emergent time from entropic ensemble gradients. We replace the "big bang" by a condensation event (interacting qubits become decoherent) and inflation by a crystallization event - the crystal unit cell guarantees same symmetries everywhere. Interacting qubits solidify and form a rapidly growing domain where the n**m states become separated ensemble states, rising long-range forces stop ultimately further growth. After that very early events, standard cosmology with the hot fireball model takes over. Our theory agrees well with lack of inflation traces in cosmic background measurements, large-scale structure of voids and filaments, supercluster formation, galaxy formation, dominance of matter and life-friendliness. We prove qubit interactions to be 1,2,4 or 8 dimensional (agrees with E8 symmetry of our universe). Repulsive forces at ultrashort distances result from quantization, long-range forces limit crystal growth. Crystals come and go in the qubit ocean. This selects for the ability to lay seeds for new crystals, for self-organization and life-friendliness. We give energy estimates for free qubits vs bound qubits, misplacements in the qubit crystal and entropy increase during qubit decoherence / crystal formation. Scalar fields for color interaction and gravity derive from the permeating qubit-interaction field. Hence, vacuum energy gets low only inside the qubit crystal. Condensed mathematics may advantageously model free / bound qubits in phase space.}, language = {en} } @techreport{LhamoNguyenFitzek2022, type = {Working Paper}, author = {Lhamo, Osel and Nguyen, Giang T. and Fitzek, Frank H. P.}, title = {Virtual Queues for QoS Compliance of Haptic Data Streams in Teleoperation}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28076}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280762}, pages = {4}, year = {2022}, abstract = {Tactile Internet aims at allowing perceived real-time interactions between humans and machines. This requires satisfying a stringent latency requirement of haptic data streams whose data rates vary drastically as the results of perceptual codecs. This introduces a complex problem for the underlying network infrastructure to fulfill the pre-defined level of Quality of Service (QoS). However, novel networking hardware with data plane programming capability allows processing packets differently and opens up a new opportunity. For example, a dynamic and network-aware resource management strategy can help satisfy the QoS requirements of different priority flows without wasting precious bandwidth. This paper introduces virtual queues for service differentiation between different types of traffic streams, leveraging protocol independent switch architecture (PISA). We propose coordinating the management of all the queues and dynamically adapting their sizes to minimize packet loss and delay due to network congestion and ensure QoS compliance.}, subject = {Datennetz}, language = {en} } @techreport{VomhoffGeisslerHossfeld2022, type = {Working Paper}, author = {Vomhoff, Viktoria and Geißler, Stefan and Hoßfeld, Tobias}, title = {Identification of Signaling Patterns in Mobile IoT Signaling Traffic}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28081}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280819}, pages = {4}, year = {2022}, abstract = {We attempt to identify sequences of signaling dialogs, to strengthen our understanding of the signaling behavior of IoT devices by examining a dataset containing over 270.000 distinct IoT devices whose signaling traffic has been observed over a 31-day period in a 2G network [4]. We propose a set of rules that allows the assembly of signaling dialogs into so-called sessions in order to identify common patterns and lay the foundation for future research in the areas of traffic modeling and anomaly detection.}, subject = {Datennetz}, language = {en} } @misc{FunkenTscherner2019, author = {Funken, Matthias and Tscherner, Michael}, title = {Jahresbericht 2018 des Rechenzentrums der Universit{\"a}t W{\"u}rzburg}, edition = {1. Auflage}, organization = {Rechenzentrum (Universit{\"a}t W{\"u}rzburg)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-188265}, pages = {76}, year = {2019}, abstract = {Eine {\"U}bersicht {\"u}ber die Aktivit{\"a}ten des Rechenzentrums im Jahr 2018.}, subject = {Julius-Maximilians-Universit{\"a}t W{\"u}rzburg}, language = {de} } @misc{OPUS4-15355, title = {Jahresbericht 2016 des Rechenzentrums der Universit{\"a}t W{\"u}rzburg}, edition = {1. Auflage}, organization = {Rechenzentrum (Universit{\"a}t W{\"u}rzburg)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153558}, pages = {72}, year = {2017}, abstract = {Das Dokument umfasst eine j{\"a}hrliche Zusammenfassung der Aktivit{\"a}ten des Rechenzentrums als zentraler IT-Dienstleister der Universit{\"a}t W{\"u}rzburg}, subject = {Jahresbericht}, language = {de} } @misc{FunkenTscherner2018, author = {Funken, Matthias and Tscherner, Michael}, title = {Jahresbericht 2017 des Rechenzentrums der Universit{\"a}t W{\"u}rzburg}, edition = {1. Auflage}, organization = {Rechenzentrum (Universit{\"a}t W{\"u}rzburg)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168537}, pages = {68}, year = {2018}, abstract = {Eine {\"U}bersicht {\"u}ber die Aktivit{\"a}ten des Rechenzentrums im Jahr 2017.}, subject = {Julius-Maximilians-Universit{\"a}t W{\"u}rzburg}, language = {de} } @article{SchererFleishmanJonesetal.2021, author = {Scherer, Marc and Fleishman, Sarel J. and Jones, Patrik R. and Dandekar, Thomas and Bencurova, Elena}, title = {Computational Enzyme Engineering Pipelines for Optimized Production of Renewable Chemicals}, series = {Frontiers in Bioengineering and Biotechnology}, volume = {9}, journal = {Frontiers in Bioengineering and Biotechnology}, issn = {2296-4185}, doi = {10.3389/fbioe.2021.673005}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240598}, year = {2021}, abstract = {To enable a sustainable supply of chemicals, novel biotechnological solutions are required that replace the reliance on fossil resources. One potential solution is to utilize tailored biosynthetic modules for the metabolic conversion of CO2 or organic waste to chemicals and fuel by microorganisms. Currently, it is challenging to commercialize biotechnological processes for renewable chemical biomanufacturing because of a lack of highly active and specific biocatalysts. As experimental methods to engineer biocatalysts are time- and cost-intensive, it is important to establish efficient and reliable computational tools that can speed up the identification or optimization of selective, highly active, and stable enzyme variants for utilization in the biotechnological industry. Here, we review and suggest combinations of effective state-of-the-art software and online tools available for computational enzyme engineering pipelines to optimize metabolic pathways for the biosynthesis of renewable chemicals. Using examples relevant for biotechnology, we explain the underlying principles of enzyme engineering and design and illuminate future directions for automated optimization of biocatalysts for the assembly of synthetic metabolic pathways.}, language = {en} } @article{KammererGoesterReichertetal.2021, author = {Kammerer, Klaus and G{\"o}ster, Manuel and Reichert, Manfred and Pryss, R{\"u}diger}, title = {Ambalytics: a scalable and distributed system architecture concept for bibliometric network analyses}, series = {Future Internet}, volume = {13}, journal = {Future Internet}, number = {8}, issn = {1999-5903}, doi = {10.3390/fi13080203}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-244916}, year = {2021}, abstract = {A deep understanding about a field of research is valuable for academic researchers. In addition to technical knowledge, this includes knowledge about subareas, open research questions, and social communities (networks) of individuals and organizations within a given field. With bibliometric analyses, researchers can acquire quantitatively valuable knowledge about a research area by using bibliographic information on academic publications provided by bibliographic data providers. Bibliometric analyses include the calculation of bibliometric networks to describe affiliations or similarities of bibliometric entities (e.g., authors) and group them into clusters representing subareas or communities. Calculating and visualizing bibliometric networks is a nontrivial and time-consuming data science task that requires highly skilled individuals. In addition to domain knowledge, researchers must often provide statistical knowledge and programming skills or use software tools having limited functionality and usability. In this paper, we present the ambalytics bibliometric platform, which reduces the complexity of bibliometric network analysis and the visualization of results. It accompanies users through the process of bibliometric analysis and eliminates the need for individuals to have programming skills and statistical knowledge, while preserving advanced functionality, such as algorithm parameterization, for experts. As a proof-of-concept, and as an example of bibliometric analyses outcomes, the calculation of research fronts networks based on a hybrid similarity approach is shown. Being designed to scale, ambalytics makes use of distributed systems concepts and technologies. It is based on the microservice architecture concept and uses the Kubernetes framework for orchestration. This paper presents the initial building block of a comprehensive bibliometric analysis platform called ambalytics, which aims at a high usability for users as well as scalability.}, language = {en} } @article{OberdoerferBirnstielLatoschiketal.2021, author = {Oberd{\"o}rfer, Sebastian and Birnstiel, Sandra and Latoschik, Marc Erich and Grafe, Silke}, title = {Mutual Benefits: Interdisciplinary Education of Pre-Service Teachers and HCI Students in VR/AR Learning Environment Design}, series = {Frontiers in Education}, volume = {6}, journal = {Frontiers in Education}, issn = {2504-284X}, doi = {10.3389/feduc.2021.693012}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241612}, year = {2021}, abstract = {The successful development and classroom integration of Virtual (VR) and Augmented Reality (AR) learning environments requires competencies and content knowledge with respect to media didactics and the respective technologies. The paper discusses a pedagogical concept specifically aiming at the interdisciplinary education of pre-service teachers in collaboration with human-computer interaction students. The students' overarching goal is the interdisciplinary realization and integration of VR/AR learning environments in teaching and learning concepts. To assist this approach, we developed a specific tutorial guiding the developmental process. We evaluate and validate the effectiveness of the overall pedagogical concept by analyzing the change in attitudes regarding 1) the use of VR/AR for educational purposes and in competencies and content knowledge regarding 2) media didactics and 3) technology. Our results indicate a significant improvement in the knowledge of media didactics and technology. We further report on four STEM learning environments that have been developed during the seminar.}, language = {en} } @article{NaglerNaegeleGillietal.2018, author = {Nagler, Matthias and N{\"a}gele, Thomas and Gilli, Christian and Fragner, Lena and Korte, Arthur and Platzer, Alexander and Farlow, Ashley and Nordborg, Magnus and Weckwerth, Wolfram}, title = {Eco-Metabolomics and Metabolic Modeling: Making the Leap From Model Systems in the Lab to Native Populations in the Field}, series = {Frontiers in Plant Science}, volume = {9}, journal = {Frontiers in Plant Science}, number = {1556}, issn = {1664-462X}, doi = {10.3389/fpls.2018.01556}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189560}, year = {2018}, abstract = {Experimental high-throughput analysis of molecular networks is a central approach to characterize the adaptation of plant metabolism to the environment. However, recent studies have demonstrated that it is hardly possible to predict in situ metabolic phenotypes from experiments under controlled conditions, such as growth chambers or greenhouses. This is particularly due to the high molecular variance of in situ samples induced by environmental fluctuations. An approach of functional metabolome interpretation of field samples would be desirable in order to be able to identify and trace back the impact of environmental changes on plant metabolism. To test the applicability of metabolomics studies for a characterization of plant populations in the field, we have identified and analyzed in situ samples of nearby grown natural populations of Arabidopsis thaliana in Austria. A. thaliana is the primary molecular biological model system in plant biology with one of the best functionally annotated genomes representing a reference system for all other plant genome projects. The genomes of these novel natural populations were sequenced and phylogenetically compared to a comprehensive genome database of A. thaliana ecotypes. Experimental results on primary and secondary metabolite profiling and genotypic variation were functionally integrated by a data mining strategy, which combines statistical output of metabolomics data with genome-derived biochemical pathway reconstruction and metabolic modeling. Correlations of biochemical model predictions and population-specific genetic variation indicated varying strategies of metabolic regulation on a population level which enabled the direct comparison, differentiation, and prediction of metabolic adaptation of the same species to different habitats. These differences were most pronounced at organic and amino acid metabolism as well as at the interface of primary and secondary metabolism and allowed for the direct classification of population-specific metabolic phenotypes within geographically contiguous sampling sites.}, language = {en} } @article{PetschkeStaab2018, author = {Petschke, Danny and Staab, Torsten E.M.}, title = {DLTPulseGenerator: a library for the simulation of lifetime spectra based on detector-output pulses}, series = {SoftwareX}, volume = {7}, journal = {SoftwareX}, doi = {10.1016/j.softx.2018.04.002}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176883}, pages = {122-128}, year = {2018}, abstract = {The quantitative analysis of lifetime spectra relevant in both life and materials sciences presents one of the ill-posed inverse problems and, hence, leads to most stringent requirements on the hardware specifications and the analysis algorithms. Here we present DLTPulseGenerator, a library written in native C++ 11, which provides a simulation of lifetime spectra according to the measurement setup. The simulation is based on pairs of non-TTL detector output-pulses. Those pulses require the Constant Fraction Principle (CFD) for the determination of the exact timing signal and, thus, the calculation of the time difference i.e. the lifetime. To verify the functionality, simulation results were compared to experimentally obtained data using Positron Annihilation Lifetime Spectroscopy (PALS) on pure tin.}, language = {en} } @misc{Hochmuth2022, type = {Master Thesis}, author = {Hochmuth, Christian Andreas}, title = {Innovative Software in Unternehmen: Strategie und Erfolgsfaktoren f{\"u}r Einf{\"u}hrungsprojekte}, doi = {10.25972/OPUS-28841}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288411}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Innovative Software kann die Position eines Unternehmens im Wettbewerb sichern. Die Einf{\"u}hrung innovativer Software ist aber alles andere als einfach. Denn obgleich die technischen Aspekte offensichtlicher sind, dominieren organisationale Aspekte. Zu viele Softwareprojekte schlagen fehl, da die Einf{\"u}hrung nicht gelingt, trotz Erf{\"u}llung technischer Anforderungen. Vor diesem Hintergrund ist das Forschungsziel der Masterarbeit, Risiken und Erfolgsfaktoren f{\"u}r die Einf{\"u}hrung innovativer Software in Unternehmen zu finden, eine Strategie zu formulieren und dabei die Bedeutung von Schl{\"u}sselpersonen zu bestimmen.}, subject = {Innovationsmanagement}, language = {de} } @article{OsmanogluKhaledAlSeiariAlKhoorietal.2021, author = {Osmanoglu, {\"O}zge and Khaled AlSeiari, Mariam and AlKhoori, Hasa Abduljaleel and Shams, Shabana and Bencurova, Elena and Dandekar, Thomas and Naseem, Muhammad}, title = {Topological Analysis of the Carbon-Concentrating CETCH Cycle and a Photorespiratory Bypass Reveals Boosted CO\(_2\)-Sequestration by Plants}, series = {Frontiers in Bioengineering and Biotechnology}, volume = {9}, journal = {Frontiers in Bioengineering and Biotechnology}, issn = {2296-4185}, doi = {10.3389/fbioe.2021.708417}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-249260}, year = {2021}, abstract = {Synthetically designed alternative photorespiratory pathways increase the biomass of tobacco and rice plants. Likewise, some in planta-tested synthetic carbon-concentrating cycles (CCCs) hold promise to increase plant biomass while diminishing atmospheric carbon dioxide burden. Taking these individual contributions into account, we hypothesize that the integration of bypasses and CCCs will further increase plant productivity. To test this in silico, we reconstructed a metabolic model by integrating photorespiration and photosynthesis with the synthetically designed alternative pathway 3 (AP3) enzymes and transporters. We calculated fluxes of the native plant system and those of AP3 combined with the inhibition of the glycolate/glycerate transporter by using the YANAsquare package. The activity values corresponding to each enzyme in photosynthesis, photorespiration, and for synthetically designed alternative pathways were estimated. Next, we modeled the effect of the crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle (CETCH), which is a set of natural and synthetically designed enzymes that fix CO₂ manifold more than the native Calvin-Benson-Bassham (CBB) cycle. We compared estimated fluxes across various pathways in the native model and under an introduced CETCH cycle. Moreover, we combined CETCH and AP3-w/plgg1RNAi, and calculated the fluxes. We anticipate higher carbon dioxide-harvesting potential in plants with an AP3 bypass and CETCH-AP3 combination. We discuss the in vivo implementation of these strategies for the improvement of C3 plants and in natural high carbon harvesters.}, language = {en} } @article{vonMammenWagnerKnoteetal.2017, author = {von Mammen, Sebastian Albrecht and Wagner, Daniel and Knote, Andreas and Taskin, Umut}, title = {Interactive simulations of biohybrid systems}, series = {Frontiers in Robotics and AI}, volume = {4}, journal = {Frontiers in Robotics and AI}, issn = {2296-9144}, doi = {10.3389/frobt.2017.00050}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-195755}, year = {2017}, abstract = {In this article, we present approaches to interactive simulations of biohybrid systems. These simulations are comprised of two major computational components: (1) agent-based developmental models that retrace organismal growth and unfolding of technical scaffoldings and (2) interfaces to explore these models interactively. Simulations of biohybrid systems allow us to fast forward and experience their evolution over time based on our design decisions involving the choice, configuration and initial states of the deployed biological and robotic actors as well as their interplay with the environment. We briefly introduce the concept of swarm grammars, an agent-based extension of L-systems for retracing growth processes and structural artifacts. Next, we review an early augmented reality prototype for designing and projecting biohybrid system simulations into real space. In addition to models that retrace plant behaviors, we specify swarm grammar agents to braid structures in a self-organizing manner. Based on this model, both robotic and plant-driven braiding processes can be experienced and explored in virtual worlds. We present an according user interface for use in virtual reality. As we present interactive models concerning rather diverse description levels, we only ensured their principal capacity for interaction but did not consider efficiency analyzes beyond prototypic operation. We conclude this article with an outlook on future works on melding reality and virtuality to drive the design and deployment of biohybrid systems.}, language = {en} } @article{AppelScholzMuelleretal.2015, author = {Appel, Mirjam and Scholz, Claus-J{\"u}rgen and M{\"u}ller, Tobias and Dittrich, Marcus and K{\"o}nig, Christian and Bockstaller, Marie and Oguz, Tuba and Khalili, Afshin and Antwi-Adjei, Emmanuel and Schauer, Tamas and Margulies, Carla and Tanimoto, Hiromu and Yarali, Ayse}, title = {Genome-Wide Association Analyses Point to Candidate Genes for Electric Shock Avoidance in Drosophila melanogaster}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {5}, doi = {10.1371/journal.pone.0126986}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-152006}, pages = {e0126986}, year = {2015}, abstract = {Electric shock is a common stimulus for nociception-research and the most widely used reinforcement in aversive associative learning experiments. Yet, nothing is known about the mechanisms it recruits at the periphery. To help fill this gap, we undertook a genome-wide association analysis using 38 inbred Drosophila melanogaster strains, which avoided shock to varying extents. We identified 514 genes whose expression levels and/or sequences covaried with shock avoidance scores. We independently scrutinized 14 of these genes using mutants, validating the effect of 7 of them on shock avoidance. This emphasizes the value of our candidate gene list as a guide for follow-up research. In addition, by integrating our association results with external protein-protein interaction data we obtained a shock avoidance- associated network of 38 genes. Both this network and the original candidate list contained a substantial number of genes that affect mechanosensory bristles, which are hairlike organs distributed across the fly's body. These results may point to a potential role for mechanosensory bristles in shock sensation. Thus, we not only provide a first list of candidate genes for shock avoidance, but also point to an interesting new hypothesis on nociceptive mechanisms.}, language = {en} } @article{FisselerMuellerWeichert2017, author = {Fisseler, Denis and M{\"u}ller, Gerfrid G. W. and Weichert, Frank}, title = {Web-Based scientific exploration and analysis of 3D scanned cuneiform datasets for collaborative research}, series = {Informatics}, volume = {4}, journal = {Informatics}, number = {4}, issn = {2227-9709}, doi = {10.3390/informatics4040044}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197958}, pages = {44}, year = {2017}, abstract = {The three-dimensional cuneiform script is one of the oldest known writing systems and a central object of research in Ancient Near Eastern Studies and Hittitology. An important step towards the understanding of the cuneiform script is the provision of opportunities and tools for joint analysis. This paper presents an approach that contributes to this challenge: a collaborative compatible web-based scientific exploration and analysis of 3D scanned cuneiform fragments. The WebGL -based concept incorporates methods for compressed web-based content delivery of large 3D datasets and high quality visualization. To maximize accessibility and to promote acceptance of 3D techniques in the field of Hittitology, the introduced concept is integrated into the Hethitologie-Portal Mainz, an established leading online research resource in the field of Hittitology, which until now exclusively included 2D content. The paper shows that increasing the availability of 3D scanned archaeological data through a web-based interface can provide significant scientific value while at the same time finding a trade-off between copyright induced restrictions and scientific usability.}, language = {en} } @article{PetschkeStaab2019, author = {Petschke, Danny and Staab, Torsten E.M.}, title = {DDRS4PALS: a software for the acquisition and simulation of lifetime spectra using the DRS4 evaluation board}, series = {SoftwareX}, volume = {10}, journal = {SoftwareX}, doi = {10.1016/j.softx.2019.100261}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202276}, pages = {100261}, year = {2019}, abstract = {Lifetime techniques are applied to diverse fields of study including materials sciences, semiconductor physics, biology, molecular biophysics and photochemistry. Here we present DDRS4PALS, a software for the acquisition and simulation of lifetime spectra using the DRS4 evaluation board (Paul Scherrer Institute, Switzerland) for time resolved measurements and digitization of detector output pulses. Artifact afflicted pulses can be corrected or rejected prior to the lifetime calculation to provide the generation of high-quality lifetime spectra, which are crucial for a profound analysis, i.e. the decomposition of the true information. Moreover, the pulses can be streamed on an (external) hard drive during the measurement and subsequently downloaded in the offline mode without being connected to the hardware. This allows the generation of various lifetime spectra at different configurations from one single measurement and, hence, a meaningful comparison in terms of analyzability and quality. Parallel processing and an integrated JavaScript based language provide convenient options to accelerate and automate time consuming processes such as lifetime spectra simulations.}, language = {en} } @inproceedings{DaviesDewellHarvey2021, author = {Davies, Richard and Dewell, Nathan and Harvey, Carlo}, title = {A framework for interactive, autonomous and semantic dialogue generation in games}, series = {Proceedings of the 1st Games Technology Summit}, booktitle = {Proceedings of the 1st Games Technology Summit}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246023}, pages = {16-28}, year = {2021}, abstract = {Immersive virtual environments provide users with the opportunity to escape from the real world, but scripted dialogues can disrupt the presence within the world the user is trying to escape within. Both Non-Playable Character (NPC) to Player and NPC to NPC dialogue can be non-natural and the reliance on responding with pre-defined dialogue does not always meet the players emotional expectations or provide responses appropriate to the given context or world states. This paper investigates the application of Artificial Intelligence (AI) and Natural Language Processing to generate dynamic human-like responses within a themed virtual world. Each thematic has been analysed against humangenerated responses for the same seed and demonstrates invariance of rating across a range of model sizes, but shows an effect of theme and the size of the corpus used for fine-tuning the context for the game world.}, language = {en} } @inproceedings{SanusiKlemke2021, author = {Sanusi, Khaleel Asyraaf Mat and Klemke, Roland}, title = {Immersive Multimodal Environments for Psychomotor Skills Training}, series = {Proceedings of the 1st Games Technology Summit}, booktitle = {Proceedings of the 1st Games Technology Summit}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246016}, pages = {9-15}, year = {2021}, abstract = {Modern immersive multimodal technologies enable the learners to completely get immersed in various learning situations in a way that feels like experiencing an authentic learning environment. These environments also allow the collection of multimodal data, which can be used with artificial intelligence to further improve the immersion and learning outcomes. The use of artificial intelligence has been widely explored for the interpretation of multimodal data collected from multiple sensors, thus giving insights to support learners' performance by providing personalised feedback. In this paper, we present a conceptual approach for creating immersive learning environments, integrated with multi-sensor setup to help learners improve their psychomotor skills in a remote setting.}, language = {en} } @phdthesis{Nogatz2023, author = {Nogatz, Falco}, title = {Defining and Implementing Domain-Specific Languages with Prolog}, doi = {10.25972/OPUS-30187}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301872}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The landscape of today's programming languages is manifold. With the diversity of applications, the difficulty of adequately addressing and specifying the used programs increases. This often leads to newly designed and implemented domain-specific languages. They enable domain experts to express knowledge in their preferred format, resulting in more readable and concise programs. Due to its flexible and declarative syntax without reserved keywords, the logic programming language Prolog is particularly suitable for defining and embedding domain-specific languages. This thesis addresses the questions and challenges that arise when integrating domain-specific languages into Prolog. We compare the two approaches to define them either externally or internally, and provide assisting tools for each. The grammar of a formal language is usually defined in the extended Backus-Naur form. In this work, we handle this formalism as a domain-specific language in Prolog, and define term expansions that allow to translate it into equivalent definite clause grammars. We present the package library(dcg4pt) for SWI-Prolog, which enriches them by an additional argument to automatically process the term's corresponding parse tree. To simplify the work with definite clause grammars, we visualise their application by a web-based tracer. The external integration of domain-specific languages requires the programmer to keep the grammar, parser, and interpreter in sync. In many cases, domain-specific languages can instead be directly embedded into Prolog by providing appropriate operator definitions. In addition, we propose syntactic extensions for Prolog to expand its expressiveness, for instance to state logic formulas with their connectives verbatim. This allows to use all tools that were originally written for Prolog, for instance code linters and editors with syntax highlighting. We present the package library(plammar), a standard-compliant parser for Prolog source code, written in Prolog. It is able to automatically infer from example sentences the required operator definitions with their classes and precedences as well as the required Prolog language extensions. As a result, we can automatically answer the question: Is it possible to model these example sentences as valid Prolog clauses, and how? We discuss and apply the two approaches to internal and external integrations for several domain-specific languages, namely the extended Backus-Naur form, GraphQL, XPath, and a controlled natural language to represent expert rules in if-then form. The created toolchain with library(dcg4pt) and library(plammar) yields new application opportunities for static Prolog source code analysis, which we also present.}, subject = {PROLOG }, language = {en} } @techreport{LohGeisslerHossfeld2022, type = {Working Paper}, author = {Loh, Frank and Geißler, Stefan and Hoßfeld, Tobias}, title = {LoRaWAN Network Planning in Smart Environments: Towards Reliability, Scalability, and Cost Reduction}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28082}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280829}, pages = {4}, year = {2022}, abstract = {The goal in this work is to present a guidance for LoRaWAN planning to improve overall reliability for message transmissions and scalability. At the end, the cost component is discussed. Therefore, a five step approach is presented that helps to plan a LoRaWAN deployment step by step: Based on the device locations, an initial gateway placement is suggested followed by in-depth frequency and channel access planning. After an initial planning phase, updates for channel access and the initial gateway planning is suggested that should also be done periodically during network operation. Since current gateway placement approaches are only studied with random channel access, there is a lot of potential in the cell planning phase. Furthermore, the performance of different channel access approaches is highly related on network load, and thus cell size and sensor density. Last, the influence of different cell planning ideas on expected costs are discussed.}, subject = {Datennetz}, language = {en} } @article{LohMehlingHossfeld2022, author = {Loh, Frank and Mehling, Noah and Hoßfeld, Tobias}, title = {Towards LoRaWAN without data loss: studying the performance of different channel access approaches}, series = {Sensors}, volume = {22}, journal = {Sensors}, number = {2}, issn = {1424-8220}, doi = {10.3390/s22020691}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-302418}, year = {2022}, abstract = {The Long Range Wide Area Network (LoRaWAN) is one of the fastest growing Internet of Things (IoT) access protocols. It operates in the license free 868 MHz band and gives everyone the possibility to create their own small sensor networks. The drawback of this technology is often unscheduled or random channel access, which leads to message collisions and potential data loss. For that reason, recent literature studies alternative approaches for LoRaWAN channel access. In this work, state-of-the-art random channel access is compared with alternative approaches from the literature by means of collision probability. Furthermore, a time scheduled channel access methodology is presented to completely avoid collisions in LoRaWAN. For this approach, an exhaustive simulation study was conducted and the performance was evaluated with random access cross-traffic. In a general theoretical analysis the limits of the time scheduled approach are discussed to comply with duty cycle regulations in LoRaWAN.}, language = {en} } @article{KernKullmannGanaletal.2021, author = {Kern, Florian and Kullmann, Peter and Ganal, Elisabeth and Korwisi, Kristof and Stingl, Ren{\´e} and Niebling, Florian and Latoschik, Marc Erich}, title = {Off-The-Shelf Stylus: Using XR Devices for Handwriting and Sketching on Physically Aligned Virtual Surfaces}, series = {Frontiers in Virtual Reality}, volume = {2}, journal = {Frontiers in Virtual Reality}, doi = {10.3389/frvir.2021.684498}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260219}, year = {2021}, abstract = {This article introduces the Off-The-Shelf Stylus (OTSS), a framework for 2D interaction (in 3D) as well as for handwriting and sketching with digital pen, ink, and paper on physically aligned virtual surfaces in Virtual, Augmented, and Mixed Reality (VR, AR, MR: XR for short). OTSS supports self-made XR styluses based on consumer-grade six-degrees-of-freedom XR controllers and commercially available styluses. The framework provides separate modules for three basic but vital features: 1) The stylus module provides stylus construction and calibration features. 2) The surface module provides surface calibration and visual feedback features for virtual-physical 2D surface alignment using our so-called 3ViSuAl procedure, and surface interaction features. 3) The evaluation suite provides a comprehensive test bed combining technical measurements for precision, accuracy, and latency with extensive usability evaluations including handwriting and sketching tasks based on established visuomotor, graphomotor, and handwriting research. The framework's development is accompanied by an extensive open source reference implementation targeting the Unity game engine using an Oculus Rift S headset and Oculus Touch controllers. The development compares three low-cost and low-tech options to equip controllers with a tip and includes a web browser-based surface providing support for interacting, handwriting, and sketching. The evaluation of the reference implementation based on the OTSS framework identified an average stylus precision of 0.98 mm (SD = 0.54 mm) and an average surface accuracy of 0.60 mm (SD = 0.32 mm) in a seated VR environment. The time for displaying the stylus movement as digital ink on the web browser surface in VR was 79.40 ms on average (SD = 23.26 ms), including the physical controller's motion-to-photon latency visualized by its virtual representation (M = 42.57 ms, SD = 15.70 ms). The usability evaluation (N = 10) revealed a low task load, high usability, and high user experience. Participants successfully reproduced given shapes and created legible handwriting, indicating that the OTSS and it's reference implementation is ready for everyday use. We provide source code access to our implementation, including stylus and surface calibration and surface interaction features, making it easy to reuse, extend, adapt and/or replicate previous results (https://go.uniwue.de/hci-otss).}, language = {en} } @article{BartlWenningerWolfetal.2021, author = {Bartl, Andrea and Wenninger, Stephan and Wolf, Erik and Botsch, Mario and Latoschik, Marc Erich}, title = {Affordable but not cheap: a case study of the effects of two 3D-reconstruction methods of virtual humans}, series = {Frontiers in Virtual Reality}, volume = {2}, journal = {Frontiers in Virtual Reality}, doi = {10.3389/frvir.2021.694617}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260492}, year = {2021}, abstract = {Realistic and lifelike 3D-reconstruction of virtual humans has various exciting and important use cases. Our and others' appearances have notable effects on ourselves and our interaction partners in virtual environments, e.g., on acceptance, preference, trust, believability, behavior (the Proteus effect), and more. Today, multiple approaches for the 3D-reconstruction of virtual humans exist. They significantly vary in terms of the degree of achievable realism, the technical complexities, and finally, the overall reconstruction costs involved. This article compares two 3D-reconstruction approaches with very different hardware requirements. The high-cost solution uses a typical complex and elaborated camera rig consisting of 94 digital single-lens reflex (DSLR) cameras. The recently developed low-cost solution uses a smartphone camera to create videos that capture multiple views of a person. Both methods use photogrammetric reconstruction and template fitting with the same template model and differ in their adaptation to the method-specific input material. Each method generates high-quality virtual humans ready to be processed, animated, and rendered by standard XR simulation and game engines such as Unreal or Unity. We compare the results of the two 3D-reconstruction methods in an immersive virtual environment against each other in a user study. Our results indicate that the virtual humans from the low-cost approach are perceived similarly to those from the high-cost approach regarding the perceived similarity to the original, human-likeness, beauty, and uncanniness, despite significant differences in the objectively measured quality. The perceived feeling of change of the own body was higher for the low-cost virtual humans. Quality differences were perceived more strongly for one's own body than for other virtual humans.}, language = {en} } @article{WienrichLatoschik2021, author = {Wienrich, Carolin and Latoschik, Marc Erich}, title = {eXtended Artificial Intelligence: New Prospects of Human-AI Interaction Research}, series = {Frontiers in Virtual Reality}, volume = {2}, journal = {Frontiers in Virtual Reality}, doi = {10.3389/frvir.2021.686783}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260296}, year = {2021}, abstract = {Artificial Intelligence (AI) covers a broad spectrum of computational problems and use cases. Many of those implicate profound and sometimes intricate questions of how humans interact or should interact with AIs. Moreover, many users or future users do have abstract ideas of what AI is, significantly depending on the specific embodiment of AI applications. Human-centered-design approaches would suggest evaluating the impact of different embodiments on human perception of and interaction with AI. An approach that is difficult to realize due to the sheer complexity of application fields and embodiments in reality. However, here XR opens new possibilities to research human-AI interactions. The article's contribution is twofold: First, it provides a theoretical treatment and model of human-AI interaction based on an XR-AI continuum as a framework for and a perspective of different approaches of XR-AI combinations. It motivates XR-AI combinations as a method to learn about the effects of prospective human-AI interfaces and shows why the combination of XR and AI fruitfully contributes to a valid and systematic investigation of human-AI interactions and interfaces. Second, the article provides two exemplary experiments investigating the aforementioned approach for two distinct AI-systems. The first experiment reveals an interesting gender effect in human-robot interaction, while the second experiment reveals an Eliza effect of a recommender system. Here the article introduces two paradigmatic implementations of the proposed XR testbed for human-AI interactions and interfaces and shows how a valid and systematic investigation can be conducted. In sum, the article opens new perspectives on how XR benefits human-centered AI design and development.}, language = {en} } @article{WienrichCarolus2021, author = {Wienrich, Carolin and Carolus, Astrid}, title = {Development of an Instrument to Measure Conceptualizations and Competencies About Conversational Agents on the Example of Smart Speakers}, series = {Frontiers in Computer Science}, volume = {3}, journal = {Frontiers in Computer Science}, doi = {10.3389/fcomp.2021.685277}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260198}, year = {2021}, abstract = {The concept of digital literacy has been introduced as a new cultural technique, which is regarded as essential for successful participation in a (future) digitized world. Regarding the increasing importance of AI, literacy concepts need to be extended to account for AI-related specifics. The easy handling of the systems results in increased usage, contrasting limited conceptualizations (e.g., imagination of future importance) and competencies (e.g., knowledge about functional principles). In reference to voice-based conversational agents as a concrete application of AI, the present paper aims for the development of a measurement to assess the conceptualizations and competencies about conversational agents. In a first step, a theoretical framework of "AI literacy" is transferred to the context of conversational agent literacy. Second, the "conversational agent literacy scale" (short CALS) is developed, constituting the first attempt to measure interindividual differences in the "(il) literate" usage of conversational agents. 29 items were derived, of which 170 participants answered. An explanatory factor analysis identified five factors leading to five subscales to assess CAL: storage and transfer of the smart speaker's data input; smart speaker's functional principles; smart speaker's intelligent functions, learning abilities; smart speaker's reach and potential; smart speaker's technological (surrounding) infrastructure. Preliminary insights into construct validity and reliability of CALS showed satisfying results. Third, using the newly developed instrument, a student sample's CAL was assessed, revealing intermediated values. Remarkably, owning a smart speaker did not lead to higher CAL scores, confirming our basic assumption that usage of systems does not guarantee enlightened conceptualizations and competencies. In sum, the paper contributes to the first insights into the operationalization and understanding of CAL as a specific subdomain of AI-related competencies.}, language = {en} } @article{WienrichReitelbachCarolus2021, author = {Wienrich, Carolin and Reitelbach, Clemens and Carolus, Astrid}, title = {The Trustworthiness of Voice Assistants in the Context of Healthcare Investigating the Effect of Perceived Expertise on the Trustworthiness of Voice Assistants, Providers, Data Receivers, and Automatic Speech Recognition}, series = {Frontiers in Computer Science}, volume = {3}, journal = {Frontiers in Computer Science}, doi = {10.3389/fcomp.2021.685250}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260209}, year = {2021}, abstract = {As an emerging market for voice assistants (VA), the healthcare sector imposes increasing requirements on the users' trust in the technological system. To encourage patients to reveal sensitive data requires patients to trust in the technological counterpart. In an experimental laboratory study, participants were presented a VA, which was introduced as either a "specialist" or a "generalist" tool for sexual health. In both conditions, the VA asked the exact same health-related questions. Afterwards, participants assessed the trustworthiness of the tool and further source layers (provider, platform provider, automatic speech recognition in general, data receiver) and reported individual characteristics (disposition to trust and disclose sexual information). Results revealed that perceiving the VA as a specialist resulted in higher trustworthiness of the VA and of the provider, the platform provider and automatic speech recognition in general. Furthermore, the provider's trustworthiness affected the perceived trustworthiness of the VA. Presenting both a theoretical line of reasoning and empirical data, the study points out the importance of the users' perspective on the assistant. In sum, this paper argues for further analyses of trustworthiness in voice-based systems and its effects on the usage behavior as well as the impact on responsible design of future technology.}, language = {en} } @article{WienrichKommaVogtetal.2021, author = {Wienrich, Carolin and Komma, Philipp and Vogt, Stephanie and Latoschik, Marc E.}, title = {Spatial Presence in Mixed Realities - Considerations About the Concept, Measures, Design, and Experiments}, series = {Frontiers in Virtual Reality}, volume = {2}, journal = {Frontiers in Virtual Reality}, doi = {10.3389/frvir.2021.694315}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260328}, year = {2021}, abstract = {Plenty of theories, models, measures, and investigations target the understanding of virtual presence, i.e., the sense of presence in immersive Virtual Reality (VR). Other varieties of the so-called eXtended Realities (XR), e.g., Augmented and Mixed Reality (AR and MR) incorporate immersive features to a lesser degree and continuously combine spatial cues from the real physical space and the simulated virtual space. This blurred separation questions the applicability of the accumulated knowledge about the similarities of virtual presence and presence occurring in other varieties of XR, and corresponding outcomes. The present work bridges this gap by analyzing the construct of presence in mixed realities (MR). To achieve this, the following presents (1) a short review of definitions, dimensions, and measurements of presence in VR, and (2) the state of the art views on MR. Additionally, we (3) derived a working definition of MR, extending the Milgram continuum. This definition is based on entities reaching from real to virtual manifestations at one time point. Entities possess different degrees of referential power, determining the selection of the frame of reference. Furthermore, we (4) identified three research desiderata, including research questions about the frame of reference, the corresponding dimension of transportation, and the dimension of realism in MR. Mainly the relationship between the main aspects of virtual presence of immersive VR, i.e., the place-illusion, and the plausibility-illusion, and of the referential power of MR entities are discussed regarding the concept, measures, and design of presence in MR. Finally, (5) we suggested an experimental setup to reveal the research heuristic behind experiments investigating presence in MR. The present work contributes to the theories and the meaning of and approaches to simulate and measure presence in MR. We hypothesize that research about essential underlying factors determining user experience (UX) in MR simulations and experiences is still in its infancy and hopes this article provides an encouraging starting point to tackle related questions.}, language = {en} } @article{GlemarecLugrinBosseretal.2021, author = {Gl{\´e}marec, Yann and Lugrin, Jean-Luc and Bosser, Anne-Gwenn and Collins Jackson, Aryana and Buche, C{\´e}dric and Latoschik, Marc Erich}, title = {Indifferent or Enthusiastic? Virtual Audiences Animation and Perception in Virtual Reality}, series = {Frontiers in Virtual Reality}, volume = {2}, journal = {Frontiers in Virtual Reality}, doi = {10.3389/frvir.2021.666232}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259328}, pages = {666232}, year = {2021}, abstract = {In this paper, we present a virtual audience simulation system for Virtual Reality (VR). The system implements an audience perception model controlling the nonverbal behaviors of virtual spectators, such as facial expressions or postures. Groups of virtual spectators are animated by a set of nonverbal behavior rules representing a particular audience attitude (e.g., indifferent or enthusiastic). Each rule specifies a nonverbal behavior category: posture, head movement, facial expression and gaze direction as well as three parameters: type, frequency and proportion. In a first user-study, we asked participants to pretend to be a speaker in VR and then create sets of nonverbal behaviour parameters to simulate different attitudes. Participants manipulated the nonverbal behaviours of single virtual spectator to match a specific levels of engagement and opinion toward them. In a second user-study, we used these parameters to design different types of virtual audiences with our nonverbal behavior rules and evaluated their perceptions. Our results demonstrate our system's ability to create virtual audiences with three types of different perceived attitudes: indifferent, critical, enthusiastic. The analysis of the results also lead to a set of recommendations and guidelines regarding attitudes and expressions for future design of audiences for VR therapy and training applications.}, language = {en} } @article{HeinWienrichLatoschik2021, author = {Hein, Rebecca M. and Wienrich, Carolin and Latoschik, Marc E.}, title = {A systematic review of foreign language learning with immersive technologies (2001-2020)}, series = {AIMS Electronics and Electrical Engineering}, volume = {5}, journal = {AIMS Electronics and Electrical Engineering}, number = {2}, doi = {10.3934/electreng.2021007}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-268811}, pages = {117-145}, year = {2021}, abstract = {This study provides a systematic literature review of research (2001-2020) in the field of teaching and learning a foreign language and intercultural learning using immersive technologies. Based on 2507 sources, 54 articles were selected according to a predefined selection criteria. The review is aimed at providing information about which immersive interventions are being used for foreign language learning and teaching and where potential research gaps exist. The papers were analyzed and coded according to the following categories: (1) investigation form and education level, (2) degree of immersion, and technology used, (3) predictors, and (4) criterions. The review identified key research findings relating the use of immersive technologies for learning and teaching a foreign language and intercultural learning at cognitive, affective, and conative levels. The findings revealed research gaps in the area of teachers as a target group, and virtual reality (VR) as a fully immersive intervention form. Furthermore, the studies reviewed rarely examined behavior, and implicit measurements related to inter- and trans-cultural learning and teaching. Inter- and transcultural learning and teaching especially is an underrepresented investigation subject. Finally, concrete suggestions for future research are given. The systematic review contributes to the challenge of interdisciplinary cooperation between pedagogy, foreign language didactics, and Human-Computer Interaction to achieve innovative teaching-learning formats and a successful digital transformation.}, language = {en} } @techreport{SertbasBuelbuelErgencFischer2022, type = {Working Paper}, author = {Sertbas B{\"u}lb{\"u}l, Nurefsan and Ergenc, Doganalp and Fischer, Mathias}, title = {Evaluating Dynamic Path Reconfiguration for Time Sensitive Networks}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28074}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280743}, pages = {5}, year = {2022}, abstract = {In time-sensitive networks (TSN) based on 802.1Qbv, i.e., the time-aware Shaper (TAS) protocol, precise transmission schedules and, paths are used to ensure end-to-end deterministic communication. Such resource reservations for data flows are usually established at the startup time of an application and remain untouched until the flow ends. There is no way to migrate existing flows easily to alternative paths without inducing additional delay or wasting resources. Therefore, some of the new flows cannot be embedded due to capacity limitations on certain links which leads to sub-optimal flow assignment. As future networks will need to support a large number of lowlatency flows, accommodating new flows at runtime and adapting existing flows accordingly becomes a challenging problem. In this extended abstract we summarize a previously published paper of us [1]. We combine software-defined networking (SDN), which provides better control of network flows, with TSN to be able to seamlessly migrate time-sensitive flows. For that, we formulate an optimization problem and propose different dynamic path configuration strategies under deterministic communication requirements. Our simulation results indicate that regularly reconfiguring the flow assignments can improve the latency of time-sensitive flows and can increase the number of flows embedded in the network around 4\% in worst-case scenarios while still satisfying individual flow deadlines.}, subject = {Datennetz}, language = {en} } @techreport{LeGrossmannKrieger2022, type = {Working Paper}, author = {Le, Duy Thanh and Großmann, Marcel and Krieger, Udo R.}, title = {Cloudless Resource Monitoring in a Fog Computing System Enabled by an SDN/NFV Infrastructure}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28072}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280723}, pages = {4}, year = {2022}, abstract = {Today's advanced Internet-of-Things applications raise technical challenges on cloud, edge, and fog computing. The design of an efficient, virtualized, context-aware, self-configuring orchestration system of a fog computing system constitutes a major development effort within this very innovative area of research. In this paper we describe the architecture and relevant implementation aspects of a cloudless resource monitoring system interworking with an SDN/NFV infrastructure. It realizes the basic monitoring component of the fundamental MAPE-K principles employed in autonomic computing. Here we present the hierarchical layering and functionality within the underlying fog nodes to generate a working prototype of an intelligent, self-managed orchestrator for advanced IoT applications and services. The latter system has the capability to monitor automatically various performance aspects of the resource allocation among multiple hosts of a fog computing system interconnected by SDN.}, subject = {Datennetz}, language = {en} } @techreport{HoewelerXiangHoepfneretal.2022, type = {Working Paper}, author = {H{\"o}weler, Malte and Xiang, Zuo and H{\"o}pfner, Franz and Nguyen, Giang T. and Fitzek, Frank H. P.}, title = {Towards Stateless Core Networks: Measuring State Access Patterns}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28077}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280770}, pages = {4}, year = {2022}, abstract = {Future mobile communication networks, such as 5G and beyond, can benefit from Virtualized Network Functions (VNFs) when deployed on cloud infrastructures to achieve elasticity and scalability. However, new challenges arise as to managing states of Network Functions (NFs). Especially control plane VNFs, which are mainly found in cellular core networks like the 5G Core (5GC), received little attention since the shift towards virtualizing NFs. Most existing solutions for these core networks are often complex, intrusive, and are seldom compliant with the standard. With the emergence of 5G campus networks, UEs will be mainly machine-type devices. These devices communicate more deterministically, bringing new opportunities for elaborated state management. This work presents an emulation environment to perform rigorous measurements on state access patterns. The emulation comes with a fully parameterized Markov model for the UE to examine a wide variety of different devices. These measurements can then be used as a solid base for designing an efficient, simple, and standard conform state management solution that brings us further towards stateless core networks.}, subject = {Datennetz}, language = {en} } @techreport{GrigorjewDiederichHossfeldetal.2022, type = {Working Paper}, author = {Grigorjew, Alexej and Diederich, Philip and Hoßfeld, Tobias and Kellerer, Wolfgang}, title = {Affordable Measurement Setups for Networking Device Latency with Sub-Microsecond Accuracy}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28075}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280751}, pages = {5}, year = {2022}, abstract = {This document presents a networking latency measurement setup that focuses on affordability and universal applicability, and can provide sub-microsecond accuracy. It explains the prerequisites, hardware choices, and considerations to respect during measurement. In addition, it discusses the necessity for exhaustive latency measurements when dealing with high availability and low latency requirements. Preliminary results show that the accuracy is within ±0.02 μs when used with the Intel I350-T2 network adapter.}, subject = {Datennetz}, language = {en} } @techreport{GallenmuellerScholzStubbeetal.2022, type = {Working Paper}, author = {Gallenm{\"u}ller, Sebastian and Scholz, Dominik and Stubbe, Henning and Hauser, Eric and Carle, Georg}, title = {Reproducible by Design: Network Experiments with pos}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28083}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280834}, pages = {4}, year = {2022}, abstract = {In scientific research, the independent reproduction of experiments is the source of trust. Detailed documentation is required to enable experiment reproduction. Reproducibility awards were created to honor the increased documentation effort. In this work, we propose a novel approach toward reproducible research—a structured experimental workflow that allows the creation of reproducible experiments without requiring additional efforts of the researcher. Moreover, we present our own testbed and toolchain, namely, plain orchestrating service (pos), which enables the creation of such experimental workflows. The experiment is documented by our proposed, fully scripted experiment structure. In addition, pos provides scripts enabling the automation of the bundling and release of all experimental artifacts. We provide an interactive environment where pos experiments can be executed and reproduced, available at https://gallenmu.github.io/single-server-experiment.}, subject = {Datennetz}, language = {en} } @techreport{OdhahGrassKraemer2022, type = {Working Paper}, author = {Odhah, Najib and Grass, Eckhard and Kraemer, Rolf}, title = {Effective Rate of URLLC with Short Block-Length Information Theory}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28085}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280859}, pages = {4}, year = {2022}, abstract = {Shannon channel capacity estimation, based on large packet length is used in traditional Radio Resource Management (RRM) optimization. This is good for the normal transmission of data in a wired or wireless system. For industrial automation and control, rather short packages are used due to the short-latency requirements. Using Shannon's formula leads in this case to inaccurate RRM solutions, thus another formula should be used to optimize radio resources in short block-length packet transmission, which is the basic of Ultra-Reliable Low-Latency Communications (URLLCs). The stringent requirement of delay Quality of Service (QoS) for URLLCs requires a link-level channel model rather than a physical level channel model. After finding the basic and accurate formula of the achievable rate of short block-length packet transmission, the RRM optimization problem can be accurately formulated and solved under the new constraints of URLLCs. In this short paper, the current mathematical models, which are used in formulating the effective transmission rate of URLLCs, will be briefly explained. Then, using this rate in RRM for URLLC will be discussed.}, subject = {Datennetz}, language = {en} } @techreport{RaffeckGeisslerHossfeld2022, type = {Working Paper}, author = {Raffeck, Simon and Geißler, Stefan and Hoßfeld, Tobias}, title = {DBM: Decentralized Burst Mitigation for Self-Organizing LoRa Deployments}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28080}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280809}, pages = {4}, year = {2022}, abstract = {This work proposes a novel approach to disperse dense transmission intervals and reduce bursty traffic patterns without the need for centralized control. Furthermore, by keeping the mechanism as close to the Long Range Wide Area Network (LoRaWAN) standard as possible the suggested mechanism can be deployed within existing networks and can even be co-deployed with other devices.}, subject = {Datennetz}, language = {en} } @article{DumicBjeloperaNuechter2021, author = {Dumic, Emil and Bjelopera, Anamaria and N{\"u}chter, Andreas}, title = {Dynamic point cloud compression based on projections, surface reconstruction and video compression}, series = {Sensors}, volume = {22}, journal = {Sensors}, number = {1}, issn = {1424-8220}, doi = {10.3390/s22010197}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252231}, year = {2021}, abstract = {In this paper we will present a new dynamic point cloud compression based on different projection types and bit depth, combined with the surface reconstruction algorithm and video compression for obtained geometry and texture maps. Texture maps have been compressed after creating Voronoi diagrams. Used video compression is specific for geometry (FFV1) and texture (H.265/HEVC). Decompressed point clouds are reconstructed using a Poisson surface reconstruction algorithm. Comparison with the original point clouds was performed using point-to-point and point-to-plane measures. Comprehensive experiments show better performance for some projection maps: cylindrical, Miller and Mercator projections.}, language = {en} } @article{MadeiraGromerLatoschiketal.2021, author = {Madeira, Octavia and Gromer, Daniel and Latoschik, Marc Erich and Pauli, Paul}, title = {Effects of Acrophobic Fear and Trait Anxiety on Human Behavior in a Virtual Elevated Plus-Maze}, series = {Frontiers in Virtual Reality}, volume = {2}, journal = {Frontiers in Virtual Reality}, doi = {10.3389/frvir.2021.635048}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258709}, year = {2021}, abstract = {The Elevated Plus-Maze (EPM) is a well-established apparatus to measure anxiety in rodents, i.e., animals exhibiting an increased relative time spent in the closed vs. the open arms are considered anxious. To examine whether such anxiety-modulated behaviors are conserved in humans, we re-translated this paradigm to a human setting using virtual reality in a Cave Automatic Virtual Environment (CAVE) system. In two studies, we examined whether the EPM exploration behavior of humans is modulated by their trait anxiety and also assessed the individuals' levels of acrophobia (fear of height), claustrophobia (fear of confined spaces), sensation seeking, and the reported anxiety when on the maze. First, we constructed an exact virtual copy of the animal EPM adjusted to human proportions. In analogy to animal EPM studies, participants (N = 30) freely explored the EPM for 5 min. In the second study (N = 61), we redesigned the EPM to make it more human-adapted and to differentiate influences of trait anxiety and acrophobia by introducing various floor textures and lower walls of closed arms to the height of standard handrails. In the first experiment, hierarchical regression analyses of exploration behavior revealed the expected association between open arm avoidance and Trait Anxiety, an even stronger association with acrophobic fear. In the second study, results revealed that acrophobia was associated with avoidance of open arms with mesh-floor texture, whereas for trait anxiety, claustrophobia, and sensation seeking, no effect was detected. Also, subjects' fear rating was moderated by all psychometrics but trait anxiety. In sum, both studies consistently indicate that humans show no general open arm avoidance analogous to rodents and that human EPM behavior is modulated strongest by acrophobic fear, whereas trait anxiety plays a subordinate role. Thus, we conclude that the criteria for cross-species validity are met insufficiently in this case. Despite the exploratory nature, our studies provide in-depth insights into human exploration behavior on the virtual EPM.}, language = {en} } @article{WienrichDoellingerHein2021, author = {Wienrich, Carolin and D{\"o}llinger, Nina and Hein, Rebecca}, title = {Behavioral Framework of Immersive Technologies (BehaveFIT): How and why virtual reality can support behavioral change processes}, series = {Frontiers in Virtual Reality}, volume = {2}, journal = {Frontiers in Virtual Reality}, doi = {10.3389/frvir.2021.627194}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258796}, year = {2021}, abstract = {The design and evaluation of assisting technologies to support behavior change processes have become an essential topic within the field of human-computer interaction research in general and the field of immersive intervention technologies in particular. The mechanisms and success of behavior change techniques and interventions are broadly investigated in the field of psychology. However, it is not always easy to adapt these psychological findings to the context of immersive technologies. The lack of theoretical foundation also leads to a lack of explanation as to why and how immersive interventions support behavior change processes. The Behavioral Framework for immersive Technologies (BehaveFIT) addresses this lack by 1) presenting an intelligible categorization and condensation of psychological barriers and immersive features, by 2) suggesting a mapping that shows why and how immersive technologies can help to overcome barriers and finally by 3) proposing a generic prediction path that enables a structured, theory-based approach to the development and evaluation of immersive interventions. These three steps explain how BehaveFIT can be used, and include guiding questions for each step. Further, two use cases illustrate the usage of BehaveFIT. Thus, the present paper contributes to guidance for immersive intervention design and evaluation, showing that immersive interventions support behavior change processes and explain and predict 'why' and 'how' immersive interventions can bridge the intention-behavior-gap.}, language = {en} } @article{KraftReichertPryss2021, author = {Kraft, Robin and Reichert, Manfred and Pryss, R{\"u}diger}, title = {Towards the interpretation of sound measurements from smartphones collected with mobile crowdsensing in the healthcare domain: an experiment with Android devices}, series = {Sensors}, volume = {22}, journal = {Sensors}, number = {1}, issn = {1424-8220}, doi = {10.3390/s22010170}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252246}, year = {2021}, abstract = {The ubiquity of mobile devices fosters the combined use of ecological momentary assessments (EMA) and mobile crowdsensing (MCS) in the field of healthcare. This combination not only allows researchers to collect ecologically valid data, but also to use smartphone sensors to capture the context in which these data are collected. The TrackYourTinnitus (TYT) platform uses EMA to track users' individual subjective tinnitus perception and MCS to capture an objective environmental sound level while the EMA questionnaire is filled in. However, the sound level data cannot be used directly among the different smartphones used by TYT users, since uncalibrated raw values are stored. This work describes an approach towards making these values comparable. In the described setting, the evaluation of sensor measurements from different smartphone users becomes increasingly prevalent. Therefore, the shown approach can be also considered as a more general solution as it not only shows how it helped to interpret TYT sound level data, but may also stimulate other researchers, especially those who need to interpret sensor data in a similar setting. Altogether, the approach will show that measuring sound levels with mobile devices is possible in healthcare scenarios, but there are many challenges to ensuring that the measured values are interpretable.}, language = {en} } @article{AnkenbrandShainbergHocketal.2021, author = {Ankenbrand, Markus J. and Shainberg, Liliia and Hock, Michael and Lohr, David and Schreiber, Laura M.}, title = {Sensitivity analysis for interpretation of machine learning based segmentation models in cardiac MRI}, series = {BMC Medical Imaging}, volume = {21}, journal = {BMC Medical Imaging}, number = {1}, doi = {10.1186/s12880-021-00551-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259169}, pages = {27}, year = {2021}, abstract = {Background Image segmentation is a common task in medical imaging e.g., for volumetry analysis in cardiac MRI. Artificial neural networks are used to automate this task with performance similar to manual operators. However, this performance is only achieved in the narrow tasks networks are trained on. Performance drops dramatically when data characteristics differ from the training set properties. Moreover, neural networks are commonly considered black boxes, because it is hard to understand how they make decisions and why they fail. Therefore, it is also hard to predict whether they will generalize and work well with new data. Here we present a generic method for segmentation model interpretation. Sensitivity analysis is an approach where model input is modified in a controlled manner and the effect of these modifications on the model output is evaluated. This method yields insights into the sensitivity of the model to these alterations and therefore to the importance of certain features on segmentation performance. Results We present an open-source Python library (misas), that facilitates the use of sensitivity analysis with arbitrary data and models. We show that this method is a suitable approach to answer practical questions regarding use and functionality of segmentation models. We demonstrate this in two case studies on cardiac magnetic resonance imaging. The first case study explores the suitability of a published network for use on a public dataset the network has not been trained on. The second case study demonstrates how sensitivity analysis can be used to evaluate the robustness of a newly trained model. Conclusions Sensitivity analysis is a useful tool for deep learning developers as well as users such as clinicians. It extends their toolbox, enabling and improving interpretability of segmentation models. Enhancing our understanding of neural networks through sensitivity analysis also assists in decision making. Although demonstrated only on cardiac magnetic resonance images this approach and software are much more broadly applicable.}, language = {en} } @article{SteinhaeusserOberdoerfervonMammenetal.2022, author = {Steinhaeusser, Sophia C. and Oberd{\"o}rfer, Sebastian and von Mammen, Sebastian and Latoschik, Marc Erich and Lugrin, Birgit}, title = {Joyful adventures and frightening places - designing emotion-inducing virtual environments}, series = {Frontiers in Virtual Reality}, volume = {3}, journal = {Frontiers in Virtual Reality}, issn = {2673-4192}, doi = {10.3389/frvir.2022.919163}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284831}, year = {2022}, abstract = {Virtual environments (VEs) can evoke and support emotions, as experienced when playing emotionally arousing games. We theoretically approach the design of fear and joy evoking VEs based on a literature review of empirical studies on virtual and real environments as well as video games' reviews and content analyses. We define the design space and identify central design elements that evoke specific positive and negative emotions. Based on that, we derive and present guidelines for emotion-inducing VE design with respect to design themes, colors and textures, and lighting configurations. To validate our guidelines in two user studies, we 1) expose participants to 360° videos of VEs designed following the individual guidelines and 2) immerse them in a neutral, positive and negative emotion-inducing VEs combining all respective guidelines in Virtual Reality. The results support our theoretically derived guidelines by revealing significant differences in terms of fear and joy induction.}, language = {en} } @article{PrantlZeckBaueretal.2022, author = {Prantl, Thomas and Zeck, Timo and Bauer, Andre and Ten, Peter and Prantl, Dominik and Yahya, Ala Eddine Ben and Ifflaender, Lukas and Dmitrienko, Alexandra and Krupitzer, Christian and Kounev, Samuel}, title = {A Survey on Secure Group Communication Schemes With Focus on IoT Communication}, series = {IEEE Access}, volume = {10}, journal = {IEEE Access}, doi = {10.1109/ACCESS.2022.3206451}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300257}, pages = {99944 -- 99962}, year = {2022}, abstract = {A key feature for Internet of Things (IoT) is to control what content is available to each user. To handle this access management, encryption schemes can be used. Due to the diverse usage of encryption schemes, there are various realizations of 1-to-1, 1-to-n, and n-to-n schemes in the literature. This multitude of encryption methods with a wide variety of properties presents developers with the challenge of selecting the optimal method for a particular use case, which is further complicated by the fact that there is no overview of existing encryption schemes. To fill this gap, we envision a cryptography encyclopedia providing such an overview of existing encryption schemes. In this survey paper, we take a first step towards such an encyclopedia by creating a sub-encyclopedia for secure group communication (SGC) schemes, which belong to the n-to-n category. We extensively surveyed the state-of-the-art and classified 47 different schemes. More precisely, we provide (i) a comprehensive overview of the relevant security features, (ii) a set of relevant performance metrics, (iii) a classification for secure group communication schemes, and (iv) workflow descriptions of the 47 schemes. Moreover, we perform a detailed performance and security evaluation of the 47 secure group communication schemes. Based on this evaluation, we create a guideline for the selection of secure group communication schemes.}, language = {en} } @article{OberdoerferHeidrichBirnstieletal.2021, author = {Oberd{\"o}rfer, Sebastian and Heidrich, David and Birnstiel, Sandra and Latoschik, Marc Erich}, title = {Enchanted by Your Surrounding? Measuring the Effects of Immersion and Design of Virtual Environments on Decision-Making}, series = {Frontiers in Virtual Reality}, volume = {2}, journal = {Frontiers in Virtual Reality}, doi = {10.3389/frvir.2021.679277}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260101}, pages = {679277}, year = {2021}, abstract = {Impaired decision-making leads to the inability to distinguish between advantageous and disadvantageous choices. The impairment of a person's decision-making is a common goal of gambling games. Given the recent trend of gambling using immersive Virtual Reality it is crucial to investigate the effects of both immersion and the virtual environment (VE) on decision-making. In a novel user study, we measured decision-making using three virtual versions of the Iowa Gambling Task (IGT). The versions differed with regard to the degree of immersion and design of the virtual environment. While emotions affect decision-making, we further measured the positive and negative affect of participants. A higher visual angle on a stimulus leads to an increased emotional response. Thus, we kept the visual angle on the Iowa Gambling Task the same between our conditions. Our results revealed no significant impact of immersion or the VE on the IGT. We further found no significant difference between the conditions with regard to positive and negative affect. This suggests that neither the medium used nor the design of the VE causes an impairment of decision-making. However, in combination with a recent study, we provide first evidence that a higher visual angle on the IGT leads to an effect of impairment.}, language = {en} } @techreport{SavvidisRothTutsch2022, type = {Working Paper}, author = {Savvidis, Dimitrios and Roth, Robert and Tutsch, Dietmar}, title = {Static Evaluation of a Wheel-Topology for an SDN-based Network Usecase}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28071}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280715}, pages = {3}, year = {2022}, abstract = {The increased occurrence of Software-Defined-Networking (SDN) not only improves the dynamics and maintenance of network architectures, but also opens up new use cases and application possibilities. Based on these observations, we propose a new network topology consisting of a star and a ring topology. This hybrid topology will be called wheel topology in this paper. We have considered the static characteristics of the wheel topology and compare them with known other topologies.}, subject = {Datennetz}, language = {en} } @article{LohWamserPoigneeetal.2022, author = {Loh, Frank and Wamser, Florian and Poign{\´e}e, Fabian and Geißler, Stefan and Hoßfeld, Tobias}, title = {YouTube Dataset on Mobile Streaming for Internet Traffic Modeling and Streaming Analysis}, series = {Scientific Data}, volume = {9}, journal = {Scientific Data}, number = {1}, doi = {10.1038/s41597-022-01418-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300240}, year = {2022}, abstract = {Around 4.9 billion Internet users worldwide watch billions of hours of online video every day. As a result, streaming is by far the predominant type of traffic in communication networks. According to Google statistics, three out of five video views come from mobile devices. Thus, in view of the continuous technological advances in end devices and increasing mobile use, datasets for mobile streaming are indispensable in research but only sparsely dealt with in literature so far. With this public dataset, we provide 1,081 hours of time-synchronous video measurements at network, transport, and application layer with the native YouTube streaming client on mobile devices. The dataset includes 80 network scenarios with 171 different individual bandwidth settings measured in 5,181 runs with limited bandwidth, 1,939 runs with emulated 3 G/4 G traces, and 4,022 runs with pre-defined bandwidth changes. This corresponds to 332 GB video payload. We present the most relevant quality indicators for scientific use, i.e., initial playback delay, streaming video quality, adaptive video quality changes, video rebuffering events, and streaming phases.}, language = {en} } @inproceedings{AbendscheinDesaiAstell2023, author = {Abendschein, Robin and Desai, Shital and Astell, Arlene J.}, title = {Towards Accessibility Guidelines for the Metaverse : A Synthesis of Recommendations for People Living With Dementia}, series = {Conference on Human Factors in Computing Systems (CHI'23) : Workshop "Towards an Inclusive and Accessible Metaverse"}, booktitle = {Conference on Human Factors in Computing Systems (CHI'23) : Workshop "Towards an Inclusive and Accessible Metaverse"}, doi = {10.25972/OPUS-32019}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-320199}, pages = {6}, year = {2023}, abstract = {Given the growing interest of corporate stakeholders in Metaverse applications, there is a need to understand accessibility of these technologies for marginalized populations such as people living with dementia to ensure inclusive design of Metaverse applications. We assessed the accessibility of extended reality technology for people living with mild cognitive impairment and dementia to develop accessibility guidelines for these technologies. We used four strategies to synthesize evidence for barriers and facilitators of accessibility: (1) Findings from a non-systematic literature review, (2) guidelines from well-researched technology, (3) exploration of selected mixed reality technologies, and (4) observations from four sessions and video data of people living with dementia using mixed reality technologies. We utilized template analysis to develop codes and themes towards accessibility guidelines. Future work can validate our preliminary findings by applying them on video recordings or testing them in experiments.}, subject = {CHI Conference}, language = {en} } @article{BrevesDodel2021, author = {Breves, Priska and Dodel, Nicola}, title = {The influence of cybersickness and the media devices' mobility on the persuasive effects of 360° commercials}, series = {Multimedia Tools and Applications}, volume = {80}, journal = {Multimedia Tools and Applications}, number = {18}, issn = {1573-7721}, doi = {10.1007/s11042-021-11057-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-269194}, pages = {27299-27322}, year = {2021}, abstract = {With the rise of immersive media, advertisers have started to use 360° commercials to engage and persuade consumers. Two experiments were conducted to address research gaps and to validate the positive impact of 360° commercials in realistic settings. The first study (N = 62) compared the effects of 360° commercials using either a mobile cardboard head-mounted display (HMD) or a laptop. This experiment was conducted in the participants' living rooms and incorporated individual feelings of cybersickness as a moderator. The participants who experienced the 360° commercial with the HMD reported higher spatial presence and product evaluation, but their purchase intentions were only increased when their reported cybersickness was low. The second experiment (N = 197) was conducted online and analyzed the impact of 360° commercials that were experienced with mobile (smartphone/tablet) or static (laptop/desktop) devices instead of HMDs. The positive effects of omnidirectional videos were stronger when participants used mobile devices.}, language = {en} } @article{SteiningerKobsDavidsonetal.2021, author = {Steininger, Michael and Kobs, Konstantin and Davidson, Padraig and Krause, Anna and Hotho, Andreas}, title = {Density-based weighting for imbalanced regression}, series = {Machine Learning}, volume = {110}, journal = {Machine Learning}, number = {8}, issn = {1573-0565}, doi = {10.1007/s10994-021-06023-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-269177}, pages = {2187-2211}, year = {2021}, abstract = {In many real world settings, imbalanced data impedes model performance of learning algorithms, like neural networks, mostly for rare cases. This is especially problematic for tasks focusing on these rare occurrences. For example, when estimating precipitation, extreme rainfall events are scarce but important considering their potential consequences. While there are numerous well studied solutions for classification settings, most of them cannot be applied to regression easily. Of the few solutions for regression tasks, barely any have explored cost-sensitive learning which is known to have advantages compared to sampling-based methods in classification tasks. In this work, we propose a sample weighting approach for imbalanced regression datasets called DenseWeight and a cost-sensitive learning approach for neural network regression with imbalanced data called DenseLoss based on our weighting scheme. DenseWeight weights data points according to their target value rarities through kernel density estimation (KDE). DenseLoss adjusts each data point's influence on the loss according to DenseWeight, giving rare data points more influence on model training compared to common data points. We show on multiple differently distributed datasets that DenseLoss significantly improves model performance for rare data points through its density-based weighting scheme. Additionally, we compare DenseLoss to the state-of-the-art method SMOGN, finding that our method mostly yields better performance. Our approach provides more control over model training as it enables us to actively decide on the trade-off between focusing on common or rare cases through a single hyperparameter, allowing the training of better models for rare data points.}, language = {en} } @article{CaliskanCrouchGiddinsetal.2022, author = {Caliskan, Aylin and Crouch, Samantha A. W. and Giddins, Sara and Dandekar, Thomas and Dangwal, Seema}, title = {Progeria and aging — Omics based comparative analysis}, series = {Biomedicines}, volume = {10}, journal = {Biomedicines}, number = {10}, issn = {2227-9059}, doi = {10.3390/biomedicines10102440}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-289868}, year = {2022}, abstract = {Since ancient times aging has also been regarded as a disease, and humankind has always strived to extend the natural lifespan. Analyzing the genes involved in aging and disease allows for finding important indicators and biological markers for pathologies and possible therapeutic targets. An example of the use of omics technologies is the research regarding aging and the rare and fatal premature aging syndrome progeria (Hutchinson-Gilford progeria syndrome, HGPS). In our study, we focused on the in silico analysis of differentially expressed genes (DEGs) in progeria and aging, using a publicly available RNA-Seq dataset (GEO dataset GSE113957) and a variety of bioinformatics tools. Despite the GSE113957 RNA-Seq dataset being well-known and frequently analyzed, the RNA-Seq data shared by Fleischer et al. is far from exhausted and reusing and repurposing the data still reveals new insights. By analyzing the literature citing the use of the dataset and subsequently conducting a comparative analysis comparing the RNA-Seq data analyses of different subsets of the dataset (healthy children, nonagenarians and progeria patients), we identified several genes involved in both natural aging and progeria (KRT8, KRT18, ACKR4, CCL2, UCP2, ADAMTS15, ACTN4P1, WNT16, IGFBP2). Further analyzing these genes and the pathways involved indicated their possible roles in aging, suggesting the need for further in vitro and in vivo research. In this paper, we (1) compare "normal aging" (nonagenarians vs. healthy children) and progeria (HGPS patients vs. healthy children), (2) enlist genes possibly involved in both the natural aging process and progeria, including the first mention of IGFBP2 in progeria, (3) predict miRNAs and interactomes for WNT16 (hsa-mir-181a-5p), UCP2 (hsa-mir-26a-5p and hsa-mir-124-3p), and IGFBP2 (hsa-mir-124-3p, hsa-mir-126-3p, and hsa-mir-27b-3p), (4) demonstrate the compatibility of well-established R packages for RNA-Seq analysis for researchers interested but not yet familiar with this kind of analysis, and (5) present comparative proteomics analyses to show an association between our RNA-Seq data analyses and corresponding changes in protein expression.}, language = {en} } @article{LatoschikWienrich2022, author = {Latoschik, Marc Erich and Wienrich, Carolin}, title = {Congruence and plausibility, not presence: pivotal conditions for XR experiences and effects, a novel approach}, series = {Frontiers in Virtual Reality}, volume = {3}, journal = {Frontiers in Virtual Reality}, issn = {2673-4192}, doi = {10.3389/frvir.2022.694433}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284787}, year = {2022}, abstract = {Presence is often considered the most important quale describing the subjective feeling of being in a computer-generated and/or computer-mediated virtual environment. The identification and separation of orthogonal presence components, i.e., the place illusion and the plausibility illusion, has been an accepted theoretical model describing Virtual Reality (VR) experiences for some time. This perspective article challenges this presence-oriented VR theory. First, we argue that a place illusion cannot be the major construct to describe the much wider scope of virtual, augmented, and mixed reality (VR, AR, MR: or XR for short). Second, we argue that there is no plausibility illusion but merely plausibility, and we derive the place illusion caused by the congruent and plausible generation of spatial cues and similarly for all the current model's so-defined illusions. Finally, we propose congruence and plausibility to become the central essential conditions in a novel theoretical model describing XR experiences and effects.}, language = {en} } @article{LandeckAlvarezIgarzabalUnruhetal.2022, author = {Landeck, Maximilian and Alvarez Igarz{\´a}bal, Federico and Unruh, Fabian and Habenicht, Hannah and Khoshnoud, Shiva and Wittmann, Marc and Lugrin, Jean-Luc and Latoschik, Marc Erich}, title = {Journey through a virtual tunnel: Simulated motion and its effects on the experience of time}, series = {Frontiers in Virtual Reality}, volume = {3}, journal = {Frontiers in Virtual Reality}, issn = {2673-4192}, doi = {10.3389/frvir.2022.1059971}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301519}, year = {2022}, abstract = {This paper examines the relationship between time and motion perception in virtual environments. Previous work has shown that the perception of motion can affect the perception of time. We developed a virtual environment that simulates motion in a tunnel and measured its effects on the estimation of the duration of time, the speed at which perceived time passes, and the illusion of self-motion, also known as vection. When large areas of the visual field move in the same direction, vection can occur; observers often perceive this as self-motion rather than motion of the environment. To generate different levels of vection and investigate its effects on time perception, we developed an abstract procedural tunnel generator. The generator can simulate different speeds and densities of tunnel sections (visibly distinguishable sections that form the virtual tunnel), as well as the degree of embodiment of the user avatar (with or without virtual hands). We exposed participants to various tunnel simulations with different durations, speeds, and densities in a remote desktop and a virtual reality (VR) laboratory study. Time passed subjectively faster under high-speed and high-density conditions in both studies. The experience of self-motion was also stronger under high-speed and high-density conditions. Both studies revealed a significant correlation between the perceived passage of time and perceived self-motion. Subjects in the virtual reality study reported a stronger self-motion experience, a faster perceived passage of time, and shorter time estimates than subjects in the desktop study. Our results suggest that a virtual tunnel simulation can manipulate time perception in virtual reality. We will explore these results for the development of virtual reality applications for therapeutic approaches in our future work. This could be particularly useful in treating disorders like depression, autism, and schizophrenia, which are known to be associated with distortions in time perception. For example, the tunnel could be therapeutically applied by resetting patients' time perceptions by exposing them to the tunnel under different conditions, such as increasing or decreasing perceived time.}, language = {en} } @article{HolfelderMulanskySchleeetal.2021, author = {Holfelder, Marc and Mulansky, Lena and Schlee, Winfried and Baumeister, Harald and Schobel, Johannes and Greger, Helmut and Hoff, Andreas and Pryss, R{\"u}diger}, title = {Medical device regulation efforts for mHealth apps during the COVID-19 pandemic — an experience report of Corona Check and Corona Health}, series = {J — Multidisciplinary Scientific Journal}, volume = {4}, journal = {J — Multidisciplinary Scientific Journal}, number = {2}, issn = {2571-8800}, doi = {10.3390/j4020017}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285434}, pages = {206 -- 222}, year = {2021}, abstract = {Within the healthcare environment, mobile health (mHealth) applications (apps) are becoming more and more important. The number of new mHealth apps has risen steadily in the last years. Especially the COVID-19 pandemic has led to an enormous amount of app releases. In most countries, mHealth applications have to be compliant with several regulatory aspects to be declared a "medical app". However, the latest applicable medical device regulation (MDR) does not provide more details on the requirements for mHealth applications. When developing a medical app, it is essential that all contributors in an interdisciplinary team — especially software engineers — are aware of the specific regulatory requirements beforehand. The development process, however, should not be stalled due to integration of the MDR. Therefore, a developing framework that includes these aspects is required to facilitate a reliable and quick development process. The paper at hand introduces the creation of such a framework on the basis of the Corona Health and Corona Check apps. The relevant regulatory guidelines are listed and summarized as a guidance for medical app developments during the pandemic and beyond. In particular, the important stages and challenges faced that emerged during the entire development process are highlighted.}, language = {en} } @article{ObremskiFriedrichHaaketal.2022, author = {Obremski, David and Friedrich, Paula and Haak, Nora and Schaper, Philipp and Lugrin, Birgit}, title = {The impact of mixed-cultural speech on the stereotypical perception of a virtual robot}, series = {Frontiers in Robotics and AI}, volume = {9}, journal = {Frontiers in Robotics and AI}, issn = {2296-9144}, doi = {10.3389/frobt.2022.983955}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293531}, year = {2022}, abstract = {Despite the fact that mixed-cultural backgrounds become of increasing importance in our daily life, the representation of multiple cultural backgrounds in one entity is still rare in socially interactive agents (SIAs). This paper's contribution is twofold. First, it provides a survey of research on mixed-cultured SIAs. Second, it presents a study investigating how mixed-cultural speech (in this case, non-native accent) influences how a virtual robot is perceived in terms of personality, warmth, competence and credibility. Participants with English or German respectively as their first language watched a video of a virtual robot speaking in either standard English or German-accented English. It was expected that the German-accented speech would be rated more positively by native German participants as well as elicit the German stereotypes credibility and conscientiousness for both German and English participants. Contrary to the expectations, German participants rated the virtual robot lower in terms of competence and credibility when it spoke with a German accent, whereas English participants perceived the virtual robot with a German accent as more credible compared to the version without an accent. Both the native English and native German listeners classified the virtual robot with a German accent as significantly more neurotic than the virtual robot speaking standard English. This work shows that by solely implementing a non-native accent in a virtual robot, stereotypes are partly transferred. It also shows that the implementation of a non-native accent leads to differences in the perception of the virtual robot.}, language = {en} } @article{TsouliasJoerissenNuechter2022, author = {Tsoulias, Nikos and J{\"o}rissen, Sven and N{\"u}chter, Andreas}, title = {An approach for monitoring temperature on fruit surface by means of thermal point cloud}, series = {MethodsX}, volume = {9}, journal = {MethodsX}, issn = {2215-0161}, doi = {10.1016/j.mex.2022.101712}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300270}, year = {2022}, abstract = {Heat and excessive solar radiation can produce abiotic stresses during apple maturation, resulting fruit quality. Therefore, the monitoring of temperature on fruit surface (FST) over the growing period can allow to identify thresholds, above of which several physiological disorders such as sunburn may occur in apple. The current approaches neglect spatial variation of FST and have reduced repeatability, resulting in unreliable predictions. In this study, LiDAR laser scanning and thermal imaging were employed to detect the temperature on fruit surface by means of 3D point cloud. A process for calibrating the two sensors based on an active board target and producing a 3D thermal point cloud was suggested. After calibration, the sensor system was utilised to scan the fruit trees, while temperature values assigned in the corresponding 3D point cloud were based on the extrinsic calibration. Whereas a fruit detection algorithm was performed to segment the FST from each apple. • The approach allows the calibration of LiDAR laser scanner with thermal camera in order to produce a 3D thermal point cloud. • The method can be applied in apple trees for segmenting FST in 3D. Whereas the approach can be utilised to predict several physiological disorders including sunburn on fruit surface.}, language = {en} } @article{SeufertPoigneeHossfeldetal.2022, author = {Seufert, Anika and Poign{\´e}e, Fabian and Hoßfeld, Tobias and Seufert, Michael}, title = {Pandemic in the digital age: analyzing WhatsApp communication behavior before, during, and after the COVID-19 lockdown}, series = {Humanities and Social Sciences Communications}, volume = {9}, journal = {Humanities and Social Sciences Communications}, doi = {10.1057/s41599-022-01161-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300261}, year = {2022}, abstract = {The strict restrictions introduced by the COVID-19 lockdowns, which started from March 2020, changed people's daily lives and habits on many different levels. In this work, we investigate the impact of the lockdown on the communication behavior in the mobile instant messaging application WhatsApp. Our evaluations are based on a large dataset of 2577 private chat histories with 25,378,093 messages from 51,973 users. The analysis of the one-to-one and group conversations confirms that the lockdown severely altered the communication in WhatsApp chats compared to pre-pandemic time ranges. In particular, we observe short-term effects, which caused an increased message frequency in the first lockdown months and a shifted communication activity during the day in March and April 2020. Moreover, we also see long-term effects of the ongoing pandemic situation until February 2021, which indicate a change of communication behavior towards more regular messaging, as well as a persisting change in activity during the day. The results of our work show that even anonymized chat histories can tell us a lot about people's behavior and especially behavioral changes during the COVID-19 pandemic and thus are of great relevance for behavioral researchers. Furthermore, looking at the pandemic from an Internet provider perspective, these insights can be used during the next pandemic, or if the current COVID-19 situation worsens, to adapt communication networks to the changed usage behavior early on and thus avoid network congestion.}, language = {en} } @article{HentschelKobsHotho2022, author = {Hentschel, Simon and Kobs, Konstantin and Hotho, Andreas}, title = {CLIP knows image aesthetics}, series = {Frontiers in Artificial Intelligence}, volume = {5}, journal = {Frontiers in Artificial Intelligence}, issn = {2624-8212}, doi = {10.3389/frai.2022.976235}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297150}, year = {2022}, abstract = {Most Image Aesthetic Assessment (IAA) methods use a pretrained ImageNet classification model as a base to fine-tune. We hypothesize that content classification is not an optimal pretraining task for IAA, since the task discourages the extraction of features that are useful for IAA, e.g., composition, lighting, or style. On the other hand, we argue that the Contrastive Language-Image Pretraining (CLIP) model is a better base for IAA models, since it has been trained using natural language supervision. Due to the rich nature of language, CLIP needs to learn a broad range of image features that correlate with sentences describing the image content, composition, environments, and even subjective feelings about the image. While it has been shown that CLIP extracts features useful for content classification tasks, its suitability for tasks that require the extraction of style-based features like IAA has not yet been shown. We test our hypothesis by conducting a three-step study, investigating the usefulness of features extracted by CLIP compared to features obtained from the last layer of a comparable ImageNet classification model. In each step, we get more computationally expensive. First, we engineer natural language prompts that let CLIP assess an image's aesthetic without adjusting any weights in the model. To overcome the challenge that CLIP's prompting only is applicable to classification tasks, we propose a simple but effective strategy to convert multiple prompts to a continuous scalar as required when predicting an image's mean aesthetic score. Second, we train a linear regression on the AVA dataset using image features obtained by CLIP's image encoder. The resulting model outperforms a linear regression trained on features from an ImageNet classification model. It also shows competitive performance with fully fine-tuned networks based on ImageNet, while only training a single layer. Finally, by fine-tuning CLIP's image encoder on the AVA dataset, we show that CLIP only needs a fraction of training epochs to converge, while also performing better than a fine-tuned ImageNet model. Overall, our experiments suggest that CLIP is better suited as a base model for IAA methods than ImageNet pretrained networks.}, language = {en} } @article{GuptaMinochaThapaetal.2022, author = {Gupta, Shishir K. and Minocha, Rashmi and Thapa, Prithivi Jung and Srivastava, Mugdha and Dandekar, Thomas}, title = {Role of the pangolin in origin of SARS-CoV-2: an evolutionary perspective}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {16}, issn = {1422-0067}, doi = {10.3390/ijms23169115}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285995}, year = {2022}, abstract = {After the recent emergence of SARS-CoV-2 infection, unanswered questions remain related to its evolutionary history, path of transmission or divergence and role of recombination. There is emerging evidence on amino acid substitutions occurring in key residues of the receptor-binding domain of the spike glycoprotein in coronavirus isolates from bat and pangolins. In this article, we summarize our current knowledge on the origin of SARS-CoV-2. We also analyze the host ACE2-interacting residues of the receptor-binding domain of spike glycoprotein in SARS-CoV-2 isolates from bats, and compare it to pangolin SARS-CoV-2 isolates collected from Guangdong province (GD Pangolin-CoV) and Guangxi autonomous regions (GX Pangolin-CoV) of South China. Based on our comparative analysis, we support the view that the Guangdong Pangolins are the intermediate hosts that adapted the SARS-CoV-2 and represented a significant evolutionary link in the path of transmission of SARS-CoV-2 virus. We also discuss the role of intermediate hosts in the origin of Omicron.}, language = {en} } @phdthesis{Bleier2023, author = {Bleier, Michael}, title = {Underwater Laser Scanning - Refractive Calibration, Self-calibration and Mapping for 3D Reconstruction}, isbn = {978-3-945459-45-4}, doi = {10.25972/OPUS-32269}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322693}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {There is great interest in affordable, precise and reliable metrology underwater: Archaeologists want to document artifacts in situ with high detail. In marine research, biologists require the tools to monitor coral growth and geologists need recordings to model sediment transport. Furthermore, for offshore construction projects, maintenance and inspection millimeter-accurate measurements of defects and offshore structures are essential. While the process of digitizing individual objects and complete sites on land is well understood and standard methods, such as Structure from Motion or terrestrial laser scanning, are regularly applied, precise underwater surveying with high resolution is still a complex and difficult task. Applying optical scanning techniques in water is challenging due to reduced visibility caused by turbidity and light absorption. However, optical underwater scanners provide significant advantages in terms of achievable resolution and accuracy compared to acoustic systems. This thesis proposes an underwater laser scanning system and the algorithms for creating dense and accurate 3D scans in water. It is based on laser triangulation and the main optical components are an underwater camera and a cross-line laser projector. The prototype is configured with a motorized yaw axis for capturing scans from a tripod. Alternatively, it is mounted to a moving platform for mobile mapping. The main focus lies on the refractive calibration of the underwater camera and laser projector, the image processing and 3D reconstruction. For highest accuracy, the refraction at the individual media interfaces must be taken into account. This is addressed by an optimization-based calibration framework using a physical-geometric camera model derived from an analytical formulation of a ray-tracing projection model. In addition to scanning underwater structures, this work presents the 3D acquisition of semi-submerged structures and the correction of refraction effects. As in-situ calibration in water is complex and time-consuming, the challenge of transferring an in-air scanner calibration to water without re-calibration is investigated, as well as self-calibration techniques for structured light. The system was successfully deployed in various configurations for both static scanning and mobile mapping. An evaluation of the calibration and 3D reconstruction using reference objects and a comparison of free-form surfaces in clear water demonstrate the high accuracy potential in the range of one millimeter to less than one centimeter, depending on the measurement distance. Mobile underwater mapping and motion compensation based on visual-inertial odometry is demonstrated using a new optical underwater scanner based on fringe projection. Continuous registration of individual scans allows the acquisition of 3D models from an underwater vehicle. RGB images captured in parallel are used to create 3D point clouds of underwater scenes in full color. 3D maps are useful to the operator during the remote control of underwater vehicles and provide the building blocks to enable offshore inspection and surveying tasks. The advancing automation of the measurement technology will allow non-experts to use it, significantly reduce acquisition time and increase accuracy, making underwater metrology more cost-effective.}, subject = {Selbstkalibrierung}, language = {en} } @techreport{GrossmannLe2023, type = {Working Paper}, author = {Großmann, Marcel and Le, Duy Thanh}, title = {Visualization of Network Emulation Enabled by Kathar{\´a}}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32218}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322189}, pages = {4}, year = {2023}, abstract = {In network research, reproducibility of experiments is not always easy to achieve. Infrastructures are cumbersome to set up or are not available due to vendor-specific devices. Emulators try to overcome those issues to a given extent and are available in different service models. Unfortunately, the usability of emulators requires time-consuming efforts and a deep understanding of their functionality. At first, we analyze to which extent currently available open-source emulators support network configurations and how user-friendly they are. With these insights, we describe, how an ease-to-use emulator is implemented and may run as a Network Emulator as a Service (NEaaS). Therefore, virtualization plays a major role in order to deploy a NEaaS based on Kathar{\´a}.}, language = {en} } @techreport{DworzakGrossmannLe2023, type = {Working Paper}, author = {Dworzak, Manuel and Großmann, Marcel and Le, Duy Thanh}, title = {Federated Learning for Service Placement in Fog and Edge Computing}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32219}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322193}, pages = {4}, year = {2023}, abstract = {Service orchestration requires enormous attention and is a struggle nowadays. Of course, virtualization provides a base level of abstraction for services to be deployable on a lot of infrastructures. With container virtualization, the trend to migrate applications to a micro-services level in order to be executable in Fog and Edge Computing environments increases manageability and maintenance efforts rapidly. Similarly, network virtualization adds effort to calibrate IP flows for Software-Defined Networks and eventually route it by means of Network Function Virtualization. Nevertheless, there are concepts like MAPE-K to support micro-service distribution in next-generation cloud and network environments. We want to explore, how a service distribution can be improved by adopting machine learning concepts for infrastructure or service changes. Therefore, we show how federated machine learning is integrated into a cloud-to-fog-continuum without burdening single nodes.}, language = {en} } @article{KoopmannStubbemannKapaetal.2021, author = {Koopmann, Tobias and Stubbemann, Maximilian and Kapa, Matthias and Paris, Michael and Buenstorf, Guido and Hanika, Tom and Hotho, Andreas and J{\"a}schke, Robert and Stumme, Gerd}, title = {Proximity dimensions and the emergence of collaboration: a HypTrails study on German AI research}, series = {Scientometrics}, volume = {126}, journal = {Scientometrics}, number = {12}, issn = {1588-2861}, doi = {10.1007/s11192-021-03922-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-269831}, pages = {9847-9868}, year = {2021}, abstract = {Creation and exchange of knowledge depends on collaboration. Recent work has suggested that the emergence of collaboration frequently relies on geographic proximity. However, being co-located tends to be associated with other dimensions of proximity, such as social ties or a shared organizational environment. To account for such factors, multiple dimensions of proximity have been proposed, including cognitive, institutional, organizational, social and geographical proximity. Since they strongly interrelate, disentangling these dimensions and their respective impact on collaboration is challenging. To address this issue, we propose various methods for measuring different dimensions of proximity. We then present an approach to compare and rank them with respect to the extent to which they indicate co-publications and co-inventions. We adapt the HypTrails approach, which was originally developed to explain human navigation, to co-author and co-inventor graphs. We evaluate this approach on a subset of the German research community, specifically academic authors and inventors active in research on artificial intelligence (AI). We find that social proximity and cognitive proximity are more important for the emergence of collaboration than geographic proximity.}, language = {en} } @article{FathyDarwishAbdelhamidetal.2022, author = {Fathy, Moustafa and Darwish, Mostafa A. and Abdelhamid, Al-Shaimaa M. and Alrashedy, Gehad M. and Othman, Othman Ali and Naseem, Muhammad and Dandekar, Thomas and Othman, Eman M.}, title = {Kinetin ameliorates cisplatin-induced hepatotoxicity and lymphotoxicity via attenuating oxidative damage, cell apoptosis and inflammation in rats}, series = {Biomedicines}, volume = {10}, journal = {Biomedicines}, number = {7}, issn = {2227-9059}, doi = {10.3390/biomedicines10071620}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-281686}, year = {2022}, abstract = {Though several previous studies reported the in vitro and in vivo antioxidant effect of kinetin (Kn), details on its action in cisplatin-induced toxicity are still scarce. In this study we evaluated, for the first time, the effects of kinetin in cisplatin (cp)- induced liver and lymphocyte toxicity in rats. Wistar male albino rats were divided into nine groups: (i) the control (C), (ii) groups 2,3 and 4, which received 0.25, 0.5 and 1 mg/kg kinetin for 10 days; (iii) the cisplatin (cp) group, which received a single intraperitoneal injection of CP (7.0 mg/kg); and (iv) groups 6, 7, 8 and 9, which received, for 10 days, 0.25, 0.5 and 1 mg/kg kinetin or 200 mg/kg vitamin C, respectively, and Cp on the fourth day. CP-injected rats showed a significant impairment in biochemical, oxidative stress and inflammatory parameters in hepatic tissue and lymphocytes. PCR showed a profound increase in caspase-3, and a significant decline in AKT gene expression. Intriguingly, Kn treatment restored the biochemical, redox status and inflammatory parameters. Hepatic AKT and caspase-3 expression as well as CD95 levels in lymphocytes were also restored. In conclusion, Kn mitigated oxidative imbalance, inflammation and apoptosis in CP-induced liver and lymphocyte toxicity; therefore, it can be considered as a promising therapy.}, language = {en} } @techreport{MartinoDeutschmannHielscheretal.2023, type = {Working Paper}, author = {Martino, Luigi and Deutschmann, J{\"o}rg and Hielscher, Kai-Steffen and German, Reinhard}, title = {Towards a 5G Satellite Communication Framework for V2X}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32214}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322148}, pages = {5}, year = {2023}, abstract = {In recent years, satellite communication has been expanding its field of application in the world of computer networks. This paper aims to provide an overview of how a typical scenario involving 5G Non-Terrestrial Networks (NTNs) for vehicle to everything (V2X) applications is characterized. In particular, a first implementation of a system that integrates them together will be described. Such a framework will later be used to evaluate the performance of applications such as Vehicle Monitoring (VM), Remote Driving (RD), Voice Over IP (VoIP), and others. Different configuration scenarios such as Low Earth Orbit and Geostationary Orbit will be considered.}, language = {en} } @techreport{RauberBrechtelSchotten2023, type = {Working Paper}, author = {Rauber, Christof A. O. and Brechtel, Lukas and Schotten, Hans D.}, title = {JCAS-Enabled Sensing as a Service in 6th-Generation Mobile Communication Networks}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32213}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322135}, pages = {4}, year = {2023}, abstract = {The introduction of new types of frequency spectrum in 6G technology facilitates the convergence of conventional mobile communications and radar functions. Thus, the mobile network itself becomes a versatile sensor system. This enables mobile network operators to offer a sensing service in addition to conventional data and telephony services. The potential benefits are expected to accrue to various stakeholders, including individuals, the environment, and society in general. The paper discusses technological development, possible integration, and use cases, as well as future development areas.}, language = {en} } @techreport{LohRaffeckGeissleretal.2023, type = {Working Paper}, author = {Loh, Frank and Raffeck, Simon and Geißler, Stefan and Hoßfeld, Tobias}, title = {Paving the Way for an Energy Efficient and Sustainable Future Internet of Things}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32216}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322161}, pages = {4}, year = {2023}, abstract = {In this work, we describe the network from data collection to data processing and storage as a system based on different layers. We outline the different layers and highlight major tasks and dependencies with regard to energy consumption and energy efficiency. With this view, we can outwork challenges and questions a future system architect must answer to provide a more sustainable, green, resource friendly, and energy efficient application or system. Therefore, all system layers must be considered individually but also altogether for future IoT solutions. This requires, in particular, novel sustainability metrics in addition to current Quality of Service and Quality of Experience metrics to provide a high power, user satisfying, and sustainable network.}, language = {en} } @techreport{FundaKonheiserGermanetal.2023, type = {Working Paper}, author = {Funda, Christoph and Konheiser, Tobias and German, Reinhard and Hielscher, Kai-Steffen}, title = {How to Model and Predict the Scalability of a Hardware-In-The-Loop Test Bench for Data Re-Injection?}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32215}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322150}, pages = {4}, year = {2023}, abstract = {This paper describes a novel application of an empirical network calculus model based on measurements of a hardware-in-the-loop (HIL) test system. The aim is to predict the performance of a HIL test bench for open-loop re-injection in the context of scalability. HIL test benches are distributed computer systems including software, hardware, and networking devices. They are used to validate complex technical systems, but have not yet been system under study themselves. Our approach is to use measurements from the HIL system to create an empirical model for arrival and service curves. We predict the performance and design the previously unknown parameters of the HIL simulator with network calculus (NC), namely the buffer sizes and the minimum needed pre-buffer time for the playback buffer. We furthermore show, that it is possible to estimate the CPU load from arrival and service-curves based on the utilization theorem, and hence estimate the scalability of the HIL system in the context of the number of sensor streams.}, language = {en} } @article{SteiningerAbelZiegleretal.2023, author = {Steininger, Michael and Abel, Daniel and Ziegler, Katrin and Krause, Anna and Paeth, Heiko and Hotho, Andreas}, title = {ConvMOS: climate model output statistics with deep learning}, series = {Data Mining and Knowledge Discovery}, volume = {37}, journal = {Data Mining and Knowledge Discovery}, number = {1}, issn = {1384-5810}, doi = {10.1007/s10618-022-00877-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324213}, pages = {136-166}, year = {2023}, abstract = {Climate models are the tool of choice for scientists researching climate change. Like all models they suffer from errors, particularly systematic and location-specific representation errors. One way to reduce these errors is model output statistics (MOS) where the model output is fitted to observational data with machine learning. In this work, we assess the use of convolutional Deep Learning climate MOS approaches and present the ConvMOS architecture which is specifically designed based on the observation that there are systematic and location-specific errors in the precipitation estimates of climate models. We apply ConvMOS models to the simulated precipitation of the regional climate model REMO, showing that a combination of per-location model parameters for reducing location-specific errors and global model parameters for reducing systematic errors is indeed beneficial for MOS performance. We find that ConvMOS models can reduce errors considerably and perform significantly better than three commonly used MOS approaches and plain ResNet and U-Net models in most cases. Our results show that non-linear MOS models underestimate the number of extreme precipitation events, which we alleviate by training models specialized towards extreme precipitation events with the imbalanced regression method DenseLoss. While we consider climate MOS, we argue that aspects of ConvMOS may also be beneficial in other domains with geospatial data, such as air pollution modeling or weather forecasts.}, subject = {Klima}, language = {en} } @article{Puppe2022, author = {Puppe, Frank}, title = {Gesellschaftliche Perspektiven einer fachspezifischen KI f{\"u}r automatisierte Entscheidungen}, series = {Informatik Spektrum}, volume = {45}, journal = {Informatik Spektrum}, number = {2}, issn = {0170-6012}, doi = {10.1007/s00287-022-01443-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324197}, pages = {88-95}, year = {2022}, abstract = {Die k{\"u}nstliche Intelligenz (KI) entwickelt sich rasant und hat bereits eindrucksvolle Erfolge zu verzeichnen, darunter {\"u}bermenschliche Kompetenz in den meisten Spielen und vielen Quizshows, intelligente Suchmaschinen, individualisierte Werbung, Spracherkennung, -ausgabe und -{\"u}bersetzung auf sehr hohem Niveau und hervorragende Leistungen bei der Bildverarbeitung, u. a. in der Medizin, der optischen Zeichenerkennung, beim autonomen Fahren, aber auch beim Erkennen von Menschen auf Bildern und Videos oder bei Deep Fakes f{\"u}r Fotos und Videos. Es ist zu erwarten, dass die KI auch in der Entscheidungsfindung Menschen {\"u}bertreffen wird; ein alter Traum der Expertensysteme, der durch Lernverfahren, Big Data und Zugang zu dem gesammelten Wissen im Web in greifbare N{\"a}he r{\"u}ckt. Gegenstand dieses Beitrags sind aber weniger die technischen Entwicklungen, sondern m{\"o}gliche gesellschaftliche Auswirkungen einer spezialisierten, kompetenten KI f{\"u}r verschiedene Bereiche der autonomen, d. h. nicht nur unterst{\"u}tzenden Entscheidungsfindung: als Fußballschiedsrichter, in der Medizin, f{\"u}r richterliche Entscheidungen und sehr spekulativ auch im politischen Bereich. Dabei werden Vor- und Nachteile dieser Szenarien aus gesellschaftlicher Sicht diskutiert.}, subject = {K{\"u}nstliche Intelligenz}, language = {de} } @article{RiedmannSchaperLugrin2022, author = {Riedmann, Anna and Schaper, Philipp and Lugrin, Birgit}, title = {Integration of a social robot and gamification in adult learning and effects on motivation, engagement and performance}, series = {AI \& Society}, journal = {AI \& Society}, issn = {0951-5666}, doi = {10.1007/s00146-022-01514-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324208}, year = {2022}, abstract = {Learning is a central component of human life and essential for personal development. Therefore, utilizing new technologies in the learning context and exploring their combined potential are considered essential to support self-directed learning in a digital age. A learning environment can be expanded by various technical and content-related aspects. Gamification in the form of elements from video games offers a potential concept to support the learning process. This can be supplemented by technology-supported learning. While the use of tablets is already widespread in the learning context, the integration of a social robot can provide new perspectives on the learning process. However, simply adding new technologies such as social robots or gamification to existing systems may not automatically result in a better learning environment. In the present study, game elements as well as a social robot were integrated separately and conjointly into a learning environment for basic Spanish skills, with a follow-up on retained knowledge. This allowed us to investigate the respective and combined effects of both expansions on motivation, engagement and learning effect. This approach should provide insights into the integration of both additions in an adult learning context. We found that the additions of game elements and the robot did not significantly improve learning, engagement or motivation. Based on these results and a literature review, we outline relevant factors for meaningful integration of gamification and social robots in learning environments in adult learning.}, language = {en} } @article{KempfKrugPuppe2023, author = {Kempf, Sebastian and Krug, Markus and Puppe, Frank}, title = {KIETA: Key-insight extraction from scientific tables}, series = {Applied Intelligence}, volume = {53}, journal = {Applied Intelligence}, number = {8}, issn = {0924-669X}, doi = {10.1007/s10489-022-03957-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324180}, pages = {9513-9530}, year = {2023}, abstract = {An important but very time consuming part of the research process is literature review. An already large and nevertheless growing ground set of publications as well as a steadily increasing publication rate continue to worsen the situation. Consequently, automating this task as far as possible is desirable. Experimental results of systems are key-insights of high importance during literature review and usually represented in form of tables. Our pipeline KIETA exploits these tables to contribute to the endeavor of automation by extracting them and their contained knowledge from scientific publications. The pipeline is split into multiple steps to guarantee modularity as well as analyzability, and agnosticim regarding the specific scientific domain up until the knowledge extraction step, which is based upon an ontology. Additionally, a dataset of corresponding articles has been manually annotated with information regarding table and knowledge extraction. Experiments show promising results that signal the possibility of an automated system, while also indicating limits of extracting knowledge from tables without any context.}, language = {en} } @article{MaiwaldBruschkeSchneideretal.2023, author = {Maiwald, Ferdinand and Bruschke, Jonas and Schneider, Danilo and Wacker, Markus and Niebling, Florian}, title = {Giving historical photographs a new perspective: introducing camera orientation parameters as new metadata in a large-scale 4D application}, series = {Remote Sensing}, volume = {15}, journal = {Remote Sensing}, number = {7}, issn = {2072-4292}, doi = {10.3390/rs15071879}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311103}, year = {2023}, abstract = {The ongoing digitization of historical photographs in archives allows investigating the quality, quantity, and distribution of these images. However, the exact interior and exterior camera orientations of these photographs are usually lost during the digitization process. The proposed method uses content-based image retrieval (CBIR) to filter exterior images of single buildings in combination with metadata information. The retrieved photographs are automatically processed in an adapted structure-from-motion (SfM) pipeline to determine the camera parameters. In an interactive georeferencing process, the calculated camera positions are transferred into a global coordinate system. As all image and camera data are efficiently stored in the proposed 4D database, they can be conveniently accessed afterward to georeference newly digitized images by using photogrammetric triangulation and spatial resection. The results show that the CBIR and the subsequent SfM are robust methods for various kinds of buildings and different quantity of data. The absolute accuracy of the camera positions after georeferencing lies in the range of a few meters likely introduced by the inaccurate LOD2 models used for transformation. The proposed photogrammetric method, the database structure, and the 4D visualization interface enable adding historical urban photographs and 3D models from other locations.}, language = {en} } @article{FischerHarteltPuppe2023, author = {Fischer, Norbert and Hartelt, Alexander and Puppe, Frank}, title = {Line-level layout recognition of historical documents with background knowledge}, series = {Algorithms}, volume = {16}, journal = {Algorithms}, number = {3}, issn = {1999-4893}, doi = {10.3390/a16030136}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-310938}, year = {2023}, abstract = {Digitization and transcription of historic documents offer new research opportunities for humanists and are the topics of many edition projects. However, manual work is still required for the main phases of layout recognition and the subsequent optical character recognition (OCR) of early printed documents. This paper describes and evaluates how deep learning approaches recognize text lines and can be extended to layout recognition using background knowledge. The evaluation was performed on five corpora of early prints from the 15th and 16th Centuries, representing a variety of layout features. While the main text with standard layouts could be recognized in the correct reading order with a precision and recall of up to 99.9\%, also complex layouts were recognized at a rate as high as 90\% by using background knowledge, the full potential of which was revealed if many pages of the same source were transcribed.}, language = {en} } @article{KirikkayisGallikWinteretal.2023, author = {Kirikkayis, Yusuf and Gallik, Florian and Winter, Michael and Reichert, Manfred}, title = {BPMNE4IoT: a framework for modeling, executing and monitoring IoT-driven processes}, series = {Future Internet}, volume = {15}, journal = {Future Internet}, number = {3}, issn = {1999-5903}, doi = {10.3390/fi15030090}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304097}, year = {2023}, abstract = {The Internet of Things (IoT) enables a variety of smart applications, including smart home, smart manufacturing, and smart city. By enhancing Business Process Management Systems with IoT capabilities, the execution and monitoring of business processes can be significantly improved. Providing a holistic support for modeling, executing and monitoring IoT-driven processes, however, constitutes a challenge. Existing process modeling and process execution languages, such as BPMN 2.0, are unable to fully meet the IoT characteristics (e.g., asynchronicity and parallelism) of IoT-driven processes. In this article, we present BPMNE4IoT—A holistic framework for modeling, executing and monitoring IoT-driven processes. We introduce various artifacts and events based on the BPMN 2.0 metamodel that allow realizing the desired IoT awareness of business processes. The framework is evaluated along two real-world scenarios from two different domains. Moreover, we present a user study for comparing BPMNE4IoT and BPMN 2.0. In particular, this study has confirmed that the BPMNE4IoT framework facilitates the support of IoT-driven processes.}, language = {en} } @article{WienrichCarolusMarkusetal.2023, author = {Wienrich, Carolin and Carolus, Astrid and Markus, Andr{\´e} and Augustin, Yannik and Pfister, Jan and Hotho, Andreas}, title = {Long-term effects of perceived friendship with intelligent voice assistants on usage behavior, user experience, and social perceptions}, series = {Computers}, volume = {12}, journal = {Computers}, number = {4}, issn = {2073-431X}, doi = {10.3390/computers12040077}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313552}, year = {2023}, abstract = {Social patterns and roles can develop when users talk to intelligent voice assistants (IVAs) daily. The current study investigates whether users assign different roles to devices and how this affects their usage behavior, user experience, and social perceptions. Since social roles take time to establish, we equipped 106 participants with Alexa or Google assistants and some smart home devices and observed their interactions for nine months. We analyzed diverse subjective (questionnaire) and objective data (interaction data). By combining social science and data science analyses, we identified two distinct clusters—users who assigned a friendship role to IVAs over time and users who did not. Interestingly, these clusters exhibited significant differences in their usage behavior, user experience, and social perceptions of the devices. For example, participants who assigned a role to IVAs attributed more friendship to them used them more frequently, reported more enjoyment during interactions, and perceived more empathy for IVAs. In addition, these users had distinct personal requirements, for example, they reported more loneliness. This study provides valuable insights into the role-specific effects and consequences of voice assistants. Recent developments in conversational language models such as ChatGPT suggest that the findings of this study could make an important contribution to the design of dialogic human-AI interactions.}, language = {en} } @article{GreubelAndresHennecke2023, author = {Greubel, Andr{\´e} and Andres, Daniela and Hennecke, Martin}, title = {Analyzing reporting on ransomware incidents: a case study}, series = {Social Sciences}, volume = {12}, journal = {Social Sciences}, number = {5}, issn = {2076-0760}, doi = {10.3390/socsci12050265}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313746}, year = {2023}, abstract = {Knowledge about ransomware is important for protecting sensitive data and for participating in public debates about suitable regulation regarding its security. However, as of now, this topic has received little to no attention in most school curricula. As such, it is desirable to analyze what citizens can learn about this topic outside of formal education, e.g., from news articles. This analysis is both relevant to analyzing the public discourse about ransomware, as well as to identify what aspects of this topic should be included in the limited time available for this topic in formal education. Thus, this paper was motivated both by educational and media research. The central goal is to explore how the media reports on this topic and, additionally, to identify potential misconceptions that could stem from this reporting. To do so, we conducted an exploratory case study into the reporting of 109 media articles regarding a high-impact ransomware event: the shutdown of the Colonial Pipeline (located in the east of the USA). We analyzed how the articles introduced central terminology, what details were provided, what details were not, and what (mis-)conceptions readers might receive from them. Our results show that an introduction of the terminology and technical concepts of security is insufficient for a complete understanding of the incident. Most importantly, the articles may lead to four misconceptions about ransomware that are likely to lead to misleading conclusions about the responsibility for the incident and possible political and technical options to prevent such attacks in the future.}, language = {en} } @article{HossfeldHeegaardKellerer2023, author = {Hossfeld, Tobias and Heegaard, Poul E. and Kellerer, Wolfgang}, title = {Comparing the scalability of communication networks and systems}, series = {IEEE Access}, volume = {11}, journal = {IEEE Access}, doi = {10.1109/ACCESS.2023.3314201}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349403}, pages = {101474-101497}, year = {2023}, abstract = {Scalability is often mentioned in literature, but a stringent definition is missing. In particular, there is no general scalability assessment which clearly indicates whether a system scales or not or whether a system scales better than another. The key contribution of this article is the definition of a scalability index (SI) which quantifies if a system scales in comparison to another system, a hypothetical system, e.g., linear system, or the theoretically optimal system. The suggested SI generalizes different metrics from literature, which are specialized cases of our SI. The primary target of our scalability framework is, however, benchmarking of two systems, which does not require any reference system. The SI is demonstrated and evaluated for different use cases, that are (1) the performance of an IoT load balancer depending on the system load, (2) the availability of a communication system depending on the size and structure of the network, (3) scalability comparison of different location selection mechanisms in fog computing with respect to delays and energy consumption; (4) comparison of time-sensitive networking (TSN) mechanisms in terms of efficiency and utilization. Finally, we discuss how to use and how not to use the SI and give recommendations and guidelines in practice. To the best of our knowledge, this is the first work which provides a general SI for the comparison and benchmarking of systems, which is the primary target of our scalability analysis.}, language = {en} } @techreport{HerrmannRizk2023, type = {Working Paper}, author = {Herrmann, Martin and Rizk, Amr}, title = {On Data Plane Multipath Scheduling for Connected Mobility Applications}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32203}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322033}, pages = {3}, year = {2023}, abstract = {Cooperative, connected and automated mobility (CCAM) systems depend on a reliable communication to provide their service and more crucially to ensure the safety of users. One way to ensure the reliability of a data transmission is to use multiple transmission technologies in combination with redundant flows. In this paper, we describe a system requiring multipath communication in the context of CCAM. To this end, we introduce a data plane-based scheduler that uses replication and integration modules to provide redundant and transparent multipath communication. We provide an analytical model for the full replication module of the system and give an overview of how and where the data-plane scheduler components can be realized.}, language = {en} } @article{MuellerLeppichGeissetal.2023, author = {M{\"u}ller, Konstantin and Leppich, Robert and Geiß, Christian and Borst, Vanessa and Pelizari, Patrick Aravena and Kounev, Samuel and Taubenb{\"o}ck, Hannes}, title = {Deep neural network regression for normalized digital surface model generation with Sentinel-2 imagery}, series = {IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing}, volume = {16}, journal = {IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing}, issn = {1939-1404}, doi = {10.1109/JSTARS.2023.3297710}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349424}, pages = {8508-8519}, year = {2023}, abstract = {In recent history, normalized digital surface models (nDSMs) have been constantly gaining importance as a means to solve large-scale geographic problems. High-resolution surface models are precious, as they can provide detailed information for a specific area. However, measurements with a high resolution are time consuming and costly. Only a few approaches exist to create high-resolution nDSMs for extensive areas. This article explores approaches to extract high-resolution nDSMs from low-resolution Sentinel-2 data, allowing us to derive large-scale models. We thereby utilize the advantages of Sentinel 2 being open access, having global coverage, and providing steady updates through a high repetition rate. Several deep learning models are trained to overcome the gap in producing high-resolution surface maps from low-resolution input data. With U-Net as a base architecture, we extend the capabilities of our model by integrating tailored multiscale encoders with differently sized kernels in the convolution as well as conformed self-attention inside the skip connection gates. Using pixelwise regression, our U-Net base models can achieve a mean height error of approximately 2 m. Moreover, through our enhancements to the model architecture, we reduce the model error by more than 7\%.}, language = {en} } @article{LimanMayFetteetal.2023, author = {Liman, Leon and May, Bernd and Fette, Georg and Krebs, Jonathan and Puppe, Frank}, title = {Using a clinical data warehouse to calculate and present key metrics for the radiology department: implementation and performance evaluation}, series = {JMIR Medical Informatics}, volume = {11}, journal = {JMIR Medical Informatics}, issn = {2291-9694}, doi = {10.2196/41808}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349411}, year = {2023}, abstract = {Background: Due to the importance of radiologic examinations, such as X-rays or computed tomography scans, for many clinical diagnoses, the optimal use of the radiology department is 1 of the primary goals of many hospitals. Objective: This study aims to calculate the key metrics of this use by creating a radiology data warehouse solution, where data from radiology information systems (RISs) can be imported and then queried using a query language as well as a graphical user interface (GUI). Methods: Using a simple configuration file, the developed system allowed for the processing of radiology data exported from any kind of RIS into a Microsoft Excel, comma-separated value (CSV), or JavaScript Object Notation (JSON) file. These data were then imported into a clinical data warehouse. Additional values based on the radiology data were calculated during this import process by implementing 1 of several provided interfaces. Afterward, the query language and GUI of the data warehouse were used to configure and calculate reports on these data. For the most common types of requested reports, a web interface was created to view their numbers as graphics. Results: The tool was successfully tested with the data of 4 different German hospitals from 2018 to 2021, with a total of 1,436,111 examinations. The user feedback was good, since all their queries could be answered if the available data were sufficient. The initial processing of the radiology data for using them with the clinical data warehouse took (depending on the amount of data provided by each hospital) between 7 minutes and 1 hour 11 minutes. Calculating 3 reports of different complexities on the data of each hospital was possible in 1-3 seconds for reports with up to 200 individual calculations and in up to 1.5 minutes for reports with up to 8200 individual calculations. Conclusions: A system was developed with the main advantage of being generic concerning the export of different RISs as well as concerning the configuration of queries for various reports. The queries could be configured easily using the GUI of the data warehouse, and their results could be exported into the standard formats Excel and CSV for further processing.}, language = {en} } @article{SeufertPoigneeSeufertetal.2023, author = {Seufert, Anika and Poign{\´e}e, Fabian and Seufert, Michael and Hoßfeld, Tobias}, title = {Share and multiply: modeling communication and generated traffic in private WhatsApp groups}, series = {IEEE Access}, volume = {11}, journal = {IEEE Access}, doi = {10.1109/ACCESS.2023.3254913}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349430}, pages = {25401-25414}, year = {2023}, abstract = {Group-based communication is a highly popular communication paradigm, which is especially prominent in mobile instant messaging (MIM) applications, such as WhatsApp. Chat groups in MIM applications facilitate the sharing of various types of messages (e.g., text, voice, image, video) among a large number of participants. As each message has to be transmitted to every other member of the group, which multiplies the traffic, this has a massive impact on the underlying communication networks. However, most chat groups are private and network operators cannot obtain deep insights into MIM communication via network measurements due to end-to-end encryption. Thus, the generation of traffic is not well understood, given that it depends on sizes of communication groups, speed of communication, and exchanged message types. In this work, we provide a huge data set of 5,956 private WhatsApp chat histories, which contains over 76 million messages from more than 117,000 users. We describe and model the properties of chat groups and users, and the communication within these chat groups, which gives unprecedented insights into private MIM communication. In addition, we conduct exemplary measurements for the most popular message types, which empower the provided models to estimate the traffic over time in a chat group.}, language = {en} } @techreport{HerrmannRizk2023, type = {Working Paper}, author = {Herrmann, Martin and Rizk, Amr}, title = {On Data Plane Multipath Scheduling for Connected Mobility Applications}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, edition = {aktualisierte Version}, doi = {10.25972/OPUS-35344}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-353444}, pages = {4}, year = {2023}, abstract = {Cooperative, connected and automated mobility (CCAM) systems depend on a reliable communication to provide their service and more crucially to ensure the safety of users. One way to ensure the reliability of a data transmission is to use multiple transmission technologies in combination with redundant flows. In this paper, we describe a system requiring multipath communication in the context of CCAM. To this end, we introduce a data plane-based scheduler that uses replication and integration modules to provide redundant and transparent multipath communication. We provide an analytical model for the full replication module of the system and give an overview of how and where the data-plane scheduler components can be realized.}, language = {en} } @article{KrenzerHeilFittingetal., author = {Krenzer, Adrian and Heil, Stefan and Fitting, Daniel and Matti, Safa and Zoller, Wolfram G. and Hann, Alexander and Puppe, Frank}, title = {Automated classification of polyps using deep learning architectures and few-shot learning}, series = {BMC Medical Imaging}, volume = {23}, journal = {BMC Medical Imaging}, doi = {10.1186/s12880-023-01007-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357465}, abstract = {Background Colorectal cancer is a leading cause of cancer-related deaths worldwide. The best method to prevent CRC is a colonoscopy. However, not all colon polyps have the risk of becoming cancerous. Therefore, polyps are classified using different classification systems. After the classification, further treatment and procedures are based on the classification of the polyp. Nevertheless, classification is not easy. Therefore, we suggest two novel automated classifications system assisting gastroenterologists in classifying polyps based on the NICE and Paris classification. Methods We build two classification systems. One is classifying polyps based on their shape (Paris). The other classifies polyps based on their texture and surface patterns (NICE). A two-step process for the Paris classification is introduced: First, detecting and cropping the polyp on the image, and secondly, classifying the polyp based on the cropped area with a transformer network. For the NICE classification, we design a few-shot learning algorithm based on the Deep Metric Learning approach. The algorithm creates an embedding space for polyps, which allows classification from a few examples to account for the data scarcity of NICE annotated images in our database. Results For the Paris classification, we achieve an accuracy of 89.35 \%, surpassing all papers in the literature and establishing a new state-of-the-art and baseline accuracy for other publications on a public data set. For the NICE classification, we achieve a competitive accuracy of 81.13 \% and demonstrate thereby the viability of the few-shot learning paradigm in polyp classification in data-scarce environments. Additionally, we show different ablations of the algorithms. Finally, we further elaborate on the explainability of the system by showing heat maps of the neural network explaining neural activations. Conclusion Overall we introduce two polyp classification systems to assist gastroenterologists. We achieve state-of-the-art performance in the Paris classification and demonstrate the viability of the few-shot learning paradigm in the NICE classification, addressing the prevalent data scarcity issues faced in medical machine learning.}, language = {en} } @article{BayerPruckner2023, author = {Bayer, Daniel and Pruckner, Marco}, title = {A digital twin of a local energy system based on real smart meter data}, series = {Energy Informatics}, volume = {6}, journal = {Energy Informatics}, doi = {10.1186/s42162-023-00263-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357456}, year = {2023}, abstract = {The steadily increasing usage of smart meters generates a valuable amount of high-resolution data about the individual energy consumption and production of local energy systems. Private households install more and more photovoltaic systems, battery storage and big consumers like heat pumps. Thus, our vision is to augment these collected smart meter time series of a complete system (e.g., a city, town or complex institutions like airports) with simulatively added previously named components. We, therefore, propose a novel digital twin of such an energy system based solely on a complete set of smart meter data including additional building data. Based on the additional geospatial data, the twin is intended to represent the addition of the abovementioned components as realistically as possible. Outputs of the twin can be used as a decision support for either system operators where to strengthen the system or for individual households where and how to install photovoltaic systems and batteries. Meanwhile, the first local energy system operators had such smart meter data of almost all residential consumers for several years. We acquire those of an exemplary operator and discuss a case study presenting some features of our digital twin and highlighting the value of the combination of smart meter and geospatial data.}, language = {en} } @phdthesis{Krenzer2023, author = {Krenzer, Adrian}, title = {Machine learning to support physicians in endoscopic examinations with a focus on automatic polyp detection in images and videos}, doi = {10.25972/OPUS-31911}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-319119}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Deep learning enables enormous progress in many computer vision-related tasks. Artificial Intel- ligence (AI) steadily yields new state-of-the-art results in the field of detection and classification. Thereby AI performance equals or exceeds human performance. Those achievements impacted many domains, including medical applications. One particular field of medical applications is gastroenterology. In gastroenterology, machine learning algorithms are used to assist examiners during interventions. One of the most critical concerns for gastroenterologists is the development of Colorectal Cancer (CRC), which is one of the leading causes of cancer-related deaths worldwide. Detecting polyps in screening colonoscopies is the essential procedure to prevent CRC. Thereby, the gastroenterologist uses an endoscope to screen the whole colon to find polyps during a colonoscopy. Polyps are mucosal growths that can vary in severity. This thesis supports gastroenterologists in their examinations with automated detection and clas- sification systems for polyps. The main contribution is a real-time polyp detection system. This system is ready to be installed in any gastroenterology practice worldwide using open-source soft- ware. The system achieves state-of-the-art detection results and is currently evaluated in a clinical trial in four different centers in Germany. The thesis presents two additional key contributions: One is a polyp detection system with ex- tended vision tested in an animal trial. Polyps often hide behind folds or in uninvestigated areas. Therefore, the polyp detection system with extended vision uses an endoscope assisted by two additional cameras to see behind those folds. If a polyp is detected, the endoscopist receives a vi- sual signal. While the detection system handles the additional two camera inputs, the endoscopist focuses on the main camera as usual. The second one are two polyp classification models, one for the classification based on shape (Paris) and the other on surface and texture (NBI International Colorectal Endoscopic (NICE) classification). Both classifications help the endoscopist with the treatment of and the decisions about the detected polyp. The key algorithms of the thesis achieve state-of-the-art performance. Outstandingly, the polyp detection system tested on a highly demanding video data set shows an F1 score of 90.25 \% while working in real-time. The results exceed all real-time systems in the literature. Furthermore, the first preliminary results of the clinical trial of the polyp detection system suggest a high Adenoma Detection Rate (ADR). In the preliminary study, all polyps were detected by the polyp detection system, and the system achieved a high usability score of 96.3 (max 100). The Paris classification model achieved an F1 score of 89.35 \% which is state-of-the-art. The NICE classification model achieved an F1 score of 81.13 \%. Furthermore, a large data set for polyp detection and classification was created during this thesis. Therefore a fast and robust annotation system called Fast Colonoscopy Annotation Tool (FastCAT) was developed. The system simplifies the annotation process for gastroenterologists. Thereby the i gastroenterologists only annotate key parts of the endoscopic video. Afterward, those video parts are pre-labeled by a polyp detection AI to speed up the process. After the AI has pre-labeled the frames, non-experts correct and finish the annotation. This annotation process is fast and ensures high quality. FastCAT reduces the overall workload of the gastroenterologist on average by a factor of 20 compared to an open-source state-of-art annotation tool.}, subject = {Deep Learning}, language = {en} }