@phdthesis{Schwindt2013, author = {Schwindt, Daniel}, title = {Permafrost in ventilated talus slopes below the timberline - A multi-methodological study on the ground thermal regime and its impact on the temporal variability and spatial heterogeneity of permafrost at three sites in the Swiss Alps}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-90099}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {In the central Alps permafrost can be expected above 2300 m a.s.l., at altitudes where mean annual air temperatures are below -1 °C. Isolated permafrost occurrences can be detected in north-exposed talus slopes, far below the timberline, where mean annual air temperatures are positive. Driving factors are assumed to be a low income of solar radiation, a thick organic layer with high insulation capacities as well as the thermally induced chimney effect. Aim of this study is to achieve a deeper understanding of the factors determining the site-specific thermal regime, as well as the spatially limited and temporally highly variable permafrost occurrences in vegetated talus slopes. Three supercooled talus slopes in the Swiss Alps were chosen for investigation. Substantially different characteristics were a central criterion in the selection of study sites. Located in the Upper Engadin, climatic conditions, altitude as well as dimensions of the talus slopes are comparable for the study sites Val Bever and Val Susauna; major differences are rooted in the nature of talus substrate and in humus- and vegetation distribution. Characteristics of the Br{\"u}eltobel site, located in the Appenzeller Alps, diverge with regard to climatic conditions, altitude and dimensions of the talus slope; humus- and vegetation compositions are comparable to the Val Susauna site. Confirmation and characterisation of ground ice is accomplished by the application of electrical resistivity and seismic refraction tomography. The estimation of the spatial permafrost distribution is based on quasi-3D resistivity imaging. For the confirmation of permafrost and the analysis of its temporal variability electrical resistivity monitoring arrays were constructed and installed at all study sites, to allow year-round measurements. In addition to resistivity monitoring, the - up to now - first seismic refraction tomography winter monitoring was conducted at the Val Susauna to analyse the permafrost evolution during the winter half-year. Investigations of the ground thermal regime were based on the analysis of temperature logger data. Besides recording air- and ground surface temperatures, focus was set on the temperature evolution in vents and in the organic layer. To analyse the relationship between permafrost distribution on the one hand and humus- and vegetation distribution on the other hand, an extensive mapping of humus characteristics and vegetation composition was conducted at Val Susauna. The existence of permafrost could be proven at all study sites. Spatially, permafrost bodies show a narrow transition to neighbouring, unfrozen areas. As observed at Val Susauna, the permafrost distribution strongly correlates with areas with exceptionally thick organic layer, high percentages of mosses and lichens in the undergrowth and dwarf grown trees. The temporal variability of permafrost has proven to be exceptionally high, with the magnitude of seasonal variations distinctly exceeding intra-annual changes. Thereby, the winter season is characterised by a significant supercooling. During snowmelt a growth in volumetric ice content is induced by refreezing of percolating meltwater on the supercooled talus. The results confirmed the fundamental influence of the chimney effect on the existence and temporal variability of permafrost in talus slopes. Divergences in the effectiveness of the thermal regime were detected between the study sites. These are based on differences in the nature of talus material, humus characteristics and vegetation composition. During summer, the organic material is usually dry at the daytime, inducing a high insulation capability and a protection of the subsurface against high atmospheric temperatures. Bouldery talus slopes typically show an organic layer that is fragmented by large boulders, which induces a strongly reduced insulation capability and allows an efficient heat exchange by convective airflow and percolating precipitation water. In the winter half-year, the thermal conductivity of the organic layer increases massively under moist or frozen conditions, allowing an efficient, conductive cooling of the talus material. The convective cooling in bouldery talus slopes affects an earlier onset and a higher magnitude of supercooling than under consistent humus conditions. Here, conductive heat flow is dominant and the cooling in autumn is buffered by a prolonged zero curtain. The snow cover has proven to be incapable of prohibiting an efficient supercooling of the talus slope in winter, almost independent from thickness.}, subject = {Engadin}, language = {en} } @phdthesis{Roedder2014, author = {R{\"o}dder, Tobias}, title = {Spatio-temporal assessment of dynamics in discontinuous mountain permafrost - Investigation of small-scale influences on the ground thermal regime and active layer processes during snow melt}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-90629}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {The discontinuous mountain permafrost zone is characterized by its heterogeneous distribution of frozen ground and a small-scale variability of the ground thermal regime. Large parts of these areas are covered by glacial till and sediments that were exposed after the recession of the glaciers since the 19th century. As response to changed climatic conditions permafrost-affected areas will lose their ability as sediment storage and on the contrary, they will act as source areas for unconsolidated debris. Along with modified precipitation patterns the degradation of the discontinuous mountain permafrost zone will (temporarily) increase its predisposition for mass movement processes and thus has to be monitored in a differentiated way. Therefore, the spatio-temporal dynamics of frozen ground are assessed in this study based on results obtained in three glacier forefields in the Engadin (Swiss Alps) and at the Zugspitze (German Alps). Sophisticated techniques are required to uncover structural differences in the subsurface. Thus, the applicability of advanced geophysical methods is tested for alpine environments and proved by the good 3D-delineation of a permafrost body and by the detection of detailed processes in the active layer during snow melt. Electrical resistivity tomography (ERT) approaches (quasi-3D, daily monitoring) reveal their capabilities to detect subsurface resistivity changes both, in space and time. Processes and changes in regard to liquid water content and ice content are observed to exist at short distances even though the active layer is not subject to a considerable thickening over the past 7 years. The stability of the active layer is verified by borehole temperature data. No synchronous trend is recognized in permafrost temperatures and together with multi-annual electrical resistivity data they indicate degradation and aggradation processes to occur at the same time. Different heat transfer mechanisms, especially during winter, are recognized by means of temperature sensors above, at, and beneath the surface. Based on surface and borehole temperature data the snow cover is assessed as the major controlling factor for the thermal regime on a local scale. Beyond that, the debris size of the substrate, which modifies the snow cover and regulates air exchange processes above the ground, plays a crucial role as an additional buffer layer. A fundamental control over the stability of local permafrost patches is attributed to the ice-rich transient layer at the base of the active layer. The refreezing of melt water in spring is illustrated with diurnal ERT monitoring data from glacier forefield Murt{\`e}l. Based on these ERT and borehole temperature data a conceptual model of active layer processes between autumn and spring is developed. The latent heat that is inherent in the transient layer protects the permafrost beneath from additional energy input from the surface as long as the refreezing of melt water in spring prevails and sufficient ice is build up each spring. Permafrost sites without a transient layer show considerably higher temperatures at their table and are more prone to degradation in the years and decades ahead. As main investigation area a glacier forefield beneath the summits of Piz Murt{\`e}l and Piz Corvatsch in the Swiss Engadin was chosen. It is located west of the well-known rock glacier Murt{\`e}l. Here, a permafrost body inside and adjacent to the lateral moraine was investigated and could be delineated very well. In the surrounding glacier forefield no further indications of permafrost occurrence could be made. Geophysical data and temperature values from the surface and from a permafrost borehole were compared with long-term data from proximate glacier forefield Muragl (Engadin). Results from both sites show a considerable stability of the active layer depth in summer while at the same time geophysical data demonstrate annual changes in the amount of liquid water content and ice content in the course of years. A third investigation area is located in the German Alps. The Zugspitzplatt is a high mountain valley with considerably more precipitation and thicker snow cover compared to both Swiss sites. In close proximity to the present glacier and at a large talus slope beneath the summit crest ground ice could be observed. The high subsurface resistivity values and comparable data from existing studies at the Zugspitze may indicate the presence of sedimentary ice in the subsurface of the karstified Zugspitzplatt. Based on these complementary data from geophysical and temperature measurements as well as geomorphological field mapping the development of permafrost in glacier forefields under climate change conditions is analyzed with cooperation partners from the SPCC project. Ground temperature simulations forced with long-term climatological data are modeled to assess future permafrost development in glacier forefield Murt{\`e}l. Results suggest that permafrost is stable as long as the ice-rich layer between the active layer and the permafrost table exists. After a tipping point is reached, the disintegration of frozen ground starts to proceed rapidly from the top.}, subject = {Engadin}, language = {en} }