@article{SillerElschenbroichGreefrathetal.2023, author = {Siller, Hans-Stefan and Elschenbroich, Hans-J{\"u}rgen and Greefrath, Gilbert and Vorh{\"o}lter, Katrin}, title = {Mathematical modelling of exponential growth as a rich learning environment for mathematics classrooms}, series = {ZDM Mathematics Education}, volume = {55}, journal = {ZDM Mathematics Education}, number = {1}, issn = {1863-9690}, doi = {10.1007/s11858-022-01433-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324393}, pages = {17-33}, year = {2023}, abstract = {Mathematical concepts are regularly used in media reports concerning the Covid-19 pandemic. These include growth models, which attempt to explain or predict the effectiveness of interventions and developments, as well as the reproductive factor. Our contribution has the aim of showing that basic mental models about exponential growth are important for understanding media reports of Covid-19. Furthermore, we highlight how the coronavirus pandemic can be used as a context in mathematics classrooms to help students understand that they can and should question media reports on their own, using their mathematical knowledge. Therefore, we first present the role of mathematical modelling in achieving these goals in general. The same relevance applies to the necessary basic mental models of exponential growth. Following this description, based on three topics, namely, investigating the type of growth, questioning given course models, and determining exponential factors at different times, we show how the presented theoretical aspects manifest themselves in teaching examples when students are given the task of reflecting critically on existing media reports. Finally, the value of the three topics regarding the intended goals is discussed and conclusions concerning the possibilities and limits of their use in schools are drawn.}, language = {en} } @article{SteudingTongsomporn2023, author = {Steuding, J{\"o}rn and Tongsomporn, Janyarak}, title = {On the order of growth of Lerch zeta functions}, series = {Mathematics}, volume = {11}, journal = {Mathematics}, number = {3}, issn = {2227-7390}, doi = {10.3390/math11030723}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-303981}, year = {2023}, abstract = {We extend Bourgain's bound for the order of growth of the Riemann zeta function on the critical line to Lerch zeta functions. More precisely, we prove L(λ, α, 1/2 + it) ≪ t\(^{13/84+ϵ}\) as t → ∞. For both, the Riemann zeta function as well as for the more general Lerch zeta function, it is conjectured that the right-hand side can be replaced by t\(^ϵ\) (which is the so-called Lindel{\"o}f hypothesis). The growth of an analytic function is closely related to the distribution of its zeros.}, language = {en} } @article{HeinsRothWaldmann2023, author = {Heins, Michael and Roth, Oliver and Waldmann, Stefan}, title = {Convergent star products on cotangent bundles of Lie groups}, series = {Mathematische Annalen}, volume = {386}, journal = {Mathematische Annalen}, number = {1-2}, issn = {0025-5831}, doi = {10.1007/s00208-022-02384-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324324}, pages = {151-206}, year = {2023}, abstract = {For a connected real Lie group G we consider the canonical standard-ordered star product arising from the canonical global symbol calculus based on the half-commutator connection of G. This star product trivially converges on polynomial functions on T\(^*\)G thanks to its homogeneity. We define a nuclear Fr{\´e}chet algebra of certain analytic functions on T\(^*\)G, for which the standard-ordered star product is shown to be a well-defined continuous multiplication, depending holomorphically on the deformation parameter \(\hbar\). This nuclear Fr{\´e}chet algebra is realized as the completed (projective) tensor product of a nuclear Fr{\´e}chet algebra of entire functions on G with an appropriate nuclear Fr{\´e}chet algebra of functions on \({\mathfrak {g}}^*\). The passage to the Weyl-ordered star product, i.e. the Gutt star product on T\(^*\)G, is shown to preserve this function space, yielding the continuity of the Gutt star product with holomorphic dependence on \(\hbar\).}, language = {en} } @article{JotzMehtaPapantonis2023, author = {Jotz, M. and Mehta, R. A. and Papantonis, T.}, title = {Modules and representations up to homotopy of Lie n-algebroids}, series = {Journal of Homotopy and Related Structures}, volume = {18}, journal = {Journal of Homotopy and Related Structures}, number = {1}, issn = {2193-8407}, doi = {10.1007/s40062-022-00322-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324333}, pages = {23-70}, year = {2023}, abstract = {This paper studies differential graded modules and representations up to homotopy of Lie n-algebroids, for general \(n\in {\mathbb {N}}\). The adjoint and coadjoint modules are described, and the corresponding split versions of the adjoint and coadjoint representations up to homotopy are explained. In particular, the case of Lie 2-algebroids is analysed in detail. The compatibility of a Poisson bracket with the homological vector field of a Lie n-algebroid is shown to be equivalent to a morphism from the coadjoint module to the adjoint module, leading to an alternative characterisation of non-degeneracy of higher Poisson structures. Moreover, the Weil algebra of a Lie n-algebroid is computed explicitly in terms of splittings, and representations up to homotopy of Lie n-algebroids are used to encode decomposed VB-Lie n-algebroid structures on double vector bundles.}, language = {en} } @article{KourouZarvalis2022, author = {Kourou, Maria and Zarvalis, Konstantinos}, title = {Compact sets in petals and their backward orbits under semigroups of holomorphic functions}, series = {Potential Analysis}, volume = {59}, journal = {Potential Analysis}, number = {4}, issn = {0926-2601}, doi = {10.1007/s11118-022-10036-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324368}, pages = {1913-1939}, year = {2022}, abstract = {Let (ϕ\(_t\))\(_{t≥0}\) be a semigroup of holomorphic functions in the unit disk \(\mathbb {D}\) and K a compact subset of \(\mathbb {D}\). We investigate the conditions under which the backward orbit of K under the semigroup exists. Subsequently, the geometric characteristics, as well as, potential theoretic quantities for the backward orbit of K are examined. More specifically, results are obtained concerning the asymptotic behavior of its hyperbolic area and diameter, the harmonic measure and the capacity of the condenser that K forms with the unit disk.}, language = {en} } @phdthesis{Scherz2024, author = {Scherz, Jan}, title = {Weak Solutions to Mathematical Models of the Interaction between Fluids, Solids and Electromagnetic Fields}, doi = {10.25972/OPUS-34920}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349205}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {We analyze the mathematical models of two classes of physical phenomena. The first class of phenomena we consider is the interaction between one or more insulating rigid bodies and an electrically conducting fluid, inside of which the bodies are contained, as well as the electromagnetic fields trespassing both of the materials. We take into account both the cases of incompressible and compressible fluids. In both cases our main result yields the existence of weak solutions to the associated system of partial differential equations, respectively. The proofs of these results are built upon hybrid discrete-continuous approximation schemes: Parts of the systems are discretized with respect to time in order to deal with the solution-dependent test functions in the induction equation. The remaining parts are treated as continuous equations on the small intervals between consecutive discrete time points, allowing us to employ techniques which do not transfer to the discretized setting. Moreover, the solution-dependent test functions in the momentum equation are handled via the use of classical penalization methods. The second class of phenomena we consider is the evolution of a magnetoelastic material. Here too, our main result proves the existence of weak solutions to the corresponding system of partial differential equations. Its proof is based on De Giorgi's minimizing movements method, in which the system is discretized in time and, at each discrete time point, a minimization problem is solved, the associated Euler-Lagrange equations of which constitute a suitable approximation of the original equation of motion and magnetic force balance. The construction of such a minimization problem is made possible by the realization that, already on the continuous level, both of these equations can be written in terms of the same energy and dissipation potentials. The functional for the discrete minimization problem can then be constructed on the basis of these potentials.}, subject = {Fluid-Struktur-Wechselwirkung}, language = {en} } @article{DashkovskiyKapustyanSchmid2020, author = {Dashkovskiy, Sergey and Kapustyan, Oleksiy and Schmid, Jochen}, title = {A local input-to-state stability result w.r.t. attractors of nonlinear reaction-diffusion equations}, series = {Mathematics of Control, Signals, and Systems}, volume = {32}, journal = {Mathematics of Control, Signals, and Systems}, number = {3}, doi = {10.1007/s00498-020-00256-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-281099}, pages = {309-326}, year = {2020}, abstract = {We establish the local input-to-state stability of a large class of disturbed nonlinear reaction-diffusion equations w.r.t. the global attractor of the respective undisturbed system.}, language = {en} } @article{GerberQuarderGreefrathetal.2023, author = {Gerber, Sebastian and Quarder, Jascha and Greefrath, Gilbert and Siller, Hans-Stefan}, title = {Promoting adaptive intervention competence for teaching simulations and mathematical modelling with digital tools}, series = {Frontiers in Education}, volume = {8}, journal = {Frontiers in Education}, issn = {2504-284X}, doi = {10.3389/feduc.2023.1141063}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-323701}, year = {2023}, abstract = {Providing adaptive, independence-preserving and theory-guided support to students in dealing with real-world problems in mathematics lessons is a major challenge for teachers in their professional practice. This paper examines this challenge in the context of simulations and mathematical modelling with digital tools: in addition to mathematical difficulties when autonomously working out individual solutions, students may also experience challenges when using digital tools. These challenges need to be closely examined and diagnosed, and might - if necessary - have to be overcome by intervention in such a way that the students can subsequently continue working independently. Thus, if a difficulty arises in the working process, two knowledge dimensions are necessary in order to provide adapted support to students. For teaching simulations and mathematical modelling with digital tools, more specifically, these knowledge dimensions are: pedagogical content knowledge about simulation and modelling processes supported by digital tools (this includes knowledge about phases and difficulties in the working process) and pedagogical content knowledge about interventions during the mentioned processes (focussing on characteristics of suitable interventions as well as their implementation and effects on the students' working process). The two knowledge dimensions represent cognitive dispositions as the basis for the conceptualisation and operationalisation of a so-called adaptive intervention competence for teaching simulations and mathematical modelling with digital tools. In our article, we present a domain-specific process model and distinguish different types of teacher interventions. Then we describe the design and content of a university course at two German universities aiming to promote this domain-specific professional adaptive intervention competence, among others. In a study using a quasi-experimental pre-post design (N = 146), we confirm that the structure of cognitive dispositions of adaptive intervention competence for teaching simulations and mathematical modelling with digital tools can be described empirically by a two-dimensional model. In addition, the effectiveness of the course is examined and confirmed quantitatively. Finally, the results are discussed, especially against the background of the sample and the research design, and conclusions are derived for possibilities of promoting professional adaptive intervention competence in university courses.}, language = {en} } @article{RoyBorziHabbal2017, author = {Roy, S. and Borz{\`i}, A. and Habbal, A.}, title = {Pedestrian motion modelled by Fokker-Planck Nash games}, series = {Royal Society Open Science}, volume = {4}, journal = {Royal Society Open Science}, number = {9}, doi = {10.1098/rsos.170648}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170395}, pages = {170648}, year = {2017}, abstract = {A new approach to modelling pedestrians' avoidance dynamics based on a Fokker-Planck (FP) Nash game framework is presented. In this framework, two interacting pedestrians are considered, whose motion variability is modelled through the corresponding probability density functions (PDFs) governed by FP equations. Based on these equations, a Nash differential game is formulated where the game strategies represent controls aiming at avoidance by minimizing appropriate collision cost functionals. The existence of Nash equilibria solutions is proved and characterized as a solution to an optimal control problem that is solved numerically. Results of numerical experiments are presented that successfully compare the computed Nash equilibria to the output of real experiments (conducted with humans) for four test cases.}, language = {en} } @article{AlmeidaHristovaDashkovskiy2021, author = {Almeida, R. and Hristova, S. and Dashkovskiy, S.}, title = {Uniform bounded input bounded output stability of fractional-order delay nonlinear systems with input}, series = {International Journal of Robust and Nonlinear Control}, volume = {31}, journal = {International Journal of Robust and Nonlinear Control}, number = {1}, doi = {10.1002/rnc.5273}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218554}, pages = {225 -- 249}, year = {2021}, abstract = {The bounded input bounded output (BIBO) stability for a nonlinear Caputo fractional system with time-varying bounded delay and nonlinear output is studied. Utilizing the Razumikhin method, Lyapunov functions and appropriate fractional derivatives of Lyapunov functions some new bounded input bounded output stability criteria are derived. Also, explicit and independent on the initial time bounds of the output are provided. Uniform BIBO stability and uniform BIBO stability with input threshold are studied. A numerical simulation is carried out to show the system's dynamic response, and demonstrate the effectiveness of our theoretical results.}, language = {en} }