@inproceedings{DaviesDewellHarvey2021, author = {Davies, Richard and Dewell, Nathan and Harvey, Carlo}, title = {A framework for interactive, autonomous and semantic dialogue generation in games}, series = {Proceedings of the 1st Games Technology Summit}, booktitle = {Proceedings of the 1st Games Technology Summit}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246023}, pages = {16-28}, year = {2021}, abstract = {Immersive virtual environments provide users with the opportunity to escape from the real world, but scripted dialogues can disrupt the presence within the world the user is trying to escape within. Both Non-Playable Character (NPC) to Player and NPC to NPC dialogue can be non-natural and the reliance on responding with pre-defined dialogue does not always meet the players emotional expectations or provide responses appropriate to the given context or world states. This paper investigates the application of Artificial Intelligence (AI) and Natural Language Processing to generate dynamic human-like responses within a themed virtual world. Each thematic has been analysed against humangenerated responses for the same seed and demonstrates invariance of rating across a range of model sizes, but shows an effect of theme and the size of the corpus used for fine-tuning the context for the game world.}, language = {en} } @inproceedings{SanusiKlemke2021, author = {Sanusi, Khaleel Asyraaf Mat and Klemke, Roland}, title = {Immersive Multimodal Environments for Psychomotor Skills Training}, series = {Proceedings of the 1st Games Technology Summit}, booktitle = {Proceedings of the 1st Games Technology Summit}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246016}, pages = {9-15}, year = {2021}, abstract = {Modern immersive multimodal technologies enable the learners to completely get immersed in various learning situations in a way that feels like experiencing an authentic learning environment. These environments also allow the collection of multimodal data, which can be used with artificial intelligence to further improve the immersion and learning outcomes. The use of artificial intelligence has been widely explored for the interpretation of multimodal data collected from multiple sensors, thus giving insights to support learners' performance by providing personalised feedback. In this paper, we present a conceptual approach for creating immersive learning environments, integrated with multi-sensor setup to help learners improve their psychomotor skills in a remote setting.}, language = {en} } @article{GrzesikBaumannWalteretal.2021, author = {Grzesik, Benjamin and Baumann, Tom and Walter, Thomas and Flederer, Frank and Sittner, Felix and Dilger, Erik and Gl{\"a}sner, Simon and Kirchler, Jan-Luca and Tedsen, Marvyn and Montenegro, Sergio and Stoll, Enrico}, title = {InnoCube — a wireless satellite platform to demonstrate innovative technologies}, series = {Aerospace}, volume = {8}, journal = {Aerospace}, number = {5}, issn = {2226-4310}, doi = {10.3390/aerospace8050127}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239564}, year = {2021}, abstract = {A new innovative satellite mission, the Innovative CubeSat for Education (InnoCube), is addressed. The goal of the mission is to demonstrate "the wireless satellite", which replaces the data harness by robust, high-speed, real-time, very short-range radio communications using the SKITH (SKIpTheHarness) technology. This will make InnoCube the first wireless satellite in history. Another technology demonstration is an experimental energy-storing satellite structure that was developed in the previous Wall\#E project and might replace conventional battery technology in the future. As a further payload, the hardware for the concept of a software-based solution for receiving signals from Global Navigation Satellite Systems (GNSS) will be developed to enable precise position determination of the CubeSat. Aside from technical goals this work aims to be of use in the teaching of engineering skills and practical sustainable education of students, important technical and scientific publications, and the increase of university skills. This article gives an overview of the overall design of the InnoCube.}, language = {en} } @phdthesis{Nogatz2023, author = {Nogatz, Falco}, title = {Defining and Implementing Domain-Specific Languages with Prolog}, doi = {10.25972/OPUS-30187}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301872}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The landscape of today's programming languages is manifold. With the diversity of applications, the difficulty of adequately addressing and specifying the used programs increases. This often leads to newly designed and implemented domain-specific languages. They enable domain experts to express knowledge in their preferred format, resulting in more readable and concise programs. Due to its flexible and declarative syntax without reserved keywords, the logic programming language Prolog is particularly suitable for defining and embedding domain-specific languages. This thesis addresses the questions and challenges that arise when integrating domain-specific languages into Prolog. We compare the two approaches to define them either externally or internally, and provide assisting tools for each. The grammar of a formal language is usually defined in the extended Backus-Naur form. In this work, we handle this formalism as a domain-specific language in Prolog, and define term expansions that allow to translate it into equivalent definite clause grammars. We present the package library(dcg4pt) for SWI-Prolog, which enriches them by an additional argument to automatically process the term's corresponding parse tree. To simplify the work with definite clause grammars, we visualise their application by a web-based tracer. The external integration of domain-specific languages requires the programmer to keep the grammar, parser, and interpreter in sync. In many cases, domain-specific languages can instead be directly embedded into Prolog by providing appropriate operator definitions. In addition, we propose syntactic extensions for Prolog to expand its expressiveness, for instance to state logic formulas with their connectives verbatim. This allows to use all tools that were originally written for Prolog, for instance code linters and editors with syntax highlighting. We present the package library(plammar), a standard-compliant parser for Prolog source code, written in Prolog. It is able to automatically infer from example sentences the required operator definitions with their classes and precedences as well as the required Prolog language extensions. As a result, we can automatically answer the question: Is it possible to model these example sentences as valid Prolog clauses, and how? We discuss and apply the two approaches to internal and external integrations for several domain-specific languages, namely the extended Backus-Naur form, GraphQL, XPath, and a controlled natural language to represent expert rules in if-then form. The created toolchain with library(dcg4pt) and library(plammar) yields new application opportunities for static Prolog source code analysis, which we also present.}, subject = {PROLOG }, language = {en} } @techreport{LohGeisslerHossfeld2022, type = {Working Paper}, author = {Loh, Frank and Geißler, Stefan and Hoßfeld, Tobias}, title = {LoRaWAN Network Planning in Smart Environments: Towards Reliability, Scalability, and Cost Reduction}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28082}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280829}, pages = {4}, year = {2022}, abstract = {The goal in this work is to present a guidance for LoRaWAN planning to improve overall reliability for message transmissions and scalability. At the end, the cost component is discussed. Therefore, a five step approach is presented that helps to plan a LoRaWAN deployment step by step: Based on the device locations, an initial gateway placement is suggested followed by in-depth frequency and channel access planning. After an initial planning phase, updates for channel access and the initial gateway planning is suggested that should also be done periodically during network operation. Since current gateway placement approaches are only studied with random channel access, there is a lot of potential in the cell planning phase. Furthermore, the performance of different channel access approaches is highly related on network load, and thus cell size and sensor density. Last, the influence of different cell planning ideas on expected costs are discussed.}, subject = {Datennetz}, language = {en} } @article{LohMehlingHossfeld2022, author = {Loh, Frank and Mehling, Noah and Hoßfeld, Tobias}, title = {Towards LoRaWAN without data loss: studying the performance of different channel access approaches}, series = {Sensors}, volume = {22}, journal = {Sensors}, number = {2}, issn = {1424-8220}, doi = {10.3390/s22020691}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-302418}, year = {2022}, abstract = {The Long Range Wide Area Network (LoRaWAN) is one of the fastest growing Internet of Things (IoT) access protocols. It operates in the license free 868 MHz band and gives everyone the possibility to create their own small sensor networks. The drawback of this technology is often unscheduled or random channel access, which leads to message collisions and potential data loss. For that reason, recent literature studies alternative approaches for LoRaWAN channel access. In this work, state-of-the-art random channel access is compared with alternative approaches from the literature by means of collision probability. Furthermore, a time scheduled channel access methodology is presented to completely avoid collisions in LoRaWAN. For this approach, an exhaustive simulation study was conducted and the performance was evaluated with random access cross-traffic. In a general theoretical analysis the limits of the time scheduled approach are discussed to comply with duty cycle regulations in LoRaWAN.}, language = {en} } @article{KernKullmannGanaletal.2021, author = {Kern, Florian and Kullmann, Peter and Ganal, Elisabeth and Korwisi, Kristof and Stingl, Ren{\´e} and Niebling, Florian and Latoschik, Marc Erich}, title = {Off-The-Shelf Stylus: Using XR Devices for Handwriting and Sketching on Physically Aligned Virtual Surfaces}, series = {Frontiers in Virtual Reality}, volume = {2}, journal = {Frontiers in Virtual Reality}, doi = {10.3389/frvir.2021.684498}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260219}, year = {2021}, abstract = {This article introduces the Off-The-Shelf Stylus (OTSS), a framework for 2D interaction (in 3D) as well as for handwriting and sketching with digital pen, ink, and paper on physically aligned virtual surfaces in Virtual, Augmented, and Mixed Reality (VR, AR, MR: XR for short). OTSS supports self-made XR styluses based on consumer-grade six-degrees-of-freedom XR controllers and commercially available styluses. The framework provides separate modules for three basic but vital features: 1) The stylus module provides stylus construction and calibration features. 2) The surface module provides surface calibration and visual feedback features for virtual-physical 2D surface alignment using our so-called 3ViSuAl procedure, and surface interaction features. 3) The evaluation suite provides a comprehensive test bed combining technical measurements for precision, accuracy, and latency with extensive usability evaluations including handwriting and sketching tasks based on established visuomotor, graphomotor, and handwriting research. The framework's development is accompanied by an extensive open source reference implementation targeting the Unity game engine using an Oculus Rift S headset and Oculus Touch controllers. The development compares three low-cost and low-tech options to equip controllers with a tip and includes a web browser-based surface providing support for interacting, handwriting, and sketching. The evaluation of the reference implementation based on the OTSS framework identified an average stylus precision of 0.98 mm (SD = 0.54 mm) and an average surface accuracy of 0.60 mm (SD = 0.32 mm) in a seated VR environment. The time for displaying the stylus movement as digital ink on the web browser surface in VR was 79.40 ms on average (SD = 23.26 ms), including the physical controller's motion-to-photon latency visualized by its virtual representation (M = 42.57 ms, SD = 15.70 ms). The usability evaluation (N = 10) revealed a low task load, high usability, and high user experience. Participants successfully reproduced given shapes and created legible handwriting, indicating that the OTSS and it's reference implementation is ready for everyday use. We provide source code access to our implementation, including stylus and surface calibration and surface interaction features, making it easy to reuse, extend, adapt and/or replicate previous results (https://go.uniwue.de/hci-otss).}, language = {en} } @article{BartlWenningerWolfetal.2021, author = {Bartl, Andrea and Wenninger, Stephan and Wolf, Erik and Botsch, Mario and Latoschik, Marc Erich}, title = {Affordable but not cheap: a case study of the effects of two 3D-reconstruction methods of virtual humans}, series = {Frontiers in Virtual Reality}, volume = {2}, journal = {Frontiers in Virtual Reality}, doi = {10.3389/frvir.2021.694617}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260492}, year = {2021}, abstract = {Realistic and lifelike 3D-reconstruction of virtual humans has various exciting and important use cases. Our and others' appearances have notable effects on ourselves and our interaction partners in virtual environments, e.g., on acceptance, preference, trust, believability, behavior (the Proteus effect), and more. Today, multiple approaches for the 3D-reconstruction of virtual humans exist. They significantly vary in terms of the degree of achievable realism, the technical complexities, and finally, the overall reconstruction costs involved. This article compares two 3D-reconstruction approaches with very different hardware requirements. The high-cost solution uses a typical complex and elaborated camera rig consisting of 94 digital single-lens reflex (DSLR) cameras. The recently developed low-cost solution uses a smartphone camera to create videos that capture multiple views of a person. Both methods use photogrammetric reconstruction and template fitting with the same template model and differ in their adaptation to the method-specific input material. Each method generates high-quality virtual humans ready to be processed, animated, and rendered by standard XR simulation and game engines such as Unreal or Unity. We compare the results of the two 3D-reconstruction methods in an immersive virtual environment against each other in a user study. Our results indicate that the virtual humans from the low-cost approach are perceived similarly to those from the high-cost approach regarding the perceived similarity to the original, human-likeness, beauty, and uncanniness, despite significant differences in the objectively measured quality. The perceived feeling of change of the own body was higher for the low-cost virtual humans. Quality differences were perceived more strongly for one's own body than for other virtual humans.}, language = {en} } @article{WienrichLatoschik2021, author = {Wienrich, Carolin and Latoschik, Marc Erich}, title = {eXtended Artificial Intelligence: New Prospects of Human-AI Interaction Research}, series = {Frontiers in Virtual Reality}, volume = {2}, journal = {Frontiers in Virtual Reality}, doi = {10.3389/frvir.2021.686783}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260296}, year = {2021}, abstract = {Artificial Intelligence (AI) covers a broad spectrum of computational problems and use cases. Many of those implicate profound and sometimes intricate questions of how humans interact or should interact with AIs. Moreover, many users or future users do have abstract ideas of what AI is, significantly depending on the specific embodiment of AI applications. Human-centered-design approaches would suggest evaluating the impact of different embodiments on human perception of and interaction with AI. An approach that is difficult to realize due to the sheer complexity of application fields and embodiments in reality. However, here XR opens new possibilities to research human-AI interactions. The article's contribution is twofold: First, it provides a theoretical treatment and model of human-AI interaction based on an XR-AI continuum as a framework for and a perspective of different approaches of XR-AI combinations. It motivates XR-AI combinations as a method to learn about the effects of prospective human-AI interfaces and shows why the combination of XR and AI fruitfully contributes to a valid and systematic investigation of human-AI interactions and interfaces. Second, the article provides two exemplary experiments investigating the aforementioned approach for two distinct AI-systems. The first experiment reveals an interesting gender effect in human-robot interaction, while the second experiment reveals an Eliza effect of a recommender system. Here the article introduces two paradigmatic implementations of the proposed XR testbed for human-AI interactions and interfaces and shows how a valid and systematic investigation can be conducted. In sum, the article opens new perspectives on how XR benefits human-centered AI design and development.}, language = {en} } @article{DonnermannSchaperLugrin2022, author = {Donnermann, Melissa and Schaper, Philipp and Lugrin, Birgit}, title = {Social robots in applied settings: a long-term study on adaptive robotic tutors in higher education}, series = {Frontiers in Robotics and AI}, volume = {9}, journal = {Frontiers in Robotics and AI}, issn = {2296-9144}, doi = {10.3389/frobt.2022.831633}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-266012}, year = {2022}, abstract = {Learning in higher education scenarios requires self-directed learning and the challenging task of self-motivation while individual support is rare. The integration of social robots to support learners has already shown promise to benefit the learning process in this area. In this paper, we focus on the applicability of an adaptive robotic tutor in a university setting. To this end, we conducted a long-term field study implementing an adaptive robotic tutor to support students with exam preparation over three sessions during one semester. In a mixed design, we compared the effect of an adaptive tutor to a control condition across all learning sessions. With the aim to benefit not only motivation but also academic success and the learning experience in general, we draw from research in adaptive tutoring, social robots in education, as well as our own prior work in this field. Our results show that opting in for the robotic tutoring is beneficial for students. We found significant subjective knowledge gain and increases in intrinsic motivation regarding the content of the course in general. Finally, participation resulted in a significantly better exam grade compared to students not participating. However, the extended adaptivity of the robotic tutor in the experimental condition did not seem to enhance learning, as we found no significant differences compared to a non-adaptive version of the robot.}, language = {en} } @article{WienrichKommaVogtetal.2021, author = {Wienrich, Carolin and Komma, Philipp and Vogt, Stephanie and Latoschik, Marc E.}, title = {Spatial Presence in Mixed Realities - Considerations About the Concept, Measures, Design, and Experiments}, series = {Frontiers in Virtual Reality}, volume = {2}, journal = {Frontiers in Virtual Reality}, doi = {10.3389/frvir.2021.694315}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260328}, year = {2021}, abstract = {Plenty of theories, models, measures, and investigations target the understanding of virtual presence, i.e., the sense of presence in immersive Virtual Reality (VR). Other varieties of the so-called eXtended Realities (XR), e.g., Augmented and Mixed Reality (AR and MR) incorporate immersive features to a lesser degree and continuously combine spatial cues from the real physical space and the simulated virtual space. This blurred separation questions the applicability of the accumulated knowledge about the similarities of virtual presence and presence occurring in other varieties of XR, and corresponding outcomes. The present work bridges this gap by analyzing the construct of presence in mixed realities (MR). To achieve this, the following presents (1) a short review of definitions, dimensions, and measurements of presence in VR, and (2) the state of the art views on MR. Additionally, we (3) derived a working definition of MR, extending the Milgram continuum. This definition is based on entities reaching from real to virtual manifestations at one time point. Entities possess different degrees of referential power, determining the selection of the frame of reference. Furthermore, we (4) identified three research desiderata, including research questions about the frame of reference, the corresponding dimension of transportation, and the dimension of realism in MR. Mainly the relationship between the main aspects of virtual presence of immersive VR, i.e., the place-illusion, and the plausibility-illusion, and of the referential power of MR entities are discussed regarding the concept, measures, and design of presence in MR. Finally, (5) we suggested an experimental setup to reveal the research heuristic behind experiments investigating presence in MR. The present work contributes to the theories and the meaning of and approaches to simulate and measure presence in MR. We hypothesize that research about essential underlying factors determining user experience (UX) in MR simulations and experiences is still in its infancy and hopes this article provides an encouraging starting point to tackle related questions.}, language = {en} } @article{HarteltPuppe2022, author = {Hartelt, Alexander and Puppe, Frank}, title = {Optical Medieval Music Recognition using background knowledge}, series = {Algorithms}, volume = {15}, journal = {Algorithms}, number = {7}, issn = {1999-4893}, doi = {10.3390/a15070221}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-278756}, year = {2022}, abstract = {This paper deals with the effect of exploiting background knowledge for improving an OMR (Optical Music Recognition) deep learning pipeline for transcribing medieval, monophonic, handwritten music from the 12th-14th century, whose usage has been neglected in the literature. Various types of background knowledge about overlapping notes and text, clefs, graphical connections (neumes) and their implications on the position in staff of the notes were used and evaluated. Moreover, the effect of different encoder/decoder architectures and of different datasets for training a mixed model and for document-specific fine-tuning based on an extended OMR pipeline with an additional post-processing step were evaluated. The use of background models improves all metrics and in particular the melody accuracy rate (mAR), which is based on the insert, delete and replace operations necessary to convert the generated melody into the correct melody. When using a mixed model and evaluating on a different dataset, our best model achieves without fine-tuning and without post-processing a mAR of 90.4\%, which is raised by nearly 30\% to 93.2\% mAR using background knowledge. With additional fine-tuning, the contribution of post-processing is even greater: the basic mAR of 90.5\% is raised by more than 50\% to 95.8\% mAR.}, language = {en} } @article{HeinWienrichLatoschik2021, author = {Hein, Rebecca M. and Wienrich, Carolin and Latoschik, Marc E.}, title = {A systematic review of foreign language learning with immersive technologies (2001-2020)}, series = {AIMS Electronics and Electrical Engineering}, volume = {5}, journal = {AIMS Electronics and Electrical Engineering}, number = {2}, doi = {10.3934/electreng.2021007}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-268811}, pages = {117-145}, year = {2021}, abstract = {This study provides a systematic literature review of research (2001-2020) in the field of teaching and learning a foreign language and intercultural learning using immersive technologies. Based on 2507 sources, 54 articles were selected according to a predefined selection criteria. The review is aimed at providing information about which immersive interventions are being used for foreign language learning and teaching and where potential research gaps exist. The papers were analyzed and coded according to the following categories: (1) investigation form and education level, (2) degree of immersion, and technology used, (3) predictors, and (4) criterions. The review identified key research findings relating the use of immersive technologies for learning and teaching a foreign language and intercultural learning at cognitive, affective, and conative levels. The findings revealed research gaps in the area of teachers as a target group, and virtual reality (VR) as a fully immersive intervention form. Furthermore, the studies reviewed rarely examined behavior, and implicit measurements related to inter- and trans-cultural learning and teaching. Inter- and transcultural learning and teaching especially is an underrepresented investigation subject. Finally, concrete suggestions for future research are given. The systematic review contributes to the challenge of interdisciplinary cooperation between pedagogy, foreign language didactics, and Human-Computer Interaction to achieve innovative teaching-learning formats and a successful digital transformation.}, language = {en} } @techreport{SertbasBuelbuelErgencFischer2022, type = {Working Paper}, author = {Sertbas B{\"u}lb{\"u}l, Nurefsan and Ergenc, Doganalp and Fischer, Mathias}, title = {Evaluating Dynamic Path Reconfiguration for Time Sensitive Networks}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28074}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280743}, pages = {5}, year = {2022}, abstract = {In time-sensitive networks (TSN) based on 802.1Qbv, i.e., the time-aware Shaper (TAS) protocol, precise transmission schedules and, paths are used to ensure end-to-end deterministic communication. Such resource reservations for data flows are usually established at the startup time of an application and remain untouched until the flow ends. There is no way to migrate existing flows easily to alternative paths without inducing additional delay or wasting resources. Therefore, some of the new flows cannot be embedded due to capacity limitations on certain links which leads to sub-optimal flow assignment. As future networks will need to support a large number of lowlatency flows, accommodating new flows at runtime and adapting existing flows accordingly becomes a challenging problem. In this extended abstract we summarize a previously published paper of us [1]. We combine software-defined networking (SDN), which provides better control of network flows, with TSN to be able to seamlessly migrate time-sensitive flows. For that, we formulate an optimization problem and propose different dynamic path configuration strategies under deterministic communication requirements. Our simulation results indicate that regularly reconfiguring the flow assignments can improve the latency of time-sensitive flows and can increase the number of flows embedded in the network around 4\% in worst-case scenarios while still satisfying individual flow deadlines.}, subject = {Datennetz}, language = {en} } @techreport{LeGrossmannKrieger2022, type = {Working Paper}, author = {Le, Duy Thanh and Großmann, Marcel and Krieger, Udo R.}, title = {Cloudless Resource Monitoring in a Fog Computing System Enabled by an SDN/NFV Infrastructure}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28072}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280723}, pages = {4}, year = {2022}, abstract = {Today's advanced Internet-of-Things applications raise technical challenges on cloud, edge, and fog computing. The design of an efficient, virtualized, context-aware, self-configuring orchestration system of a fog computing system constitutes a major development effort within this very innovative area of research. In this paper we describe the architecture and relevant implementation aspects of a cloudless resource monitoring system interworking with an SDN/NFV infrastructure. It realizes the basic monitoring component of the fundamental MAPE-K principles employed in autonomic computing. Here we present the hierarchical layering and functionality within the underlying fog nodes to generate a working prototype of an intelligent, self-managed orchestrator for advanced IoT applications and services. The latter system has the capability to monitor automatically various performance aspects of the resource allocation among multiple hosts of a fog computing system interconnected by SDN.}, subject = {Datennetz}, language = {en} } @article{DoellingerWolfMaletal.2022, author = {D{\"o}llinger, Nina and Wolf, Erik and Mal, David and Wenninger, Stephan and Botsch, Mario and Latoschik, Marc Erich and Wienrich, Carolin}, title = {Resize Me! Exploring the user experience of embodied realistic modulatable avatars for body image intervention in virtual reality}, series = {Frontiers in Virtual Reality}, volume = {3}, journal = {Frontiers in Virtual Reality}, issn = {2673-4192}, doi = {10.3389/frvir.2022.935449}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-292940}, year = {2022}, abstract = {Obesity is a serious disease that can affect both physical and psychological well-being. Due to weight stigmatization, many affected individuals suffer from body image disturbances whereby they perceive their body in a distorted way, evaluate it negatively, or neglect it. Beyond established interventions such as mirror exposure, recent advancements aim to complement body image treatments by the embodiment of visually altered virtual bodies in virtual reality (VR). We present a high-fidelity prototype of an advanced VR system that allows users to embody a rapidly generated personalized, photorealistic avatar and to realistically modulate its body weight in real-time within a carefully designed virtual environment. In a formative multi-method approach, a total of 12 participants rated the general user experience (UX) of our system during body scan and VR experience using semi-structured qualitative interviews and multiple quantitative UX measures. Using body weight modification tasks, we further compared three different interaction methods for real-time body weight modification and measured our system's impact on the body image relevant measures body awareness and body weight perception. From the feedback received, demonstrating an already solid UX of our overall system and providing constructive input for further improvement, we derived a set of design guidelines to guide future development and evaluation processes of systems supporting body image interventions.}, language = {en} } @techreport{HoewelerXiangHoepfneretal.2022, type = {Working Paper}, author = {H{\"o}weler, Malte and Xiang, Zuo and H{\"o}pfner, Franz and Nguyen, Giang T. and Fitzek, Frank H. P.}, title = {Towards Stateless Core Networks: Measuring State Access Patterns}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28077}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280770}, pages = {4}, year = {2022}, abstract = {Future mobile communication networks, such as 5G and beyond, can benefit from Virtualized Network Functions (VNFs) when deployed on cloud infrastructures to achieve elasticity and scalability. However, new challenges arise as to managing states of Network Functions (NFs). Especially control plane VNFs, which are mainly found in cellular core networks like the 5G Core (5GC), received little attention since the shift towards virtualizing NFs. Most existing solutions for these core networks are often complex, intrusive, and are seldom compliant with the standard. With the emergence of 5G campus networks, UEs will be mainly machine-type devices. These devices communicate more deterministically, bringing new opportunities for elaborated state management. This work presents an emulation environment to perform rigorous measurements on state access patterns. The emulation comes with a fully parameterized Markov model for the UE to examine a wide variety of different devices. These measurements can then be used as a solid base for designing an efficient, simple, and standard conform state management solution that brings us further towards stateless core networks.}, subject = {Datennetz}, language = {en} } @techreport{GrigorjewDiederichHossfeldetal.2022, type = {Working Paper}, author = {Grigorjew, Alexej and Diederich, Philip and Hoßfeld, Tobias and Kellerer, Wolfgang}, title = {Affordable Measurement Setups for Networking Device Latency with Sub-Microsecond Accuracy}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28075}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280751}, pages = {5}, year = {2022}, abstract = {This document presents a networking latency measurement setup that focuses on affordability and universal applicability, and can provide sub-microsecond accuracy. It explains the prerequisites, hardware choices, and considerations to respect during measurement. In addition, it discusses the necessity for exhaustive latency measurements when dealing with high availability and low latency requirements. Preliminary results show that the accuracy is within ±0.02 μs when used with the Intel I350-T2 network adapter.}, subject = {Datennetz}, language = {en} } @techreport{GallenmuellerScholzStubbeetal.2022, type = {Working Paper}, author = {Gallenm{\"u}ller, Sebastian and Scholz, Dominik and Stubbe, Henning and Hauser, Eric and Carle, Georg}, title = {Reproducible by Design: Network Experiments with pos}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28083}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280834}, pages = {4}, year = {2022}, abstract = {In scientific research, the independent reproduction of experiments is the source of trust. Detailed documentation is required to enable experiment reproduction. Reproducibility awards were created to honor the increased documentation effort. In this work, we propose a novel approach toward reproducible research—a structured experimental workflow that allows the creation of reproducible experiments without requiring additional efforts of the researcher. Moreover, we present our own testbed and toolchain, namely, plain orchestrating service (pos), which enables the creation of such experimental workflows. The experiment is documented by our proposed, fully scripted experiment structure. In addition, pos provides scripts enabling the automation of the bundling and release of all experimental artifacts. We provide an interactive environment where pos experiments can be executed and reproduced, available at https://gallenmu.github.io/single-server-experiment.}, subject = {Datennetz}, language = {en} } @techreport{OdhahGrassKraemer2022, type = {Working Paper}, author = {Odhah, Najib and Grass, Eckhard and Kraemer, Rolf}, title = {Effective Rate of URLLC with Short Block-Length Information Theory}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28085}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280859}, pages = {4}, year = {2022}, abstract = {Shannon channel capacity estimation, based on large packet length is used in traditional Radio Resource Management (RRM) optimization. This is good for the normal transmission of data in a wired or wireless system. For industrial automation and control, rather short packages are used due to the short-latency requirements. Using Shannon's formula leads in this case to inaccurate RRM solutions, thus another formula should be used to optimize radio resources in short block-length packet transmission, which is the basic of Ultra-Reliable Low-Latency Communications (URLLCs). The stringent requirement of delay Quality of Service (QoS) for URLLCs requires a link-level channel model rather than a physical level channel model. After finding the basic and accurate formula of the achievable rate of short block-length packet transmission, the RRM optimization problem can be accurately formulated and solved under the new constraints of URLLCs. In this short paper, the current mathematical models, which are used in formulating the effective transmission rate of URLLCs, will be briefly explained. Then, using this rate in RRM for URLLC will be discussed.}, subject = {Datennetz}, language = {en} } @techreport{RaffeckGeisslerHossfeld2022, type = {Working Paper}, author = {Raffeck, Simon and Geißler, Stefan and Hoßfeld, Tobias}, title = {DBM: Decentralized Burst Mitigation for Self-Organizing LoRa Deployments}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28080}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280809}, pages = {4}, year = {2022}, abstract = {This work proposes a novel approach to disperse dense transmission intervals and reduce bursty traffic patterns without the need for centralized control. Furthermore, by keeping the mechanism as close to the Long Range Wide Area Network (LoRaWAN) standard as possible the suggested mechanism can be deployed within existing networks and can even be co-deployed with other devices.}, subject = {Datennetz}, language = {en} } @article{DumicBjeloperaNuechter2021, author = {Dumic, Emil and Bjelopera, Anamaria and N{\"u}chter, Andreas}, title = {Dynamic point cloud compression based on projections, surface reconstruction and video compression}, series = {Sensors}, volume = {22}, journal = {Sensors}, number = {1}, issn = {1424-8220}, doi = {10.3390/s22010197}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252231}, year = {2021}, abstract = {In this paper we will present a new dynamic point cloud compression based on different projection types and bit depth, combined with the surface reconstruction algorithm and video compression for obtained geometry and texture maps. Texture maps have been compressed after creating Voronoi diagrams. Used video compression is specific for geometry (FFV1) and texture (H.265/HEVC). Decompressed point clouds are reconstructed using a Poisson surface reconstruction algorithm. Comparison with the original point clouds was performed using point-to-point and point-to-plane measures. Comprehensive experiments show better performance for some projection maps: cylindrical, Miller and Mercator projections.}, language = {en} } @article{MadeiraGromerLatoschiketal.2021, author = {Madeira, Octavia and Gromer, Daniel and Latoschik, Marc Erich and Pauli, Paul}, title = {Effects of Acrophobic Fear and Trait Anxiety on Human Behavior in a Virtual Elevated Plus-Maze}, series = {Frontiers in Virtual Reality}, volume = {2}, journal = {Frontiers in Virtual Reality}, doi = {10.3389/frvir.2021.635048}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258709}, year = {2021}, abstract = {The Elevated Plus-Maze (EPM) is a well-established apparatus to measure anxiety in rodents, i.e., animals exhibiting an increased relative time spent in the closed vs. the open arms are considered anxious. To examine whether such anxiety-modulated behaviors are conserved in humans, we re-translated this paradigm to a human setting using virtual reality in a Cave Automatic Virtual Environment (CAVE) system. In two studies, we examined whether the EPM exploration behavior of humans is modulated by their trait anxiety and also assessed the individuals' levels of acrophobia (fear of height), claustrophobia (fear of confined spaces), sensation seeking, and the reported anxiety when on the maze. First, we constructed an exact virtual copy of the animal EPM adjusted to human proportions. In analogy to animal EPM studies, participants (N = 30) freely explored the EPM for 5 min. In the second study (N = 61), we redesigned the EPM to make it more human-adapted and to differentiate influences of trait anxiety and acrophobia by introducing various floor textures and lower walls of closed arms to the height of standard handrails. In the first experiment, hierarchical regression analyses of exploration behavior revealed the expected association between open arm avoidance and Trait Anxiety, an even stronger association with acrophobic fear. In the second study, results revealed that acrophobia was associated with avoidance of open arms with mesh-floor texture, whereas for trait anxiety, claustrophobia, and sensation seeking, no effect was detected. Also, subjects' fear rating was moderated by all psychometrics but trait anxiety. In sum, both studies consistently indicate that humans show no general open arm avoidance analogous to rodents and that human EPM behavior is modulated strongest by acrophobic fear, whereas trait anxiety plays a subordinate role. Thus, we conclude that the criteria for cross-species validity are met insufficiently in this case. Despite the exploratory nature, our studies provide in-depth insights into human exploration behavior on the virtual EPM.}, language = {en} } @article{SteinhaeusserOberdoerfervonMammenetal.2022, author = {Steinhaeusser, Sophia C. and Oberd{\"o}rfer, Sebastian and von Mammen, Sebastian and Latoschik, Marc Erich and Lugrin, Birgit}, title = {Joyful adventures and frightening places - designing emotion-inducing virtual environments}, series = {Frontiers in Virtual Reality}, volume = {3}, journal = {Frontiers in Virtual Reality}, issn = {2673-4192}, doi = {10.3389/frvir.2022.919163}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284831}, year = {2022}, abstract = {Virtual environments (VEs) can evoke and support emotions, as experienced when playing emotionally arousing games. We theoretically approach the design of fear and joy evoking VEs based on a literature review of empirical studies on virtual and real environments as well as video games' reviews and content analyses. We define the design space and identify central design elements that evoke specific positive and negative emotions. Based on that, we derive and present guidelines for emotion-inducing VE design with respect to design themes, colors and textures, and lighting configurations. To validate our guidelines in two user studies, we 1) expose participants to 360° videos of VEs designed following the individual guidelines and 2) immerse them in a neutral, positive and negative emotion-inducing VEs combining all respective guidelines in Virtual Reality. The results support our theoretically derived guidelines by revealing significant differences in terms of fear and joy induction.}, language = {en} } @article{PrantlZeckBaueretal.2022, author = {Prantl, Thomas and Zeck, Timo and Bauer, Andre and Ten, Peter and Prantl, Dominik and Yahya, Ala Eddine Ben and Ifflaender, Lukas and Dmitrienko, Alexandra and Krupitzer, Christian and Kounev, Samuel}, title = {A Survey on Secure Group Communication Schemes With Focus on IoT Communication}, series = {IEEE Access}, volume = {10}, journal = {IEEE Access}, doi = {10.1109/ACCESS.2022.3206451}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300257}, pages = {99944 -- 99962}, year = {2022}, abstract = {A key feature for Internet of Things (IoT) is to control what content is available to each user. To handle this access management, encryption schemes can be used. Due to the diverse usage of encryption schemes, there are various realizations of 1-to-1, 1-to-n, and n-to-n schemes in the literature. This multitude of encryption methods with a wide variety of properties presents developers with the challenge of selecting the optimal method for a particular use case, which is further complicated by the fact that there is no overview of existing encryption schemes. To fill this gap, we envision a cryptography encyclopedia providing such an overview of existing encryption schemes. In this survey paper, we take a first step towards such an encyclopedia by creating a sub-encyclopedia for secure group communication (SGC) schemes, which belong to the n-to-n category. We extensively surveyed the state-of-the-art and classified 47 different schemes. More precisely, we provide (i) a comprehensive overview of the relevant security features, (ii) a set of relevant performance metrics, (iii) a classification for secure group communication schemes, and (iv) workflow descriptions of the 47 schemes. Moreover, we perform a detailed performance and security evaluation of the 47 secure group communication schemes. Based on this evaluation, we create a guideline for the selection of secure group communication schemes.}, language = {en} } @article{OberdoerferHeidrichBirnstieletal.2021, author = {Oberd{\"o}rfer, Sebastian and Heidrich, David and Birnstiel, Sandra and Latoschik, Marc Erich}, title = {Enchanted by Your Surrounding? Measuring the Effects of Immersion and Design of Virtual Environments on Decision-Making}, series = {Frontiers in Virtual Reality}, volume = {2}, journal = {Frontiers in Virtual Reality}, doi = {10.3389/frvir.2021.679277}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260101}, pages = {679277}, year = {2021}, abstract = {Impaired decision-making leads to the inability to distinguish between advantageous and disadvantageous choices. The impairment of a person's decision-making is a common goal of gambling games. Given the recent trend of gambling using immersive Virtual Reality it is crucial to investigate the effects of both immersion and the virtual environment (VE) on decision-making. In a novel user study, we measured decision-making using three virtual versions of the Iowa Gambling Task (IGT). The versions differed with regard to the degree of immersion and design of the virtual environment. While emotions affect decision-making, we further measured the positive and negative affect of participants. A higher visual angle on a stimulus leads to an increased emotional response. Thus, we kept the visual angle on the Iowa Gambling Task the same between our conditions. Our results revealed no significant impact of immersion or the VE on the IGT. We further found no significant difference between the conditions with regard to positive and negative affect. This suggests that neither the medium used nor the design of the VE causes an impairment of decision-making. However, in combination with a recent study, we provide first evidence that a higher visual angle on the IGT leads to an effect of impairment.}, language = {en} } @techreport{SavvidisRothTutsch2022, type = {Working Paper}, author = {Savvidis, Dimitrios and Roth, Robert and Tutsch, Dietmar}, title = {Static Evaluation of a Wheel-Topology for an SDN-based Network Usecase}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28071}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280715}, pages = {3}, year = {2022}, abstract = {The increased occurrence of Software-Defined-Networking (SDN) not only improves the dynamics and maintenance of network architectures, but also opens up new use cases and application possibilities. Based on these observations, we propose a new network topology consisting of a star and a ring topology. This hybrid topology will be called wheel topology in this paper. We have considered the static characteristics of the wheel topology and compare them with known other topologies.}, subject = {Datennetz}, language = {en} } @article{WinterKernGalletal.2021, author = {Winter, Carla and Kern, Florian and Gall, Dominik and Latoschik, Marc Erich and Pauli, Paul and K{\"a}thner, Ivo}, title = {Immersive virtual reality during gait rehabilitation increases walking speed and motivation: a usability evaluation with healthy participants and individuals with multiple sclerosis and stroke}, series = {Journal of Neuroengineering and Rehabilitation}, volume = {18}, journal = {Journal of Neuroengineering and Rehabilitation}, number = {1}, issn = {1743-0003}, doi = {10.1186/s12984-021-00848-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258698}, year = {2021}, abstract = {Background: The rehabilitation of gait disorders in patients with multiple sclerosis (MS) and stroke is often based on conventional treadmill training. Virtual reality (VR)-based treadmill training can increase motivation and improve therapy outcomes. The present study evaluated an immersive virtual reality application (using a head-mounted display, HMD) for gait rehabilitation with patients to (1) demonstrate its feasibility and acceptance and to (2) compare its short-term effects to a semi-immersive presentation (using a monitor) and a conventional treadmill training without VR to assess the usability of both systems and estimate the effects on walking speed and motivation. Methods: In a within-subjects study design, 36 healthy participants and 14 persons with MS or stroke participated in each of the three experimental conditions (VR via HMD, VR via monitor, treadmill training without VR). Results: For both groups, the walking speed in the HMD condition was higher than in treadmill training without VR and in the monitor condition. Healthy participants reported a higher motivation after the HMD condition as compared with the other conditions. Importantly, no side effects in the sense of simulator sickness occurred and usability ratings were high. No increases in heart rate were observed following the VR conditions. Presence ratings were higher for the HMD condition compared with the monitor condition for both user groups. Most of the healthy study participants (89\%) and patients (71\%) preferred the HMD-based training among the three conditions and most patients could imagine using it more frequently. Conclusions For the first time, the present study evaluated the usability of an immersive VR system for gait rehabilitation in a direct comparison with a semi-immersive system and a conventional training without VR with healthy participants and patients. The study demonstrated the feasibility of combining a treadmill training with immersive VR. Due to its high usability and low side effects, it might be particularly suited for patients to improve training motivation and training outcome e. g. the walking speed compared with treadmill training using no or only semi-immersive VR. Immersive VR systems still require specific technical setup procedures. This should be taken into account for specific clinical use-cases during a cost-benefit assessment.}, language = {en} } @article{LohWamserPoigneeetal.2022, author = {Loh, Frank and Wamser, Florian and Poign{\´e}e, Fabian and Geißler, Stefan and Hoßfeld, Tobias}, title = {YouTube Dataset on Mobile Streaming for Internet Traffic Modeling and Streaming Analysis}, series = {Scientific Data}, volume = {9}, journal = {Scientific Data}, number = {1}, doi = {10.1038/s41597-022-01418-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300240}, year = {2022}, abstract = {Around 4.9 billion Internet users worldwide watch billions of hours of online video every day. As a result, streaming is by far the predominant type of traffic in communication networks. According to Google statistics, three out of five video views come from mobile devices. Thus, in view of the continuous technological advances in end devices and increasing mobile use, datasets for mobile streaming are indispensable in research but only sparsely dealt with in literature so far. With this public dataset, we provide 1,081 hours of time-synchronous video measurements at network, transport, and application layer with the native YouTube streaming client on mobile devices. The dataset includes 80 network scenarios with 171 different individual bandwidth settings measured in 5,181 runs with limited bandwidth, 1,939 runs with emulated 3 G/4 G traces, and 4,022 runs with pre-defined bandwidth changes. This corresponds to 332 GB video payload. We present the most relevant quality indicators for scientific use, i.e., initial playback delay, streaming video quality, adaptive video quality changes, video rebuffering events, and streaming phases.}, language = {en} } @article{GallRothStauffertetal.2021, author = {Gall, Dominik and Roth, Daniel and Stauffert, Jan-Philipp and Zarges, Julian and Latoschik, Marc Erich}, title = {Embodiment in Virtual Reality Intensifies Emotional Responses to Virtual Stimuli}, series = {Frontiers in Psychology}, volume = {12}, journal = {Frontiers in Psychology}, issn = {1664-1078}, doi = {10.3389/fpsyg.2021.674179}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245624}, year = {2021}, abstract = {Modulating emotional responses to virtual stimuli is a fundamental goal of many immersive interactive applications. In this study, we leverage the illusion of illusory embodiment and show that owning a virtual body provides means to modulate emotional responses. In a single-factor repeated-measures experiment, we manipulated the degree of illusory embodiment and assessed the emotional responses to virtual stimuli. We presented emotional stimuli in the same environment as the virtual body. Participants experienced higher arousal, dominance, and more intense valence in the high embodiment condition compared to the low embodiment condition. The illusion of embodiment thus intensifies the emotional processing of the virtual environment. This result suggests that artificial bodies can increase the effectiveness of immersive applications psychotherapy, entertainment, computer-mediated social interactions, or health applications.}, language = {en} } @article{SteiningerKobsDavidsonetal.2021, author = {Steininger, Michael and Kobs, Konstantin and Davidson, Padraig and Krause, Anna and Hotho, Andreas}, title = {Density-based weighting for imbalanced regression}, series = {Machine Learning}, volume = {110}, journal = {Machine Learning}, number = {8}, issn = {1573-0565}, doi = {10.1007/s10994-021-06023-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-269177}, pages = {2187-2211}, year = {2021}, abstract = {In many real world settings, imbalanced data impedes model performance of learning algorithms, like neural networks, mostly for rare cases. This is especially problematic for tasks focusing on these rare occurrences. For example, when estimating precipitation, extreme rainfall events are scarce but important considering their potential consequences. While there are numerous well studied solutions for classification settings, most of them cannot be applied to regression easily. Of the few solutions for regression tasks, barely any have explored cost-sensitive learning which is known to have advantages compared to sampling-based methods in classification tasks. In this work, we propose a sample weighting approach for imbalanced regression datasets called DenseWeight and a cost-sensitive learning approach for neural network regression with imbalanced data called DenseLoss based on our weighting scheme. DenseWeight weights data points according to their target value rarities through kernel density estimation (KDE). DenseLoss adjusts each data point's influence on the loss according to DenseWeight, giving rare data points more influence on model training compared to common data points. We show on multiple differently distributed datasets that DenseLoss significantly improves model performance for rare data points through its density-based weighting scheme. Additionally, we compare DenseLoss to the state-of-the-art method SMOGN, finding that our method mostly yields better performance. Our approach provides more control over model training as it enables us to actively decide on the trade-off between focusing on common or rare cases through a single hyperparameter, allowing the training of better models for rare data points.}, language = {en} } @techreport{BoeschStielerLydonetal.2023, author = {B{\"o}sch, Carolin and Stieler, Malena and Lydon, Salomon and Hesse, Martin and Ali, Hassan and Finzel, Matthias and Faraz Ali, Syed and Salian, Yash and Alnoor, Hiba and John, Jeena and Lakkad, Harsh and Bhosale, Devraj and Jafarian, Timon and Parvathi, Uma and Ezzatpoor, Narges and Datar, Tanuja}, title = {Venus Research Station}, issn = {2747-9374}, doi = {10.25972/OPUS-32869}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-328695}, pages = {232}, year = {2023}, abstract = {Because of the extreme conditions in the atmosphere, Venus has been less explored than for example Mars. Only a few probes have been able to survive on the surface for very short periods in the past and have sent data. The atmosphere is also far from being fully explored. It could even be that building blocks of life can be found in more moderate layers of the planet's atmosphere. It can therefore be assumed that the planet Venus will increasingly become a focus of exploration. One way to collect significantly more data in situ is to build and operate an atmospheric research station over an extended period of time. This could carry out measurements at different positions and at different times and thus significantly expand our knowledge of the planet. In this work, the design of a Venus Research Station floating within the Venusian atmosphere is presented, which is complemented by the design of deployable atmospheric Scouts. The design of these components is done on a conceptual basis.}, subject = {Venus}, language = {en} } @article{KempfScharnaglHeiletal.2022, author = {Kempf, Florian and Scharnagl, Julian and Heil, Stefan and Schilling, Klaus}, title = {Self-organizing control-loop recovery for predictive networked formation control of fractionated spacecraft}, series = {Aerospace}, volume = {9}, journal = {Aerospace}, number = {10}, issn = {2226-4310}, doi = {10.3390/aerospace9100529}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288041}, year = {2022}, abstract = {Going beyond the current trend of cooperating multiple small satellites we arrive at fractionated satellite architectures. Here the subsystems of all satellites directly self-organize and cooperate among themselves to achieve a common mission goal. Although this leads to a further increase of the advantages of the initial trend it also introduces new challenges, one of which is how to perform closed-loop control of a satellite over a network of subsystems. We present a two-fold approach to deal with the two main disturbances, data losses in the network and failure of the controller, in a networked predictive formation control scenario. To deal with data loss an event based networked model predictive control approach is extended to enable it to adapt to changing network conditions. The controller failure detection and compensation approach is tailored for a possibly large network of heterogeneous cooperating actuator- and controller nodes. The self-organized control task redistribution uses an auction-based methodology. It scales well with the number of nodes and allows to optimize for continuing good control performance despite the controller switch. The stability and smooth control behavior of our approach during a self-organized controller failure compensation while also being subject to data losses was demonstrated on a hardware testbed using as mission a formation control scenario.}, language = {en} } @article{WalterDegenPfeifferetal.2021, author = {Walter, Thomas and Degen, Jacqueline and Pfeiffer, Keram and St{\"o}ckl, Anna and Montenegro, Sergio and Degen, Tobias}, title = {A new innovative real-time tracking method for flying insects applicable under natural conditions}, series = {BMC Zoology}, volume = {6}, journal = {BMC Zoology}, doi = {10.1186/s40850-021-00097-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265716}, year = {2021}, abstract = {Background Sixty percent of all species are insects, yet despite global efforts to monitor animal movement patterns, insects are continuously underrepresented. This striking difference between species richness and the number of species monitored is not due to a lack of interest but rather to the lack of technical solutions. Often the accuracy and speed of established tracking methods is not high enough to record behavior and react to it experimentally in real-time, which applies in particular to small flying animals. Results Our new method of real-time tracking relates to frequencies of solar radiation which are almost completely absorbed by traveling through the atmosphere. For tracking, photoluminescent tags with a peak emission (1400 nm), which lays in such a region of strong absorption through the atmosphere, were attached to the animals. The photoluminescent properties of passivated lead sulphide quantum dots were responsible for the emission of light by the tags and provide a superb signal-to noise ratio. We developed prototype markers with a weight of 12.5 mg and a diameter of 5 mm. Furthermore, we developed a short wave infrared detection system which can record and determine the position of an animal in a heterogeneous environment with a delay smaller than 10 ms. With this method we were able to track tagged bumblebees as well as hawk moths in a flight arena that was placed outside on a natural meadow. Conclusion Our new method eliminates the necessity of a constant or predictable environment for many experimental setups. Furthermore, we postulate that the developed matrix-detector mounted to a multicopter will enable tracking of small flying insects, over medium range distances (>1000m) in the near future because: a) the matrix-detector equipped with an 70 mm interchangeable lens weighs less than 380 g, b) it evaluates the position of an animal in real-time and c) it can directly control and communicate with electronic devices.}, language = {en} } @article{LatoschikWienrich2022, author = {Latoschik, Marc Erich and Wienrich, Carolin}, title = {Congruence and plausibility, not presence: pivotal conditions for XR experiences and effects, a novel approach}, series = {Frontiers in Virtual Reality}, volume = {3}, journal = {Frontiers in Virtual Reality}, issn = {2673-4192}, doi = {10.3389/frvir.2022.694433}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284787}, year = {2022}, abstract = {Presence is often considered the most important quale describing the subjective feeling of being in a computer-generated and/or computer-mediated virtual environment. The identification and separation of orthogonal presence components, i.e., the place illusion and the plausibility illusion, has been an accepted theoretical model describing Virtual Reality (VR) experiences for some time. This perspective article challenges this presence-oriented VR theory. First, we argue that a place illusion cannot be the major construct to describe the much wider scope of virtual, augmented, and mixed reality (VR, AR, MR: or XR for short). Second, we argue that there is no plausibility illusion but merely plausibility, and we derive the place illusion caused by the congruent and plausible generation of spatial cues and similarly for all the current model's so-defined illusions. Finally, we propose congruence and plausibility to become the central essential conditions in a novel theoretical model describing XR experiences and effects.}, language = {en} } @article{LandeckAlvarezIgarzabalUnruhetal.2022, author = {Landeck, Maximilian and Alvarez Igarz{\´a}bal, Federico and Unruh, Fabian and Habenicht, Hannah and Khoshnoud, Shiva and Wittmann, Marc and Lugrin, Jean-Luc and Latoschik, Marc Erich}, title = {Journey through a virtual tunnel: Simulated motion and its effects on the experience of time}, series = {Frontiers in Virtual Reality}, volume = {3}, journal = {Frontiers in Virtual Reality}, issn = {2673-4192}, doi = {10.3389/frvir.2022.1059971}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301519}, year = {2022}, abstract = {This paper examines the relationship between time and motion perception in virtual environments. Previous work has shown that the perception of motion can affect the perception of time. We developed a virtual environment that simulates motion in a tunnel and measured its effects on the estimation of the duration of time, the speed at which perceived time passes, and the illusion of self-motion, also known as vection. When large areas of the visual field move in the same direction, vection can occur; observers often perceive this as self-motion rather than motion of the environment. To generate different levels of vection and investigate its effects on time perception, we developed an abstract procedural tunnel generator. The generator can simulate different speeds and densities of tunnel sections (visibly distinguishable sections that form the virtual tunnel), as well as the degree of embodiment of the user avatar (with or without virtual hands). We exposed participants to various tunnel simulations with different durations, speeds, and densities in a remote desktop and a virtual reality (VR) laboratory study. Time passed subjectively faster under high-speed and high-density conditions in both studies. The experience of self-motion was also stronger under high-speed and high-density conditions. Both studies revealed a significant correlation between the perceived passage of time and perceived self-motion. Subjects in the virtual reality study reported a stronger self-motion experience, a faster perceived passage of time, and shorter time estimates than subjects in the desktop study. Our results suggest that a virtual tunnel simulation can manipulate time perception in virtual reality. We will explore these results for the development of virtual reality applications for therapeutic approaches in our future work. This could be particularly useful in treating disorders like depression, autism, and schizophrenia, which are known to be associated with distortions in time perception. For example, the tunnel could be therapeutically applied by resetting patients' time perceptions by exposing them to the tunnel under different conditions, such as increasing or decreasing perceived time.}, language = {en} } @article{BrandTroyaKrenzeretal.2022, author = {Brand, Markus and Troya, Joel and Krenzer, Adrian and Saßmannshausen, Zita and Zoller, Wolfram G. and Meining, Alexander and Lux, Thomas J. and Hann, Alexander}, title = {Development and evaluation of a deep learning model to improve the usability of polyp detection systems during interventions}, series = {United European Gastroenterology Journal}, volume = {10}, journal = {United European Gastroenterology Journal}, number = {5}, doi = {10.1002/ueg2.12235}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312708}, pages = {477-484}, year = {2022}, abstract = {Background The efficiency of artificial intelligence as computer-aided detection (CADe) systems for colorectal polyps has been demonstrated in several randomized trials. However, CADe systems generate many distracting detections, especially during interventions such as polypectomies. Those distracting CADe detections are often induced by the introduction of snares or biopsy forceps as the systems have not been trained for such situations. In addition, there are a significant number of non-false but not relevant detections, since the polyp has already been previously detected. All these detections have the potential to disturb the examiner's work. Objectives Development and evaluation of a convolutional neuronal network that recognizes instruments in the endoscopic image, suppresses distracting CADe detections, and reliably detects endoscopic interventions. Methods A total of 580 different examination videos from 9 different centers using 4 different processor types were screened for instruments and represented the training dataset (519,856 images in total, 144,217 contained a visible instrument). The test dataset included 10 full-colonoscopy videos that were analyzed for the recognition of visible instruments and detections by a commercially available CADe system (GI Genius, Medtronic). Results The test dataset contained 153,623 images, 8.84\% of those presented visible instruments (12 interventions, 19 instruments used). The convolutional neuronal network reached an overall accuracy in the detection of visible instruments of 98.59\%. Sensitivity and specificity were 98.55\% and 98.92\%, respectively. A mean of 462.8 frames containing distracting CADe detections per colonoscopy were avoided using the convolutional neuronal network. This accounted for 95.6\% of all distracting CADe detections. Conclusions Detection of endoscopic instruments in colonoscopy using artificial intelligence technology is reliable and achieves high sensitivity and specificity. Accordingly, the new convolutional neuronal network could be used to reduce distracting CADe detections during endoscopic procedures. Thus, our study demonstrates the great potential of artificial intelligence technology beyond mucosal assessment.}, language = {en} } @article{ObremskiFriedrichHaaketal.2022, author = {Obremski, David and Friedrich, Paula and Haak, Nora and Schaper, Philipp and Lugrin, Birgit}, title = {The impact of mixed-cultural speech on the stereotypical perception of a virtual robot}, series = {Frontiers in Robotics and AI}, volume = {9}, journal = {Frontiers in Robotics and AI}, issn = {2296-9144}, doi = {10.3389/frobt.2022.983955}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293531}, year = {2022}, abstract = {Despite the fact that mixed-cultural backgrounds become of increasing importance in our daily life, the representation of multiple cultural backgrounds in one entity is still rare in socially interactive agents (SIAs). This paper's contribution is twofold. First, it provides a survey of research on mixed-cultured SIAs. Second, it presents a study investigating how mixed-cultural speech (in this case, non-native accent) influences how a virtual robot is perceived in terms of personality, warmth, competence and credibility. Participants with English or German respectively as their first language watched a video of a virtual robot speaking in either standard English or German-accented English. It was expected that the German-accented speech would be rated more positively by native German participants as well as elicit the German stereotypes credibility and conscientiousness for both German and English participants. Contrary to the expectations, German participants rated the virtual robot lower in terms of competence and credibility when it spoke with a German accent, whereas English participants perceived the virtual robot with a German accent as more credible compared to the version without an accent. Both the native English and native German listeners classified the virtual robot with a German accent as significantly more neurotic than the virtual robot speaking standard English. This work shows that by solely implementing a non-native accent in a virtual robot, stereotypes are partly transferred. It also shows that the implementation of a non-native accent leads to differences in the perception of the virtual robot.}, language = {en} } @article{TsouliasJoerissenNuechter2022, author = {Tsoulias, Nikos and J{\"o}rissen, Sven and N{\"u}chter, Andreas}, title = {An approach for monitoring temperature on fruit surface by means of thermal point cloud}, series = {MethodsX}, volume = {9}, journal = {MethodsX}, issn = {2215-0161}, doi = {10.1016/j.mex.2022.101712}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300270}, year = {2022}, abstract = {Heat and excessive solar radiation can produce abiotic stresses during apple maturation, resulting fruit quality. Therefore, the monitoring of temperature on fruit surface (FST) over the growing period can allow to identify thresholds, above of which several physiological disorders such as sunburn may occur in apple. The current approaches neglect spatial variation of FST and have reduced repeatability, resulting in unreliable predictions. In this study, LiDAR laser scanning and thermal imaging were employed to detect the temperature on fruit surface by means of 3D point cloud. A process for calibrating the two sensors based on an active board target and producing a 3D thermal point cloud was suggested. After calibration, the sensor system was utilised to scan the fruit trees, while temperature values assigned in the corresponding 3D point cloud were based on the extrinsic calibration. Whereas a fruit detection algorithm was performed to segment the FST from each apple. • The approach allows the calibration of LiDAR laser scanner with thermal camera in order to produce a 3D thermal point cloud. • The method can be applied in apple trees for segmenting FST in 3D. Whereas the approach can be utilised to predict several physiological disorders including sunburn on fruit surface.}, language = {en} } @article{SeufertPoigneeHossfeldetal.2022, author = {Seufert, Anika and Poign{\´e}e, Fabian and Hoßfeld, Tobias and Seufert, Michael}, title = {Pandemic in the digital age: analyzing WhatsApp communication behavior before, during, and after the COVID-19 lockdown}, series = {Humanities and Social Sciences Communications}, volume = {9}, journal = {Humanities and Social Sciences Communications}, doi = {10.1057/s41599-022-01161-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300261}, year = {2022}, abstract = {The strict restrictions introduced by the COVID-19 lockdowns, which started from March 2020, changed people's daily lives and habits on many different levels. In this work, we investigate the impact of the lockdown on the communication behavior in the mobile instant messaging application WhatsApp. Our evaluations are based on a large dataset of 2577 private chat histories with 25,378,093 messages from 51,973 users. The analysis of the one-to-one and group conversations confirms that the lockdown severely altered the communication in WhatsApp chats compared to pre-pandemic time ranges. In particular, we observe short-term effects, which caused an increased message frequency in the first lockdown months and a shifted communication activity during the day in March and April 2020. Moreover, we also see long-term effects of the ongoing pandemic situation until February 2021, which indicate a change of communication behavior towards more regular messaging, as well as a persisting change in activity during the day. The results of our work show that even anonymized chat histories can tell us a lot about people's behavior and especially behavioral changes during the COVID-19 pandemic and thus are of great relevance for behavioral researchers. Furthermore, looking at the pandemic from an Internet provider perspective, these insights can be used during the next pandemic, or if the current COVID-19 situation worsens, to adapt communication networks to the changed usage behavior early on and thus avoid network congestion.}, language = {en} } @article{HentschelKobsHotho2022, author = {Hentschel, Simon and Kobs, Konstantin and Hotho, Andreas}, title = {CLIP knows image aesthetics}, series = {Frontiers in Artificial Intelligence}, volume = {5}, journal = {Frontiers in Artificial Intelligence}, issn = {2624-8212}, doi = {10.3389/frai.2022.976235}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297150}, year = {2022}, abstract = {Most Image Aesthetic Assessment (IAA) methods use a pretrained ImageNet classification model as a base to fine-tune. We hypothesize that content classification is not an optimal pretraining task for IAA, since the task discourages the extraction of features that are useful for IAA, e.g., composition, lighting, or style. On the other hand, we argue that the Contrastive Language-Image Pretraining (CLIP) model is a better base for IAA models, since it has been trained using natural language supervision. Due to the rich nature of language, CLIP needs to learn a broad range of image features that correlate with sentences describing the image content, composition, environments, and even subjective feelings about the image. While it has been shown that CLIP extracts features useful for content classification tasks, its suitability for tasks that require the extraction of style-based features like IAA has not yet been shown. We test our hypothesis by conducting a three-step study, investigating the usefulness of features extracted by CLIP compared to features obtained from the last layer of a comparable ImageNet classification model. In each step, we get more computationally expensive. First, we engineer natural language prompts that let CLIP assess an image's aesthetic without adjusting any weights in the model. To overcome the challenge that CLIP's prompting only is applicable to classification tasks, we propose a simple but effective strategy to convert multiple prompts to a continuous scalar as required when predicting an image's mean aesthetic score. Second, we train a linear regression on the AVA dataset using image features obtained by CLIP's image encoder. The resulting model outperforms a linear regression trained on features from an ImageNet classification model. It also shows competitive performance with fully fine-tuned networks based on ImageNet, while only training a single layer. Finally, by fine-tuning CLIP's image encoder on the AVA dataset, we show that CLIP only needs a fraction of training epochs to converge, while also performing better than a fine-tuned ImageNet model. Overall, our experiments suggest that CLIP is better suited as a base model for IAA methods than ImageNet pretrained networks.}, language = {en} } @article{WienrichCarolusRothIsigkeitetal.2022, author = {Wienrich, Carolin and Carolus, Astrid and Roth-Isigkeit, David and Hotho, Andreas}, title = {Inhibitors and enablers to explainable AI success: a systematic examination of explanation complexity and individual characteristics}, series = {Multimodal Technologies and Interaction}, volume = {6}, journal = {Multimodal Technologies and Interaction}, number = {12}, issn = {2414-4088}, doi = {10.3390/mti6120106}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297288}, year = {2022}, abstract = {With the increasing adaptability and complexity of advisory artificial intelligence (AI)-based agents, the topics of explainable AI and human-centered AI are moving close together. Variations in the explanation itself have been widely studied, with some contradictory results. These could be due to users' individual differences, which have rarely been systematically studied regarding their inhibiting or enabling effect on the fulfillment of explanation objectives (such as trust, understanding, or workload). This paper aims to shed light on the significance of human dimensions (gender, age, trust disposition, need for cognition, affinity for technology, self-efficacy, attitudes, and mind attribution) as well as their interplay with different explanation modes (no, simple, or complex explanation). Participants played the game Deal or No Deal while interacting with an AI-based agent. The agent gave advice to the participants on whether they should accept or reject the deals offered to them. As expected, giving an explanation had a positive influence on the explanation objectives. However, the users' individual characteristics particularly reinforced the fulfillment of the objectives. The strongest predictor of objective fulfillment was the degree of attribution of human characteristics. The more human characteristics were attributed, the more trust was placed in the agent, advice was more likely to be accepted and understood, and important needs were satisfied during the interaction. Thus, the current work contributes to a better understanding of the design of explanations of an AI-based agent system that takes into account individual characteristics and meets the demand for both explainable and human-centered agent systems.}, language = {en} } @phdthesis{Bleier2023, author = {Bleier, Michael}, title = {Underwater Laser Scanning - Refractive Calibration, Self-calibration and Mapping for 3D Reconstruction}, isbn = {978-3-945459-45-4}, doi = {10.25972/OPUS-32269}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322693}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {There is great interest in affordable, precise and reliable metrology underwater: Archaeologists want to document artifacts in situ with high detail. In marine research, biologists require the tools to monitor coral growth and geologists need recordings to model sediment transport. Furthermore, for offshore construction projects, maintenance and inspection millimeter-accurate measurements of defects and offshore structures are essential. While the process of digitizing individual objects and complete sites on land is well understood and standard methods, such as Structure from Motion or terrestrial laser scanning, are regularly applied, precise underwater surveying with high resolution is still a complex and difficult task. Applying optical scanning techniques in water is challenging due to reduced visibility caused by turbidity and light absorption. However, optical underwater scanners provide significant advantages in terms of achievable resolution and accuracy compared to acoustic systems. This thesis proposes an underwater laser scanning system and the algorithms for creating dense and accurate 3D scans in water. It is based on laser triangulation and the main optical components are an underwater camera and a cross-line laser projector. The prototype is configured with a motorized yaw axis for capturing scans from a tripod. Alternatively, it is mounted to a moving platform for mobile mapping. The main focus lies on the refractive calibration of the underwater camera and laser projector, the image processing and 3D reconstruction. For highest accuracy, the refraction at the individual media interfaces must be taken into account. This is addressed by an optimization-based calibration framework using a physical-geometric camera model derived from an analytical formulation of a ray-tracing projection model. In addition to scanning underwater structures, this work presents the 3D acquisition of semi-submerged structures and the correction of refraction effects. As in-situ calibration in water is complex and time-consuming, the challenge of transferring an in-air scanner calibration to water without re-calibration is investigated, as well as self-calibration techniques for structured light. The system was successfully deployed in various configurations for both static scanning and mobile mapping. An evaluation of the calibration and 3D reconstruction using reference objects and a comparison of free-form surfaces in clear water demonstrate the high accuracy potential in the range of one millimeter to less than one centimeter, depending on the measurement distance. Mobile underwater mapping and motion compensation based on visual-inertial odometry is demonstrated using a new optical underwater scanner based on fringe projection. Continuous registration of individual scans allows the acquisition of 3D models from an underwater vehicle. RGB images captured in parallel are used to create 3D point clouds of underwater scenes in full color. 3D maps are useful to the operator during the remote control of underwater vehicles and provide the building blocks to enable offshore inspection and surveying tasks. The advancing automation of the measurement technology will allow non-experts to use it, significantly reduce acquisition time and increase accuracy, making underwater metrology more cost-effective.}, subject = {Selbstkalibrierung}, language = {en} } @techreport{GrossmannLe2023, type = {Working Paper}, author = {Großmann, Marcel and Le, Duy Thanh}, title = {Visualization of Network Emulation Enabled by Kathar{\´a}}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32218}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322189}, pages = {4}, year = {2023}, abstract = {In network research, reproducibility of experiments is not always easy to achieve. Infrastructures are cumbersome to set up or are not available due to vendor-specific devices. Emulators try to overcome those issues to a given extent and are available in different service models. Unfortunately, the usability of emulators requires time-consuming efforts and a deep understanding of their functionality. At first, we analyze to which extent currently available open-source emulators support network configurations and how user-friendly they are. With these insights, we describe, how an ease-to-use emulator is implemented and may run as a Network Emulator as a Service (NEaaS). Therefore, virtualization plays a major role in order to deploy a NEaaS based on Kathar{\´a}.}, language = {en} } @techreport{DworzakGrossmannLe2023, type = {Working Paper}, author = {Dworzak, Manuel and Großmann, Marcel and Le, Duy Thanh}, title = {Federated Learning for Service Placement in Fog and Edge Computing}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32219}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322193}, pages = {4}, year = {2023}, abstract = {Service orchestration requires enormous attention and is a struggle nowadays. Of course, virtualization provides a base level of abstraction for services to be deployable on a lot of infrastructures. With container virtualization, the trend to migrate applications to a micro-services level in order to be executable in Fog and Edge Computing environments increases manageability and maintenance efforts rapidly. Similarly, network virtualization adds effort to calibrate IP flows for Software-Defined Networks and eventually route it by means of Network Function Virtualization. Nevertheless, there are concepts like MAPE-K to support micro-service distribution in next-generation cloud and network environments. We want to explore, how a service distribution can be improved by adopting machine learning concepts for infrastructure or service changes. Therefore, we show how federated machine learning is integrated into a cloud-to-fog-continuum without burdening single nodes.}, language = {en} } @article{HelmerHottenrottRodemersetal.2022, author = {Helmer, Philipp and Hottenrott, Sebastian and Rodemers, Philipp and Leppich, Robert and Helwich, Maja and Pryss, R{\"u}diger and Kranke, Peter and Meybohm, Patrick and Winkler, Bernd E. and Sammeth, Michael}, title = {Accuracy and Systematic Biases of Heart Rate Measurements by Consumer-Grade Fitness Trackers in Postoperative Patients: Prospective Clinical Trial}, series = {Journal of Medical Internet Research}, volume = {24}, journal = {Journal of Medical Internet Research}, number = {12}, doi = {10.2196/42359}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-299679}, year = {2022}, abstract = {Background: Over the recent years, technological advances of wrist-worn fitness trackers heralded a new era in the continuous monitoring of vital signs. So far, these devices have primarily been used for sports. Objective: However, for using these technologies in health care, further validations of the measurement accuracy in hospitalized patients are essential but lacking to date. Methods: We conducted a prospective validation study with 201 patients after moderate to major surgery in a controlled setting to benchmark the accuracy of heart rate measurements in 4 consumer-grade fitness trackers (Apple Watch 7, Garmin Fenix 6 Pro, Withings ScanWatch, and Fitbit Sense) against the clinical gold standard (electrocardiography). Results: All devices exhibited high correlation (r≥0.95; P<.001) and concordance (rc≥0.94) coefficients, with a relative error as low as mean absolute percentage error <5\% based on 1630 valid measurements. We identified confounders significantly biasing the measurement accuracy, although not at clinically relevant levels (mean absolute error<5 beats per minute). Conclusions: Consumer-grade fitness trackers appear promising in hospitalized patients for monitoring heart rate.}, language = {en} } @article{KoopmannStubbemannKapaetal.2021, author = {Koopmann, Tobias and Stubbemann, Maximilian and Kapa, Matthias and Paris, Michael and Buenstorf, Guido and Hanika, Tom and Hotho, Andreas and J{\"a}schke, Robert and Stumme, Gerd}, title = {Proximity dimensions and the emergence of collaboration: a HypTrails study on German AI research}, series = {Scientometrics}, volume = {126}, journal = {Scientometrics}, number = {12}, issn = {1588-2861}, doi = {10.1007/s11192-021-03922-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-269831}, pages = {9847-9868}, year = {2021}, abstract = {Creation and exchange of knowledge depends on collaboration. Recent work has suggested that the emergence of collaboration frequently relies on geographic proximity. However, being co-located tends to be associated with other dimensions of proximity, such as social ties or a shared organizational environment. To account for such factors, multiple dimensions of proximity have been proposed, including cognitive, institutional, organizational, social and geographical proximity. Since they strongly interrelate, disentangling these dimensions and their respective impact on collaboration is challenging. To address this issue, we propose various methods for measuring different dimensions of proximity. We then present an approach to compare and rank them with respect to the extent to which they indicate co-publications and co-inventions. We adapt the HypTrails approach, which was originally developed to explain human navigation, to co-author and co-inventor graphs. We evaluate this approach on a subset of the German research community, specifically academic authors and inventors active in research on artificial intelligence (AI). We find that social proximity and cognitive proximity are more important for the emergence of collaboration than geographic proximity.}, language = {en} } @article{KoehlerBauerDietzetal.2022, author = {Koehler, Jonas and Bauer, Andr{\´e} and Dietz, Andreas J. and Kuenzer, Claudia}, title = {Towards forecasting future snow cover dynamics in the European Alps — the potential of long optical remote-sensing time series}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {18}, issn = {2072-4292}, doi = {10.3390/rs14184461}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288338}, year = {2022}, abstract = {Snow is a vital environmental parameter and dynamically responsive to climate change, particularly in mountainous regions. Snow cover can be monitored at variable spatial scales using Earth Observation (EO) data. Long-lasting remote sensing missions enable the generation of multi-decadal time series and thus the detection of long-term trends. However, there have been few attempts to use these to model future snow cover dynamics. In this study, we, therefore, explore the potential of such time series to forecast the Snow Line Elevation (SLE) in the European Alps. We generate monthly SLE time series from the entire Landsat archive (1985-2021) in 43 Alpine catchments. Positive long-term SLE change rates are detected, with the highest rates (5-8 m/y) in the Western and Central Alps. We utilize this SLE dataset to implement and evaluate seven uni-variate time series modeling and forecasting approaches. The best results were achieved by Random Forests, with a Nash-Sutcliffe efficiency (NSE) of 0.79 and a Mean Absolute Error (MAE) of 258 m, Telescope (0.76, 268 m), and seasonal ARIMA (0.75, 270 m). Since the model performance varies strongly with the input data, we developed a combined forecast based on the best-performing methods in each catchment. This approach was then used to forecast the SLE for the years 2022-2029. In the majority of the catchments, the shift of the forecast median SLE level retained the sign of the long-term trend. In cases where a deviating SLE dynamic is forecast, a discussion based on the unique properties of the catchment and past SLE dynamics is required. In the future, we expect major improvements in our SLE forecasting efforts by including external predictor variables in a multi-variate modeling approach.}, language = {en} } @article{SchaffarczykKoehnOggianoetal.2022, author = {Schaffarczyk, Alois and Koehn, Silas and Oggiano, Luca and Schaffarczyk, Kai}, title = {Aerodynamic benefits by optimizing cycling posture}, series = {Applied Sciences}, volume = {12}, journal = {Applied Sciences}, number = {17}, issn = {2076-3417}, doi = {10.3390/app12178475}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285942}, year = {2022}, abstract = {An approach to aerodynamically optimizing cycling posture and reducing drag in an Ironman (IM) event was elaborated. Therefore, four commonly used positions in cycling were investigated and simulated for a flow velocity of 10 m/s and yaw angles of 0-20° using OpenFoam-based Nabla Flow CFD simulation software software. A cyclist was scanned using an IPhone 12, and a special-purpose meshing software BLENDER was used. Significant differences were observed by changing and optimizing the cyclist's posture. Aerodynamic drag coefficient (CdA) varies by more than a factor of 2, ranging from 0.214 to 0.450. Within a position, the CdA tends to increase slightly at yaw angles of 5-10° and decrease at higher yaw angles compared to a straight head wind, except for the time trial (TT) position. The results were applied to the IM Hawaii bike course (180 km), estimating a constant power output of 300 W. Including the wind distributions, two different bike split models for performance prediction were applied. Significant time saving of roughly 1 h was found. Finally, a machine learning approach to deduce 3D triangulation for specific body shapes from 2D pictures was tested.}, language = {en} } @article{SchlundGermanPruckner2022, author = {Schlund, Jonas and German, Reinhard and Pruckner, Marco}, title = {Synergy of unidirectional and bidirectional smart charging of electric vehicles for frequency containment reserve power provision}, series = {World Electric Vehicle Journal}, volume = {13}, journal = {World Electric Vehicle Journal}, number = {9}, issn = {2032-6653}, doi = {10.3390/wevj13090168}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288324}, year = {2022}, abstract = {Besides the integration of renewable energies, electric vehicles pose an additional challenge to modern power grids. However, electric vehicles can also be a flexibility source and contribute to the power system stability. Today, the power system still heavily relies on conventional technologies to stay stable. In order to operate a future power system based on renewable energies only, we need to understand the flexibility potential of assets such as electric vehicles and become able to use their flexibility. In this paper, we analyzed how vast amounts of coordinated charging processes can be used to provide frequency containment reserve power, one of the most important ancillary services for system stability. Therefore, we used an extensive simulation model of a virtual power plant of millions of electric vehicles. The model considers not only technical components but also the stochastic behavior of electric vehicle drivers based on real data. Our results show that, in 2030, electric vehicles have the potential to serve the whole frequency containment reserve power market in Germany. We differentiate between using unidirectional and bidirectional chargers. Bidirectional chargers have a larger potential but also result in unwanted battery degradation. Unidirectional chargers are more constrained in terms of flexibility, but do not lead to additional battery degradation. We conclude that using a mix of both can combine the advantages of both worlds. Thereby, average private cars can provide the service without any notable additional battery degradation and achieve yearly earnings between EUR 200 and EUR 500, depending on the volatile market prices. Commercial vehicles have an even higher potential, as the results increase with vehicle utilization and consumption.}, language = {en} }