@phdthesis{Fohmann2024, author = {Fohmann, Ingo}, title = {The Role of Sphingosine 1-phosphate and S1PR1-3 in the Pathophysiology of Meningococcal Meningitis}, doi = {10.25972/OPUS-36976}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-369764}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Neisseria meningitidis (N. meningitidis) is an obligate human pathogen which causes live-threatening sepsis and meningitis. The fatality rate after meningococcal infection is high and surviving patients often suffer from severe sequelae. To cause meningitis, N. meningitidis must overcome the endothelium of the blood-brain barrier. The bacterium achieves this through the interaction with endothelial surface receptors leading to alternations of the cellular metabolism and signaling, which lastly results in cellular uptake and barrier traversal of N. meningitidis. Sphingosine 1-phosphate (S1P) is a lipid mediator that belongs to the class of sphingolipids and regulates the integrity of the blood-brain barrier through the interaction with its cognate receptors S1P receptors 1-3 (S1PR1-3). In this study, high performance liquid chromatography coupled with mass spectrometry (LC-MS/MS) was used to generate a time-resolved picture of the sphingolipid metabolism in a brain endothelial cell line (hCMEC/D3) upon meningococcal infection. Among various changes, S1P was elevated in the cellular compartment as well as in the supernatant of infected hCMEC/D3s. Analysis of mRNA expression in infected hCMEC/D3s with quantitative real-time polymerase chain reaction (RT-qPCR) revealed that the increase in S1P could be attributed to the enhanced expression of the S1P-generating enzyme sphingosine kinase 1 (SphK1). Antibody-based detection of SphK1 protein or phosphorylation at SphK1 residue Serine 225 in hCMEC/D3 plasma membrane fractions via Western Blot revealed that N. meningitidis also induced SphK1 phospho-activation and recruitment to the plasma membrane. Importantly, recruitment of SphK1 to the plasma membrane increases the probability of substrate encounter, thus elevating SphK activity. Enhanced SphK activity was also reflected on a functional level, as detected by a commercially available ATP depletion assay used for measuring the enzymatic activity of SphK. Infection of hCMEC/D3 cells with pilus-deficient mutants resulted in a lower SphK activation compared to the N. meningitidis wild type strain. hCMEC/D3 treatment with pilus-enriched protein fractions showed SphK activation similar to the infection with living bacteria and could be ascribed to pilus interaction with the membrane-proximal domain of cellular surface receptor CD147. Inhibition of SphK1 or SphK2 through pre-treatment with specific inhibitors or RNA interference reduced uptake of N. meningitidis into hCMEC/D3 cells, as measured with Gentamicin protection assays. Released S1P induced the phospho-activation of epidermal growth factor receptor (EGFR) via S1PR2 activation, whose expression was also increasing during infection. Furthermore, S1PR2 blockage had a preventive effect on bacterial invasion into hCMEC/D3 cells. On the contrary, activation of S1PR1+3 also reduced bacterial uptake, indicating an opposing regulatory role of S1PR1+3 and S1PR2 during N. meningitidis uptake. Moreover, SphK2 inhibition prevented inflammatory cytokine expression as well as release of interleukin-8 after N. meningitidis infection. Taken together, this study demonstrates the central role of S1P and its cognate receptors S1PR1-3 in the pathophysiology of meningococcal meningitis.}, subject = {Blut-Hirn-Schranke}, language = {en} } @phdthesis{GamboaVargas2024, author = {Gamboa Vargas, Juan Fernando}, title = {Receptors of the TNFSF in the biology and regulation of Tregs}, doi = {10.25972/OPUS-36980}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-369801}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {In this work we expanded upon a study from our group where a ligand-based TNF-α mutein was developed to engage specifically TNFR2 and not TNFR1 activating Tregs and expanding them, which in an allo-HCT context conferred protection from GvHD. Fusing TNF trimers to the heavy chain of an Fc-dead and mouse irrelevant antibody, a new generation of this agonist was developed called NewSTAR2. It is believed that other members of the TNFSF can also target Tregs, therefore additional agonists against DR3 and GITR were developed under the same principles as for NewSTAR2. Phenotyping analysis of the expression of these three receptors were done to confirm their specificity for Tregs before in vitro and in vivo testings with mice or murine splenic cells. A potent expansion of Tregs was seen with NewSTAR2 and the other agonists as well as upregulation of activation markers on Tregs. Thorough analyses with NewSTAR2-treated mice showed how Tregs in several immune and non-immune organs were expanded and upregulated immunomodulatory receptors. A miniature suppressive assay and other cocultures with responder cells confirmed their enhanced suppression over unstimulated Tregs through contact dependent and independent mechanisms. Despite other myeloid cells also being increased after treatment, no undesired effects were observed under steady-state and prophylactic administration of a single dose of NewSTAR2 improved survival frequencies and lessened development of clinical symptoms. Prophylactic treatment with the other TNFRSF agonists showed similar protection yet Fc(DANA)-muTL1A was superior in in terms of less death events and lower clinical score. It was found that not all the three TNFSF members have redundant functions as development of skin lesions was observed with GITRL-based agonist Fc(DANA)-muGITRL, although its expansion of Tregs in steady-state was remarkable with no apparent adverse effects. Neither agonist had an impact on donor cell engraftment or allorective T cell response, however NewSTAR2-treatmend proved to reduce inflammation in small intestine and liver. This work is proof of concept of the effectivity of selectively engaging TNFSF to activate Tregs and expand them systemically allowing them to control strong and complex immune interactions like those governing GvHD.}, subject = {Regulatorischer T-Lymphozyt}, language = {en} } @phdthesis{Kreisz2024, author = {Kreisz, Philipp}, title = {Group S1 bZIP transcription factors regulate sink tissue development by controlling carbon and nitrogen resource allocation in \(Arabidopsis\) \(thaliana\)}, doi = {10.25972/OPUS-32192}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-321925}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The evolutionary success of higher plants is largely attributed to their tremendous developmental plasticity, which allows them to cope with adverse conditions. However, because these adaptations require investments of resources, they must be tightly regulated to avoid unfavourable trade-offs. Most of the resources required are macronutrients based on carbon and nitrogen. Limitations in the availability of these nutrients have major effects on gene expression, metabolism, and overall plant morphology. These changes are largely mediated by the highly conserved master kinase SNF1-RELATED PROTEIN KINASE1 (SnRK1), which represses growth and induces catabolic processes. Downstream of SnRK1, a hub of heterodimerising group C and S1 BASIC LEUCINE ZIPPER (bZIP) transcription factors has been identified. These bZIPs act as regulators of nutrient homeostasis and are highly expressed in strong sink tissues, such as flowers or the meristems that initiate lateral growth of both shoots and roots. However, their potential involvement in controlling developmental responses through their impact on resource allocation and usage has been largely neglected so far. Therefore, the objective of this work was to elucidate the impact of particularly S1 bZIPs on gene expression, metabolism, and plant development. Due to the high homology and suspected partial redundancy of S1 bZIPs, higher order loss-of-function mutants were generated using CRISPR-Cas9. The triple mutant bzip2/11/44 showed a variety of robust morphological changes but maintained an overall growth comparable to wildtype plants. In detail however, seedlings exhibited a strong reduction in primary root length. In addition, floral transition was delayed, and siliques and seeds were smaller, indicating a reduced supply of resources to the shoot and root apices. However, lateral root density and axillary shoot branching were increased, suggesting an increased ratio of lateral to apical growth in the mutant. The full group S1 knockout bzip1/2/11/44/53 showed similar phenotypes, albeit far more pronounced and accompanied by growth retardation. Metabolomic approaches revealed that these architectural changes were accompanied by reduced sugar levels in distal sink tissues such as flowers and roots. Sugar levels were also diminished in leaf apoplasts, indicating that long distance transport of sugars by apoplastic phloem loading was impaired in the mutants. In contrast, an increased sugar supply to the proximal axillary buds and elevated starch levels in the leaves were measured. In addition, free amino acid levels were increased in bzip2/11/44 and bzip1/2/11/44/53, especially for the important transport forms asparagine and glutamine. The increased C and N availability in the proximal tissues could be the cause of the increased axillary branching in the mutants. To identify bZIP target genes that might cause the observed shifts in metabolic status, RNAseq experiments were performed. Strikingly, clade III SUGARS WILL EVENTUALLY BE EXPORTED (SWEET) 8 genes were abundant among the differentially expressed genes. As SWEETs are crucial for sugar export to the apoplast and long-distance transport through the phloem, their reduced expression is likely to be the cause of the observed changes in sugar allocation. Similarly, the reduced expression of GLUTAMINE AMIDOTRANSFERASE 1_2.1 (GAT1_2.1), which exhibits glutaminase activity, could be an explanation for the abundance of glutamine in the mutants. Additional experiments (ATAC-seq, DAP� seq, PTA, q-RT-PCR) supported the direct induction of SWEETs and GAT1_2.1 by S1 bZIPs. To confirm the involvement of these target genes in the observed S1 bZIP mutant phenotypes, loss-of-function mutants were obtained, which showed moderately increased axillary branching. At the same time, the induced overexpression of bZIP11 in axillary meristems had the opposite effect. Collectively, a model is proposed for the function of S1 bZIPs in regulating sink tissue development. For efficient long-distance sugar transport, bZIPs may be required to induce the expression of clade III SWEETs. Thus, reduced SWEET expression in the S1 bZIP mutants would lead to a decrease in apoplastic sugar loading and a reduced supply to distal sinks such as shoot or root apices. The reduction in long� distance transport could lead to sugar accumulation in the leaves, which would then increasingly be transported via symplastic routes towards proximal sinks such as axillary branches and lateral roots or sequestered as starch. The reduced GAT1_2.1 levels lead to an abundance of glutamine, a major nitrogen transport form. The combined effect on C and N allocation results in increased nutrient availability in proximal tissues, promoting the formation of lateral plant organs. Alongside emerging evidence highlighting the power of bZIPs to steer nutrient allocation in other species, a novel but evolutionary conserved role for S1 bZIPs as regulators of developmental plasticity is proposed, while the generation of valuable data sets and novel genetic resources will help to gain a deeper understanding of the molecular mechanisms involved}, subject = {Molekularbiologie}, language = {en} } @phdthesis{Kumar2024, author = {Kumar, Manish}, title = {Structural and compositional effects on tree-water relation}, doi = {10.25972/OPUS-32624}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-326245}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Forests are essential sources of tangible and intangible benefits, but global climate change associated with recurrent extreme drought episodes severely affects forest productivity due to extensive tree die-back. On that, it appeals to an urgency for large-scale reforestation efforts to mitigate the impact of climate change worldwide; however, there is a lack of understanding of drought-effect on sapling growth and survival mechanisms. It is also challenging to anticipate how long trees can survive and when they succumb to drought. Hence, to ensure success of reforestation programs and sustainable forest productivity, it is essential to identify drought-resistant saplings. For that, profound knowledge of hydraulic characteristics is needed. To achieve this, the study was split into two phases which seek to address (1) how the hydraulic and anatomical traits influence the sapling's growth rate under drought stress. (2) how plant water potential regulation and physiological traits are linked to species' water use strategies and their drought tolerance. The dissertation is assembled of two study campaigns carried out on saplings at the Chair of Botany II, University of W{\"u}rzburg, Germany. The first study involved three ecologically important temperate broadleaved tree species — saplings of 18-month (Acer pseudoplatanus, Betula pendula, and Sorbus aucuparia) — grown from seeds in contrasting conditions (inside a greenhouse and outside), with the latter being subjected to severe natural heat waves. In the second study, two additional temperate species (Fagus sylvatica and Tilia cordata) were added. The drying-out event was conducted using a randomised blocked design by monitoring plant water status in a climate-controlled chamber and a greenhouse. In campaign I, I present the result based on analysed data of 82 plants of temperate deciduous species and address the juvenile growth rate trade-off with xylem safety-efficiency. Our results indicate biomass production varies considerably due to the contrasted growing environment. High hydraulic efficiency is necessary for increased biomass production, while safety-efficiency traits are decoupled and species-specific. Furthermore, productivity was linked considerably to xylem safety without revealing a well-defined pattern among species. Moreover, plasticity in traits differed between stressed and non-stressed plants. For example, safety-related characteristics were more static than efficiency-related traits, which had higher intra-specific variation. Moreover, we recorded anatomical and leaf traits adjustments in response to a stress condition, but consistency among species is lacking. In campaign II, I combined different ways to estimate the degree of isohydry based on water potential regulation and connected the iso-anisohydric spectrum (i.e., hydroscape area, HSA) to hydraulic traits to elucidate actual plant performance during drought. We analysed plant water potential regulation (Ψpd and Ψmd) and stomatal conductance of 28-29 month saplings of five species. I used a linear mixed modelling approach that allowed to control individual variations to describe the water potential regulation and tested different conceptual definitions of isohydricity. The combined methods allowed us to estimate species' relative degree of isohydry. Further, we examined the traits coordination, including hydraulic safety margin, HSM; embolism resistance, P88; turgor loss, Ψtlp; stomata closure, Ps90; capacitance, C; cuticular conductance, gmin, to determine time to hydraulic failure (Thf). Thf is the cumulative effect of time to stomata closure (Tsc) and time after stomatal closure to catastrophic hydraulic failure (Tcrit). Our results show the species' HSA matches their stomatal stringency, which confirms the relationship between stomatal response and leaf water potential decline. Species that close stomata at lower water potential notably had a larger HSA. Isohydric behaviour was mostly associated with leaf hydraulic traits and poorly to xylem safety traits. Species' degree of isohydry was also unrelated to the species' time to death during drying-out experiments. This supports the notion that isohydry behaviours are linked to water use rather than drought survival strategies. Further, consistent with our assumptions, more isohydric species had larger internal water storage and lost their leaf turgor at less negative water potentials. Counter to our expectations, neither embolism resistance nor the associated hydraulic safety margins were related to metrics of isohydry. Instead, our results indicate traits associated with plant drought response to cluster along two largely independent axes of variation (i.e., stomatal stringency and xylem safety). Furthermore, on the temporal progression of plant drought responses, stomatal closure is critical in coordinating various traits to determine species' hydraulic strategies. Desiccation avoidance strategy was linked to Tsc and coordinated traits response of Ps90, Ψtlp, and HSA, whereas desiccation tolerance was related to Tcrit and traits such as lower P88 value, high HSM, and lower gmin. Notably, the shoot capacitance (C) is crucial in Thf and exhibits dichotomous behaviour linked to both Tsc and Tcrit. In conclusion, knowledge of growth rate trade-offs with xylem safety-efficiency combined with traits linked to species' hydraulic strategies along the isohydry could substantially enhance our ability to identify drought-resistant saplings to ensure the success of reforestation programs and predicting sensitivity to drought for achieving sustainable forest ecosystems.}, subject = {Wachstumsrate}, language = {en} } @article{JarickMokhtariSchelleretal.2018, author = {Jarick, Katja J. and Mokhtari, Zeinab and Scheller, Lukas and Hartweg, Julia and Thusek, Sina and Le, Duc-Dung and Ranecky, Maria and Shaikh, Haroon and Qureischi, Musga and Heinze, Katrin G. and Beilhack, Andreas}, title = {Photoconversion of Alloreactive T Cells in Murine Peyer's Patches During Acute Graft-Versus-Host Disease: Tracking the Homing Route of Highly Proliferative Cells In Vivo}, series = {Frontiers in Immunology}, volume = {9}, journal = {Frontiers in Immunology}, doi = {10.3389/fimmu.2018.01468}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-323309}, year = {2018}, abstract = {The regulation of immune cell migration throughout the body is essential to warrant immunosurveillance and to maintain immune homeostasis. Marking and tracking of these cells has proven important to study mechanisms of immune cell trafficking and cell interaction in vivo. Photoconversion is a well-suited technique for intravital application because it enables contactless time- and location-specific marking of cells in the tissue without surgically manipulating the microenvironment of the cells in question. However, in dividing cells the converted fluorescent protein may decline quickly. Here, we provide a detailed description of the photoconversion technique and its applicability to tracking highly proliferating T cells from the priming site of T cell activation to peripheral target organs of effector function in a preclinical model. Dendra2+ T cells were photoconverted in the Peyer's patches during the initiation phase of acute graft-versus-host disease (GvHD) and tracked through the mesenteric lymph nodes and the peripheral blood to the small intestine with flow cytometry and intravital two-photon microscopy. Photoconverted alloreactive T cells preserved the full proliferative capacity, homing, and migration of alloreactive T cells in the intestinal lamina propria. We conclusively proved that photoconversion of highly proliferative alloreactive T cells in the Peyer's patches is an effective tool to study trafficking of alloreactive T cells under physiologic conditions and to GvHD target tissues. This technique can also be applied to the study of immune cell tracking under inflammatory and non-inflammatory conditions.}, language = {en} }