@phdthesis{Murali2023, author = {Murali, Supriya}, title = {Understanding the function of spontaneous blinks by investigating internally and externally directed processes}, doi = {10.25972/OPUS-28747}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287473}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Humans spontaneously blink several times a minute. These blinks are strongly modulated during various cognitive task. However, the precise function of blinking and the reason for their modulation has not been fully understood. In the present work, I investigated the function of spontaneous blinks through various perceptual and cognitive tasks. Previous research has revealed that blinks rates decrease during some tasks but increase during others. When trying to understand these seemingly contradictory results, I observed that blink reduction occurs when one engages with an external input. For instance, a decrease has been observed due to the onset of a stimulus, sensory input processing and attention towards sensory input. However, for activities that do not involve such an engagement, e.g. imagination, daydreaming or creativity, the blink rate has been shown to increase. To follow up on the proposed hypothesis, I distinguished tasks that involve the processing of an external stimulus and tasks that involve disengagement. In the first part of the project, I explored blinking during stimulus engagement. If the probability of blinking is low when engaging with the stimulus, then one should find a reduction in blinks specifically during the time period of processing but not during sensory input per se. To this end, in study 1, I tested the influence of task-relevant information duration on blink timing and additionally manipulated the overall sensory input using a visual and an auditory temporal simultaneity judgement task. The results showed that blinks were suppressed longer for longer periods of relevant information or in other words, blinks occurred at the end of relevant information processing for both the visual and the auditory modality. Since relevance is mediated through top-down processes, I argue that the reduction in blinks is a top-down driven suppression. In studies 2 and 3, I again investigated stimulus processing, but in this case, processing was triggered internally and not based on specific changes in the external input. To this end, I used bistable stimuli, in which the actual physical stimulus remains constant but their perception switches between different interpretations. Studies on the involvement of attention in such bistable perceptual changes indicate that the sensory input is reprocessed before the perceptual switch. The results revealed a reduction in eye blink rates before the report of perceptual switches. Importantly, I was able to decipher that the decrease was not caused by the perceptual switch or the behavioral response but likely started before the internal switch. Additionally, periods between a blink and a switch were longer than interblink intervals, indicating that blinks were followed by a period of stable percept. To conclude, the first part of the project revealed that there is a top-down driven blink suppression during the processing of an external stimulus. In the second part of the project, I extended the idea of blinks marking the disengagement from external processing and tested if blinking is associated with better performance during internally directed processes. Specifically, I investigated divergent thinking, an aspect of creativity, and the link between performance and blink rates as well as the effect of motor restriction. While I could show that motor restriction was the main factor influencing divergent thinking, the relationship between eye blink rates and creative output also depended on restriction. Results showed that higher blink rates were associated with better performance during free movement, but only between subjects. In other words, subjects who had overall higher blink rates scored better in the task, but when they were allowed to sit or walk freely. Within a single subject, trial with higher blink rates were not associated with better performance. Therefore, possibly, people who are able to disengage easily, as indicated by an overall high blink rate, perform better in divergent thinking tasks. However, the link between blink rate and internal tasks is not clear at this point. Indeed, a more complex measurement of blink behavior might be necessary to understand the relationship. In the final part of the project, I aimed to further understand the function of blinks through their neural correlates. I extracted the blink-related neural activity in the primary visual cortex (V1) of existing recordings of three rhesus monkeys during different sensory processing states. I analyzed spike related multi-unit responses, frequency dependent power changes, local field potentials and laminar distribution of activity while the animal watched a movie compared to when it was shown a blank screen. The results showed a difference in blink-related neural activity dependent on the processing state. This difference suggests a state dependent function of blinks. Taken altogether, the work presented in this thesis suggests that eye blinks have an important function during cognitive and perceptual processes. Blinks seem to facilitate a disengagement from the external world and are therefore suppressed during intended processing of external stimuli.}, subject = {Lidschlag}, language = {en} } @phdthesis{Schmalz2023, author = {Schmalz, Fabian Dominik}, title = {Processing of behaviorally relevant stimuli at different levels in the bee brain}, doi = {10.25972/OPUS-28882}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288824}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The behavior of honeybees and bumblebees relies on a constant sensory integration of abiotic or biotic stimuli. As eusocial insects, a sophisticated intraspecific communication as well as the processing of multisensory cues during foraging is of utter importance. To tackle the arising challenges, both honeybees and bumblebees have evolved a sophisticated olfactory and visual processing system. In both organisms, olfactory reception starts at the antennae, where olfactory sensilla cover the antennal surface in a sex-specific manner. These sensilla house olfactory receptor neurons (ORN) that express olfactory receptors. ORNs send their axons via four tracts to the antennal lobe (AL), the prime olfactory processing center in the bee brain. Here, ORNs specifically innervate spheroidal structures, so-called glomeruli, in which they form synapses with local interneurons and projection neurons (PN). PNs subsequently project the olfactory information via two distinct tracts, the medial and the lateral antennal-lobe tract, to the mushroom body (MB), the main center of sensory integration and memory formation. In the honeybee calyx, the sensory input region of the MB, PNs synapse on Kenyon cells (KC), the principal neuron type of the MB. Olfactory PNs mainly innervate the lip and basal ring layer of the calyx. In addition, the basal ring receives input from visual PNs, making it the first site of integration of visual and olfactory information. Visual PNs, carrying sensory information from the optic lobes, send their terminals not only to the to the basal ring compartment but also to the collar of the calyx. Receiving olfactory or visual input, KCs send their axons along the MB peduncle and terminate in the main output regions of the MB, the medial and the vertical lobe (VL) in a layer-specific manner. In the MB lobes, KCs synapse onto mushroom body output neurons (MBON). In so far barely understood processes, multimodal information is integrated by the MBONs and then relayed further into the protocerebral lobes, the contralateral brain hemisphere, or the central brain among others. This dissertation comprises a dichotomous structure that (i) aims to gain more insight into the olfactory processing in bumblebees and (ii) sets out to broaden our understanding of visual processing in honeybee MBONs. The first manuscript examines the olfactory processing of Bombus terrestris and specifically investigates sex-specific differences. We used behavioral (absolute conditioning) and electrophysiological approaches to elaborate the processing of ecologically relevant odors (components of plant odors and pheromones) at three distinct levels, in the periphery, in the AL and during olfactory conditioning. We found both sexes to form robust memories after absolute conditioning and to generalize towards the carbon chain length of the presented odors. On the contrary, electroantennographic (EAG) activity showed distinct stimulus and sex-specific activity, e.g. reduced activity towards citronellol in drones. Interestingly, extracellular multi-unit recordings in the AL confirmed stimulus and sex-specific differences in olfactory processing, but did not reflect the differences previously found in the EAG. Here, farnesol and 2,3-dihydrofarnesol, components of sex-specific pheromones, show a distinct representation, especially in workers, corroborating the results of a previous study. This explicitly different representation suggests that the peripheral stimulus representation is an imperfect indication for neuronal representation in high-order neuropils and ecological importance of a specific odor. The second manuscript investigates MBONs in honeybees to gain more insights into visual processing in the VL. Honeybee MBONs can be categorized into visually responsive, olfactory responsive and multimodal. To clarify which visual features are represented at this high-order integration center, we used extracellular multi-unit recordings in combination with visual and olfactory stimulation. We show for the first time that information about brightness and wavelength is preserved in the VL. Furthermore, we defined three specific classes of visual MBONs that distinctly encode the intensity, identity or simply the onset of a stimulus. The identity-subgroup exhibits a specific tuning towards UV light. These results support the view of the MB as the center of multimodal integration that categorizes sensory input and subsequently channels this information into specific MBON populations. Finally, I discuss differences between the peripheral representations of stimuli and their distinct processing in high-order neuropils. The unique activity of farnesol in manuscript 1 or the representation of UV light in manuscript 2 suggest that the peripheral representation of a stimulus is insufficient as a sole indicator for its neural activity in subsequent neuropils or its putative behavioral importance. In addition, I discuss the influence of hard-wired concepts or plasticity induced changes in the sensory pathways on the processing of such key stimuli in the peripheral reception as well as in high-order centers like the AL or the MB. The MB as the center of multisensory integration has been broadly examined for its olfactory processing capabilities and receives increasing interest about its visual coding properties. To further unravel its role of sensory integration and to include neglected modalities, future studies need to combine additional approaches and gain more insights on the multimodal aspects in both the input and output region.}, subject = {Biene}, language = {en} } @phdthesis{Fuchs2023, author = {Fuchs, Manuela}, title = {Global discovery and functional characterization of Hfq-associated sRNA-target networks in \(C.\) \(difficile\)}, doi = {10.25972/OPUS-34598}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-345982}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {In this work, dRNA-seq (differential RNA sequencing) and RNAtag-seq were applied to first define the global transcriptome architecture of C. difficile, followed by Hfq RIP-seq (RNA immunoprecipitation followed by RNA-seq) and RIL-seq (RNA interaction by ligation and sequencing) to characterize the Hfq-mediated sRNA interactome on a transcriptome-wide scale. These approaches resulted in the annotation of > 60 novel sRNAs. Notably, it not only revealed 50 Hfq-bound sRNAs, but also > 1000 mRNA-sRNA interactions, confirming Hfq as a global RNA matchmaker in C. difficile. Similar to its function in Gram-negative species, deletion of Hfq resulted in decreased sRNA half-lives, providing evidence that Hfq affects sRNA stability in C. difficile. Finally, several sRNAs and their function in various infection relevant conditions were characterized. The sRNA nc085 directly interacts with the two-component response regulator eutV, resulting in regulation of ethanolamine utilization, an abundant intestinal carbon and nitrogen source known to impact C. difficile pathogenicity. Meanwhile, SpoY and SpoX regulate translation of the master regulator of sporulation spo0A in vivo, thereby affecting sporulation initiation. Furthermore, SpoY and SpoX deletion significantly impacts C. difficile gut colonization and spore burden in a mouse model of C. difficile infection.}, subject = {Clostridium difficile}, language = {en} } @phdthesis{Majumder2023, author = {Majumder, Snigdha}, title = {Selective inhibition of NFAT in mouse and human T cells by CRISPR/Cas9 to ameliorate acute Graft-versus-Host Disease while preserving Graft-versus-Leukemia effect}, doi = {10.25972/OPUS-29325}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293256}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Allogenic hematopoietic stem cell transplantation (allo-HCT) is a curative therapy for the treatment of malignant and non-malignant bone marrow diseases. The major complication of this treatment is a highly inflammatory reaction known as Graft-versus-Host Disease (GvHD). Cyclosporin A (CsA) and tacrolimus are used to treat GvHD which limits inflammation but also interferes with the anticipated Graft-versus-Leukemia (GvL) effect. These drugs repress conventional T cells (Tcon) along with regulatory T cells (Treg), which are important for both limiting GvHD and supporting GvL. Both of these drugs inhibit calcineurin (CN), which dephosphorylates and activates the nuclear factor of activated T-cells (NFAT) family of transcription factors. Here, we make use of our Cd4cre.Cas9+ mice and developed a highly efficient non-viral CRISPR/Cas9 gene editing method by gRNA-only nucleofection. Utilizing this technique, we demonstrated that unstimulated mouse T cells upon NFATc1 or NFATc2 ablation ameliorated GvHD in a major mismatch mouse model. However, in vitro pre-stimulated mouse T cells could not achieve long-term protection from GvHD upon NFAT single-deficiency. This highlights the necessity of gene editing and transferring unstimulated human T cells during allo-HCT. Indeed, we established a highly efficient ribonucleoprotein (RNP)-mediated CRISPR/Cas9 gene editing for NFATC1 and/or NFATC2 in pre-stimulated as well as unstimulated primary human T cells. In contrast to mouse T cells, not NFATC1 but NFATC2 deficiency in human T cells predominantly affected proinflammatory cytokine production. However, either NFAT single-knockout kept cytotoxicity of human CD3+ T cells untouched against tumor cells in vitro. Furthermore, mouse and human Treg were unaffected upon the loss of a single NFAT member. Lastly, NFATC1 or NFATC2-deficient anti-CD19 CAR T cells, generated with our non-viral 'one-step nucleofection' method validated our observations in mouse and human T cells. Proinflammatory cytokine production was majorly dependent on NFATC2 expression, whereas, in vitro cytotoxicity against CD19+ tumor cells was undisturbed in the absence of either of the NFAT members. Our findings emphasize that NFAT single-deficiency in donor T cells is superior to CN-inhibitors as therapy during allo-HCT to prevent GvHD while preserving GvL in patients.}, subject = {CRISPR/Cas-Methode}, language = {en} } @phdthesis{Haebich2023, author = {H{\"a}bich, Hannes Jan}, title = {Die kardialen Auswirkungen einer SPRED2-Defizienz im Mausmodell}, doi = {10.25972/OPUS-34628}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-346286}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {SPRED 2 wirkt inhibitorisch auf den Ras/ERK-MAPK-Signalweg. Im Knockout Mausmodell zeigen sich einige schwerwiegende ph{\"a}notypische Eigenschaften, unter anderem zeigen sich ein genereller Minderwuchs, ver{\"a}nderte hormonelle Regelkreise, neurologische Auff{\"a}lligkeiten, eine deutlich verringerte Lebenserwartung, sowie kardiale Ver{\"a}nderungen. Besonders schwerwiegende SPRED 2 KO typische Auspr{\"a}gungen im Herzen sind hierbei eine myokardiale Fibrosierung, eine myokardiale Hypertrophie und Herzrhythmusst{\"o}rungen. In dieser Arbeit wurden insbesondere kardiale Ver{\"a}nderungen auf Zell- und Proteinebene untersucht. Zur Proteinanalyse der Kardiomyozyten wurden Western Blots und eine Schnittbildgebung angefertigt. F{\"u}r eine funktionelle Untersuchung wurden isolierte vitale Kardiomyozyten mittels Fluoreszenzfarbstoffen untersucht und unter elektrischer Stimulation beobachtet. Desweiteren wurden isolierte Mitochondrien auf ihren Stoffwechsel und eventuelle Defekte hin analysiert. Hierbei konnte gezeigt werden, dass junge SPRED2 KO M{\"a}use keine wesentlichen h{\"a}modynamischen Einschr{\"a}nkungen aufweisen und eine gute Kompensationsf{\"a}higkeit gegen{\"u}ber einer Nachlaststeigerung aufweisen. Auch gezeigt werden konnte, dass Ver{\"a}nderungen im Rahmen der Zellkontraktion beim Kalziumhaushalt und Membranpotential existieren und im Zusammenhang mit einer verminderten Expression von SERCA und CaV1.2 stehen. Bei der Untersuchung von Mitochondrien konnten keine wesentlichen Defizite der mitochondrialen Funktion der SPRED 2 KO M{\"a}use gefunden werden. In diesem Zusammenhang ist die bekannte St{\"o}rung der Autophagie am ehesten Ursache f{\"u}r eine gesteigerte Fibrosierung, sowie der gesteigerten Apoptose der Kardiomyozyten. In Folge dessen k{\"o}nnten die oben beschriebenen Ver{\"a}nderungen des Kalziumhaushaltes der Kardiomyozyten stehen und letztendlich {\"u}ber maligne Herzrhythmusst{\"o}rungen zum vorzeitigen Versterben f{\"u}hren.}, subject = {Spred-Proteine}, language = {de} } @phdthesis{Reuter2023, author = {Reuter, Christian Steffen}, title = {Development of a tissue-engineered primary human skin infection model to study the pathogenesis of tsetse fly-transmitted African trypanosomes in mammalian skin}, doi = {10.25972/OPUS-25114}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-251147}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Many arthropods such as mosquitoes, ticks, bugs, and flies are vectors for the transmission of pathogenic parasites, bacteria, and viruses. Among these, the unicellular parasite Trypanosoma brucei (T. brucei) causes human and animal African trypanosomiases and is transmitted to the vertebrate host by the tsetse fly. In the fly, the parasite goes through a complex developmental cycle in the alimentary tract and salivary glands ending with the cellular differentiation into the metacyclic life cycle stage. An infection in the mammalian host begins when the fly takes a bloodmeal, thereby depositing the metacyclic form into the dermal skin layer. Within the dermis, the cell cycle-arrested metacyclic forms are activated, re-enter the cell cycle, and differentiate into proliferative trypanosomes, prior to dissemination throughout the host. Although T. brucei has been studied for decades, very little is known about the early events in the skin prior to systemic dissemination. The precise timing and the mechanisms controlling differentiation of the parasite in the skin continue to be elusive, as does the characterization of the proliferative skin-residing trypanosomes. Understanding the first steps of an infection is crucial for developing novel strategies to prevent disease establishment and its progression. A major shortcoming in the study of human African trypanosomiasis is the lack of suitable infection models that authentically mimic disease progression. In addition, the production of infectious metacyclic parasites requires tsetse flies, which are challenging to keep. Thus, although animal models - typically murine - have produced many insights into the pathogenicity of trypanosomes in the mammalian host, they were usually infected by needle injection into the peritoneal cavity or tail vein, bypassing the skin as the first entry point. Furthermore, animal models are not always predictive for the infection outcome in human patients. In addition, the relatively small number of metacyclic parasites deposited by the tsetse flies makes them difficult to trace, isolate, and study in animal hosts. The focus of this thesis was to develop and validate a reconstructed human skin equivalent as an infection model to study the development of naturally-transmitted metacyclic parasites of T. brucei in mammalian skin. The first part of this work describes the development and characterization of a primary human skin equivalent with improved mechanical properties. To achieve this, a computer-assisted compression system was designed and established. This system allowed the improvement of the mechanical stability of twelve collagen-based dermal equivalents in parallel through plastic compression, as evaluated by rheology. The improved dermal equivalents provided the basis for the generation of the skin equivalents and reduced their contraction and weight loss during tissue formation, achieving a high degree of standardization and reproducibility. The skin equivalents were characterized using immunohistochemical and histological techniques and recapitulated key anatomical, cellular, and functional aspects of native human skin. Furthermore, their cellular heterogeneity was examined using single-cell RNA sequencing - an approach which led to the identification of a remarkable repertoire of extracellular matrix-associated genes expressed by different cell subpopulations in the artificial skin. In addition, experimental conditions were established to allow tsetse flies to naturally infect the skin equivalents with trypanosomes. In the second part of the project, the development of the trypanosomes in the artificial skin was investigated in detail. This included the establishment of methods to successfully isolate skin-dwelling trypanosomes to determine their protein synthesis rate, cell cycle and metabolic status, morphology, and transcriptome. Microscopy techniques to study trypanosome motility and migration in the skin were also optimized. Upon deposition in the artificial skin by feeding tsetse, the metacyclic parasites were rapidly activated and established a proliferative population within one day. This process was accompanied by: (I) reactivation of protein synthesis; (II) re-entry into the cell cycle; (III) change in morphology; (IV) increased motility. Furthermore, these observations were linked to potentially underlying developmental mechanisms by applying single-cell parasite RNA sequencing at five different timepoints post-infection. After the initial proliferative phase, the tsetse-transmitted trypanosomes appeared to enter a reversible quiescence program in the skin. These quiescent skin-residing trypanosomes were characterized by very slow replication, a strongly reduced metabolism, and a transcriptome markedly different from that of the deposited metacyclic forms and the early proliferative trypanosomes. By mimicking the migration from the skin to the bloodstream, the quiescent phenotype could be reversed and the parasites returned to an active proliferating state. Given that previous work has identified the skin as an anatomical reservoir for T. brucei during disease, it is reasonable to assume that the quiescence program is an authentic facet of the parasite's behavior in an infected host. In summary, this work demonstrates that primary human skin equivalents offer a new and promising way to study vector-borne parasites under close-to-natural conditions as an alternative to animal experimentation. By choosing the natural transmission route - the bite of an infected tsetse fly - the early events of trypanosome infection have been detailed with unprecedented resolution. In addition, the evidence here for a quiescent, skin-residing trypanosome population may explain the persistence of T. brucei in the skin of aparasitemic and asymptomatic individuals. This could play an important role in maintaining an infection over long time periods.}, subject = {Trypanosoma brucei}, language = {en} } @phdthesis{Kleineisel2024, author = {Kleineisel, Jonas}, title = {Variational networks in magnetic resonance imaging - Application to spiral cardiac MRI and investigations on image quality}, doi = {10.25972/OPUS-34737}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-347370}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Acceleration is a central aim of clinical and technical research in magnetic resonance imaging (MRI) today, with the potential to increase robustness, accessibility and patient comfort, reduce cost, and enable entirely new kinds of examinations. A key component in this endeavor is image reconstruction, as most modern approaches build on advanced signal and image processing. Here, deep learning (DL)-based methods have recently shown considerable potential, with numerous publications demonstrating benefits for MRI reconstruction. However, these methods often come at the cost of an increased risk for subtle yet critical errors. Therefore, the aim of this thesis is to advance DL-based MRI reconstruction, while ensuring high quality and fidelity with measured data. A network architecture specifically suited for this purpose is the variational network (VN). To investigate the benefits these can bring to non-Cartesian cardiac imaging, the first part presents an application of VNs, which were specifically adapted to the reconstruction of accelerated spiral acquisitions. The proposed method is compared to a segmented exam, a U-Net and a compressed sensing (CS) model using qualitative and quantitative measures. While the U-Net performed poorly, the VN as well as the CS reconstruction showed good output quality. In functional cardiac imaging, the proposed real-time method with VN reconstruction substantially accelerates examinations over the gold-standard, from over 10 to just 1 minute. Clinical parameters agreed on average. Generally in MRI reconstruction, the assessment of image quality is complex, in particular for modern non-linear methods. Therefore, advanced techniques for precise evaluation of quality were subsequently demonstrated. With two distinct methods, resolution and amplification or suppression of noise are quantified locally in each pixel of a reconstruction. Using these, local maps of resolution and noise in parallel imaging (GRAPPA), CS, U-Net and VN reconstructions were determined for MR images of the brain. In the tested images, GRAPPA delivers uniform and ideal resolution, but amplifies noise noticeably. The other methods adapt their behavior to image structure, where different levels of local blurring were observed at edges compared to homogeneous areas, and noise was suppressed except at edges. Overall, VNs were found to combine a number of advantageous properties, including a good trade-off between resolution and noise, fast reconstruction times, and high overall image quality and fidelity of the produced output. Therefore, this network architecture seems highly promising for MRI reconstruction.}, subject = {Kernspintomografie}, language = {en} } @phdthesis{Berberich2024, author = {Berberich, Oliver}, title = {Lateral Cartilage Tissue Integration - Evaluation of Bonding Strength and Tissue Integration \(in\) \(vitro\) Utilizing Biomaterials and Adhesives}, doi = {10.25972/OPUS-34602}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-346028}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Articular cartilage defects represent one of the most challenging clinical problem for orthopedic surgeons and cartilage damage after trauma can result in debilitating joint pain, functional impairment and in the long-term development of osteoarthritis. The lateral cartilage-cartilage integration is crucial for the long-term success and to prevent further tissue degeneration. Tissue adhesives and sealants are becoming increasingly more popular and can be a beneficial approach in fostering tissue integration, particularly in tissues like cartilage where alternative techniques, such as suturing, would instead introduce further damage. However, adhesive materials still require optimization regarding the maximization of adhesion strength on the one hand and long-term tissue integration on the other hand. In vitro models can be a valuable support in the investigation of potential candidates and their functional mechanisms. For the conducted experiments within this work, an in vitro disc/ring model obtained from porcine articular cartilage tissue was established. In addition to qualitative evaluation of regeneration, this model facilitates the implementation of biomechanical tests to quantify cartilage integration strength. Construct harvesting for histology and other evaluation methods could be standardized and is ethically less questionable compared to in vivo testing. The opportunity of cell culture technique application for the in vitro model allowed a better understanding of cartilage integration processes. Tissue bonding requires chemical or physical interaction of the adhesive material and the substrate. Adhesive hydrogels can bind to the defect interface and simultaneously fill the gap of irregularly shaped defect voids. Fibrin gels are derived from the physiological blood-clot formation and are clinically applied for wound closure. Within this work, comparisons of different fibrin glue formulations with the commercial BioGlue® were assessed, which highlighted the need for good biocompatibility when applied on cartilage tissue in order to achieve satisfying long-term integration. Fibrin gel formulations can be adapted with regard to their long-term stability and when applied on cartilage disc/ring constructs improved integrative repair is observable. The kinetic of repairing processes was investigated in fibrin-treated cartilage composites as part of this work. After three days in vitro cultivation, deposited extracellular matrix (ECM) was obvious at the glued interface that increased further over time. Interfacial cell invasion from the surrounding native cartilage was detected from day ten of tissue culture. The ECM formation relies on molecular factors, e.g., as was shown representatively for ascorbic acid, and contributes to increasing integration strengths over time. The experiments performed with fibrin revealed that the treatment with a biocompatible adhesive that allows cartilage neosynthesis favors lateral cartilage integration in the long term. However, fibrin has limited immediate bonding strength, which is disadvantageous for use on articular cartilage that is subject to high mechanical stress. The continuing aim of this thesis was to further develop adhesive mechanisms and new adhesive hydrogels that retain the positive properties of fibrin but have an increased immediate bonding strength. Two different photochemical approaches with the advantage of on-demand bonding were tested. Such treatment potentially eases the application for the professional user. First, an UV light induced crosslinking mechanism was transferred to fibrin glue to provide additional bonding strength. For this, the cartilage surface was functionalized with highly reactive light-sensitive diazirine groups, which allowed additional covalent bonds to the fibrin matrix and thus increased the adhesive strength. However, the disadvantages of this approach were the multi-step bonding reactions, the need for enzymatic pretreatment of the cartilage, expensive reagents, potential UV-light damage, and potential toxicity hazards. Due to the mentioned disadvantages, no further experiments, including long-term culture, were carried out. A second photosensitive approach focused on blue light induced crosslinking of fibrinogen (RuFib) via a photoinitiator molecule instead of using thrombin as a crosslinking mediator like in normal fibrin glue. The used ruthenium complex allowed inter- and intramolecular dityrosine binding of fibrinogen molecules. The advantage of this method is a one-step curing of fibrinogen via visible light that further achieved higher adhesive strengths than fibrin. In contrast to diazirine functionalization of cartilage, the ruthenium complex is of less toxicological concern. However, after in vitro cultivation of the disc/ring constructs, there was a decrease in integration strength. Compared to fibrin, a reduced cartilage synthesis was observed at the defect. It is also disadvantageous that a direct adjustment of the adhesive can only be made via protein concentration, since fibrinogen is a natural protein that has a fixed number of tyrosine binding sites without chemical modification. An additional cartilage adhesive was developed that is based on a mussel-inspired adhesive mechanism in which reactivity to a variety of substrates is enabled via free DOPA amino acids. DOPA-based adhesion is known to function in moist environments, a major advantage for application on water-rich cartilage tissue surrounded by synovial liquid. Reactive DOPA groups were synthetically attached to a polymer, here POx, to allow easy chemical modifiability, e.g. insertion of hydrolyzable ester motifs for tunable degradation. The possibility of preparing an adhesive hybrid hydrogel of POx in combination with fibrinogen led to good cell compatibility as was similarly observed with fibrin, but with increased immediate adhesive strength. Degradation could be adjusted by the amount of ester linkages on the POx and a direct influence of degradation rates on the development of integration in the in vitro model could be shown. Hydrogels are well suited to fill defect gaps and immediate integration can be achieved via adhesive properties. The results obtained show that for the success of long-term integration, a good ability of the adhesive to take up synthesized ECM components and cells to enable regeneration is required. The degradation kinetics of the adhesive must match the remodeling process to avoid intermediate loss of integration power and to allow long-term firm adhesion to the native tissue. Hydrogels are not only important as adhesives for smaller lesions, but also for filling large defect volumes and populating them with cells to produce tissue engineered cartilage. Many different hydrogel types suitable for cartilage synthesis are reported in the literature. A long-term stable fibrin formulation was tested in this work not only as an adhesive but also as a bulk hydrogel construct. Agarose is also a material widely used in cartilage tissue engineering that has shown good cartilage neosynthesis and was included in integration assessment. In addition, a synthetic hyaluronic acid-based hydrogel (HA SH/P(AGE/G)) was used. The disc/ring construct was adapted for such experiments and the inner lumen of the cartilage ring was filled with the respective hydrogel. In contrast to agarose, fibrin and HA-SH/P(AGE/G) gels have a crosslink mechanism that led to immediate bonding upon contact with cartilage during curing. The enhanced cartilage neosynthesis in agarose compared to the other hydrogel types resulted in improved integration during in vitro culture. This shows that for the long-term success of a treatment, remodeling of the hydrogel into functional cartilage tissue is a very high priority. In order to successfully treat larger cartilage defects with hydrogels, new materials with these properties in combination with chemical modifiability and a direct adhesion mechanism are one of the most promising approaches.}, subject = {Knorpel}, language = {en} } @phdthesis{Masota2023, author = {Masota, Nelson Enos}, title = {The Search for Novel Effective Agents Against Multidrug-Resistant Enterobacteriaceae}, doi = {10.25972/OPUS-30263}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-302632}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {This thesis aimed at searching for new effective agents against Multidrug-Resistant Enterobacteriaceae. This is necessitated by the urgent need for new and innovative antibacterial agents addressing the critical priority pathogens prescribed by the World Health Organization (WHO). Among the available means for antibiotics discovery and development, nature has long remained a proven, innovative, and highly reliable gateway to successful antibacterial agents. Nevertheless, numerous challenges surrounding this valuable source of antibiotics among other drugs are limiting the complete realization of its potential. These include the availability of good quality data on the highly potential natural sources, limitations in methods to prepare and screen crude extracts, bottlenecks in reproducing biological potentials observed in natural sources, as well as hurdles in isolation, purification, and characterization of natural compounds with diverse structural complexities. Through an extensive review of the literature, it was possible to prepare libraries of plant species and phytochemicals with reported high potentials against Escherichia coli and Klebsiella pneumnoniae. The libraries were profiled to highlight the existing patterns and relationships between the reported antibacterial activities and studied plants' families and parts, the type of the extracting solvent, as well as phytochemicals' classes, drug-likeness and selected parameters for enhanced accumulation within the Gram-negative bacteria. In addition, motivations, objectives, the role of traditional practices and other crucial experimental aspects in the screening of plant extracts for antibacterial activities were identified and discussed. Based on the implemented strict inclusion criteria, the created libraries grant speedy access to well-evaluated plant species and phytochemicals with potential antibacterial activities. This way, further studies in yet unexplored directions can be pursued from the indicated or related species and compounds. Moreover, the availability of compound libraries focusing on related bacterial species serves a great role in the ongoing efforts to develop the rules of antibiotics penetrability and accumulation, particularly among Gram-negative bacteria. Here, in addition to hunting for potential scaffolds from such libraries, detailed evaluations of large pool compounds with related antibacterial potential can grant a better understanding of structural features crucial for their penetration and accumulation. Based on the scarcity of compounds with broad structural diversity and activity against Gram-negative bacteria, the creation and updating of such libraries remain a laborious but important undertaking. A Pressurized Microwave Assisted Extraction (PMAE) method over a short duration and low-temperature conditions was developed and compared to the conventional cold maceration over a prolonged duration. This method aimed at addressing the key challenges associated with conventional extraction methods which require long extraction durations, and use more energy and solvents, in addition to larger quantities of plant materials. Furthermore, the method was intended to replace the common use of high temperatures in most of the current MAE applications. Interestingly, the yields of 16 of 18 plant samples under PMAE over 30 minutes were found to be within 91-139\% of those obtained from the 24h extraction by maceration. Additionally, different levels of selectivity were observed upon an analytical comparison of the extracts obtained from the two methods. Although each method indicated selective extraction of higher quantities or additional types of certain phytochemicals, a slightly larger number of additional compounds were observed under maceration. The use of this method allows efficient extraction of a large number of samples while sparing heat-sensitive compounds and minimizing chances for cross-reactions between phytochemicals. Moreover, findings from another investigation highlighted the low likelihood of reproducing antibacterial activities previously reported among various plant species, identified the key drivers of poor reproducibility, and proposed possible measures to mitigate the challenge. The majority of extracts showed no activities up to the highest tested concentration of 1024 µg/mL. In the case of identical plant species, some activities were observed only in 15\% of the extracts, in which the Minimum Inhibitory Concentrations (MICs) were 4 - 16-fold higher than those in previous reports. Evaluation of related plant species indicated better outcomes, whereby about 18\% of the extracts showed activities in a range of 128-512 μg/mL, some of the activities being superior to those previously reported in related species. Furthermore, solubilizing plant crude extracts during the preparation of test solutions for Antibacterial Susceptibility Testing (AST) assays was outlined as a key challenge. In trying to address this challenge, some studies have used bacteria-toxic solvents or generally unacceptable concentrations of common solubilizing agents. Both approaches are liable to give false positive results. In line with this challenge, this study has underscored the suitability of acetone in the solubilization of crude plant extracts. Using acetone, better solubility profiles of crude plant extracts were observed compared to dimethyl sulfoxide (DMSO) at up to 10 \%v/v. Based on lacking toxicity against many bacteria species at up to 25 \%v/v, its use in the solubilization of poorly water-soluble extracts, particularly those from less polar solvents is advocated. In a subsequent study, four galloylglucoses were isolated from the leaves of Paeonia officinalis L., whereby the isolation of three of them from this source was reported for the first time. The isolation and characterization of these compounds were driven by the crucial need to continually fill the pre-clinical antibiotics pipeline using all available means. Application of the bioautography-guided isolation and a matrix of extractive, chromatographic, spectroscopic, and spectrometric techniques enabled the isolation of the compounds at high purity levels and the ascertainment of their chemical structures. Further, the compounds exhibited the Minimum Inhibitory Concentrations (MIC) in a range of 2-256 µg/mL against Multidrug-Resistant (MDR) strains of E. coli and K. pneumonia exhibiting diverse MDR phenotypes. In that, the antibacterial activities of three of the isolated compounds were reported for the first time. The observed in vitro activities of the compounds resonated with their in vivo potentials as determined using the Galleria mellonella larvae model. Additionally, the susceptibility of the MDR bacteria to the galloylglucoses was noted to vary depending on the nature of the resistance enzymes expressed by the MDR bacteria. In that, the bacteria expressing enzymes with higher content of aromatic amino acids and zero or positive net charges were generally more susceptible. Following these findings, a plausible hypothesis for the observed patterns was put forward. The generally challenging pharmacokinetic properties of galloylglucoses limit their further development into therapeutic agents. However, the compounds can replace or reduce the use of antibiotics in livestock keeping as well as in the treatment of septic wounds and topical or oral cavity infections, among other potential uses. Using nature-inspired approaches, a series of glucovanillin derivatives were prepared following feasible synthetic pathways which in most cases ensured good yields and high purity levels. Some of the prepared compounds showed MIC values in a range of 128 - 512 μg/mL against susceptible and MDR strains of Klebsiella pneumoniae, Methicillin-Resistant Staphylococcus aureus (MRSA) and Vancomycin-Resistant Enterococcus faecium (VRE). These findings emphasize the previously reported essence of small molecular size, the presence of protonatable amino groups and halogen atoms, as well as an amphiphilic character, as crucial features for potential antibacterial agents. Due to the experienced limited success in the search for new antibacterial agents using purely synthetic means, pursuing semi-synthetic approaches as employed in this study are highly encouraged. This way, it is possible to explore broader chemical spaces around natural scaffolds while addressing their inherent limitations such as solubility, toxicity, and poor pharmacokinetic profiles.}, subject = {Enterobacteriaceae}, language = {en} } @phdthesis{Shaikh2024, author = {Shaikh, Muhammad Haroon}, title = {Nicht-h{\"a}matopoetische lymphoide Stromazellen aktivieren alloreaktive CD4\(^+\) T-Zellen in der Initiierung der akuten Graft-versus-Host Disease}, doi = {10.25972/OPUS-25201}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252015}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {In der Initiationsphase der akuten Graft-versus-Host Erkrankung (GvHD) werden CD4+ T-Zellen in den lymphatischen Organen durch h{\"a}matopoietische Antigen-pr{\"a}sentierende Zellen aktiviert. Im Gegensatz dazu, werden in der Effektorphase CD4+ T-Zellen von nicht-h{\"a}matopoetischen Zellen im D{\"u}nndarm aktiviert. Wir stellten die Hypothese auf, dass alloreaktive CD4+ T-Zellen nach allogener h{\"a}matopoetischer Zelltransplantation, welche in der Initiationsphase der aGvHD vorwiegend in die sekund{\"a}ren lymphatischen Organe migrieren, dort durch nicht-h{\"a}matopoetische Lymphknoten-Stromazellen {\"u}ber die Erkennung von MHC-Klasse II aktiviert werden. Um diese Hypothese zu testen, setzten wir ein von allogenen CD4+ T-Zellen-abh{\"a}ngiges MHC Major Mismatch aGvHD Mausmodell ein, um diese Zusammenh{\"a}nge n{\"a}her zu erforschen. Mittels Biolumineszenz-Bildgebung und dreidimensionale Lichtblattmikroskopie und Durchflusszytometrie-Analysen von fr{\"u}heren Zeitpunkten nach einer alloHCT bzw. im Anfangsstadium der aGvHD konnten wir zeigen, dass allogene T-Zellen exklusiv in die Milz, Lymphknoten und die Peyerschen Plaques migrieren und nicht in die intestinale Lamina propria. Indem wir transgene Mauslinien verwendeten, die keine oder eine nur partielle komplette h{\"a}matopoietische Antigenpr{\"a}sentation aufwiesen, konnten wir eine sehr fr{\"u}h auf die alloHCT folgende allogene CD4+ T-Zellaktivierung in den lymphoiden Organen von MHCIIΔCD11c and MHCIIΔ Knochenmark-Chim{\"a}ren nachweisen. Aufgrund des, bei den MHCIIΔ Knochenmarks-Chim{\"a}ren auftretenden Versagens der negativen Thymusselektion und die daraus resultierende autoreaktive Immunreaktionen nach einer syngenen HCST stellte sich heraus, dass dies ein ungeeignetes Modell f{\"u}r die Untersuchung der Pr{\"a}sentation nicht-h{\"a}matopoetischer Antigene bei GvHD ist. Um diese Herausforderung zu bew{\"a}ltigen, generierten wir MHCIIΔVav1 M{\"a}use bei denen die MHC-Klasse-II-Expression auf allen h{\"a}matopoetischen Zellen fehlt. MHCIIΔVav1 M{\"a}use entwickelten eine aGvHD, wobei die Lymphknoten-Stromazellen dieser Tiere allogene CD4+ T-Zellen in gemischten Lymphozytenreaktionen aktivieren konnten. Ebenso konnten mesenteriale Lymphknoten von CD11c.DTR-M{\"a}usen, die zuvor in eine MHCIIΔ Maus transplantiert wurden, CD4+ T-Zellen in vivo aktivieren, wodurch die Lymphknoten-Stromazellen eindeutig als nicht-h{\"a}matopoetische Antigen-pr{\"a}sentierende Zellen der lymphoiden Organe nachgewiesen werden konnten. {\"U}ber das Cre/loxP-System konnten wir Knockout-M{\"a}use mit fehlender MHCII-Expression in Subpopulationen von Lymphknoten-Stromazellen generieren und verwendeten dann Einzelzell-RNA-Sequenzierung. Hier w{\"a}hlten wir Ccl19 und VE-Cadherin aus, um unsere Analyse spezifisch auf die fibroblastischen retikul{\"a}ren Zellen bzw. Endothelzellen der Lymphknoten zu konzentrieren. Bei MHCIIΔCcl19 M{\"a}usen war die Aktivierung alloreaktiver CD4+ T-Zellen in der Initiationsphase der aGvHD m{\"a}ßig reduziert, w{\"a}hrend das Fehlen von MHCII auf den fibroblastischen retikul{\"a}ren Zellen zu einer Hyperaktivierung allogener CD4+ T-Zellen f{\"u}hrte, was wiederum eine schlechtere {\"U}berlebensrate der M{\"a}use zur Folge hatte. Dieser Ph{\"a}notyp wurde durch regulatorische T-Zellen moduliert, die in der Lage waren, H2-Ab1fl M{\"a}use von den Folgen von GvHD zu retten, jedoch nicht die MHCIIΔCcl19. Ein Knock-out von MHCII auf Endothelzellen von MHCIIΔVE-Cadherin M{\"a}usen, f{\"u}hrte in der Initiationsphase der GvHD nur zu einer m{\"a}ßig reduzierten Aktivierung von CD4+ T-Zellen. Umgekehrt zeigten MHCIIΔVE-Cadherin M{\"a}use im Langzeit{\"u}berleben jedoch einen protektiven Ph{\"a}notyp verglichen mit wurfgeschwister H2-Ab1fl M{\"a}usen. Um die Bedeutung der MHCII-Antigenpr{\"a}sentation der Endothelzellen zu untersuchen, generierten wir außerdem MHCIIΔVE-CadherinΔVav1 M{\"a}use, bei welchen eine Antigenpr{\"a}sentation, weder im endothelialen noch im h{\"a}matopoetischen Kompartiment m{\"o}glich war. Lymphknoten-Stromazellen von MHCIIΔVE-CadherinΔVav1 M{\"a}usen waren nicht in der Lage, alloreaktive CD4+ T-Zellen in einer gemischten Lymphozytenreaktion zu aktivieren. Insgesamt konnten wir zum ersten Mal beweisen, dass die MHC-Klassse II auf den Lymphknoten-Stromazellen eine entscheidende Rolle bei der Modulation allogener CD4+ T-Zellen in der Initiations- und schließlich in der Effektorphase der Graft-versus-Host-Disease spielt.}, subject = {Transplantat-Wirt-Reaktion}, language = {en} } @phdthesis{Fusi2023, author = {Fusi, Lorenza}, title = {Crosstalk between the MEK5/ERK5 and PKB/FoxO pathways: underlying mechanism and its relevance for vasoprotection and tumorigenesis}, doi = {10.25972/OPUS-29676}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-296769}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Forkhead box O transcription factors are a family of proteins involved in cellular processes downstream of the Insulin-PI3K-PKB pathway. In response to extra- or intracellular stresses, for example starvation or oxidative stress, FoxOs are required to direct cell cycle progression and apoptosis. In endothelial cells, they induce apoptosis, and their deregulation is linked to diseases involving the insulin pathway, such as diabetes. FoxOs also exhibit a complex role in tumour transformation: here their main function is to suppress tumorigenesis. In both physiological and cancer contexts, FoxO activation leads to the transcription of some general targets, such as p27kip1 or IGFBP1. The FoxOs can also induce tissue-specific genes, as ANGPT2 and BIM in the endothelium. In endothelial cells, another pathway with a pivotal function is the MEK5/ERK5 MAPK signalling way. Its activation promotes cell survival and proliferation in stressful conditions, e.g., when blood vessels are exposed to the shear forces exerted by the blood stream. Furthermore, recent data described ERK5 as a kinase directing tumour resistance upon therapy-induced stress. Comparing their reported roles in various tumours and in the endothelium, FoxO proteins and the MEK5/ERK5 MAPK cascade appear to exert opposite functions. First non-published data confirmed the hypothesis that FoxO factors are subject to a negative modulation by the MEK5/ERK5 pathway. Hence, one goal of this PhD project was to further characterise this crosstalk at molecular level. The major mechanism of FoxO regulation is the balance among several post translational modifications, such as phosphorylation, acetylation, and ubiquitination. Most importantly, the PKB dependent phosphorylation of FoxOs negatively controls their activity, and it is critical for their subcellular localization. Therefore, the regulation of FoxO localization as mechanism of ERK5 dependent suppression was studied, but the results presented in this thesis argue against this hypothesis. However, additional experiments are required to explore the impact of ERK5 activity on FoxO post-translational modifications. FoxO activity can also be modulated by the interaction with other proteins, which in turn could explain general- and tissue-specific gene expression. Thus, another objective of this work was to investigate FoxO3-interactome in endothelial cells and the impact of MEK5/ERK5 activation on it. As published in (Fusi et al. 2022) and presented here, this analysis unveiled TRRAP as new FoxO bound protein in several cell types. Moreover, the interaction did not rely on the capacity of the FoxOs to bind their consensus DNA sequences at the promoter of target genes. Functional data demonstrated that TRRAP is required for FoxO-dependent gene transcription in endothelial and osteosarcoma cells. In addition, TRRAP expression in the endothelium is important for FoxO induced apoptosis. In summary, the interaction between FoxO factors and TRRAP revealed a new regulatory mechanism of FoxO-dependent gene transcription. It remains to be analysed whether the MEK5/ERK5 cascade may exert its suppressive effect on FoxO activity by interfering with their binding to TRRAP and whether such a mechanism may be relevant for tumorigenesis.}, subject = {Endothel}, language = {en} } @phdthesis{Meiser2023, author = {Meiser, Elisabeth}, title = {Single-molecule dynamics at a bottleneck: a systematic study of the narrow escape problem in a disc}, doi = {10.25972/OPUS-31965}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-319650}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Diffusion facilitates numerous reactions within the biological context of a cell. It is remarkable how the cost-efficient random process of Brownian motion promotes fast reactions. From the narrow escape theory, it is possible to determine the mean first passage time of such processes based on their reaction space and diffusion coefficient. The narrow escape theory of Brownian particles is characterized by a confining domain with reflective boundaries and a small reaction site. In this thesis, the mean first passage time was systematically tested in a disc as a function of the escape opening size in vitro and in silico. For the in vitro experiments, a model system of patterned supported-lipid bilayers (SLB) was established. Such a model is prepared by a combined colloid metalization approach, where a gold scaffold on glass facilitates assembly of SLB patches of distinct sizes through vesicle fusion. The model setup was evaluated and found to match all necessary requirements to test the nar- row escape problem in vitro. In particular, the reflectivity of the boundaries, the unhindered, free diffusion of the tracer lipids, and the distinct area were assessed. Observed results of the mean first passage time agreed with the theory of the narrow escape problem. There was excellent agreement in both absolute values and across a range of small escape opening sizes. Additionally, I developed a straightforward method, a correction factor, to calculate the mean first passage time from incomplete experimental traces. By re-scaling the mean first passage time to the fraction of particles that escaped, I was able to overcome the lifetime limitations of fluorescent probes. Previously inaccessible measurements of the mean first passage time relying on fluorescent probes will be made possible through this approach. The in vitro experiments were complemented with various in silico experiments. The latter were based on random walk simulations in discs, mimicking the in vitro situation with its uncertainties. The lifetime of single particles was either set sufficiently long to allow all particles to escape, or was adjusted to meet the lifetime limitations observed in the in vitro experiments. A comparison of the mean first passage time from lifetime-unlimited particles to the corrected, lifetime-limited particles did support the use of the correction factor. In agreement with the narrow escape theory, it was experimentally found that the mean first passage time is independent of the start point of the particle within the domain. This is when the particle adheres to a minimum distance to the escape site. In general, the presented random walk simulations do accurately represent the in vitro experiments in this study. The required hardware for the establishment of an astigmatism-based 3D system was installed in the existing microscope. The first attempts to analyze the obtained 3D imaging data gave insight into the potential of the method to investigate molecule dynamics in living trypanosome cells. The full functionality will be realized with the ongoing improvement of image analysis outside of this thesis.}, subject = {Freies Molek{\"u}l}, language = {en} } @phdthesis{Ganskih2023, author = {Ganskih, Sabina}, title = {Dissecting the functional interplay between SARS-CoV-2 viral RNAs and the host proteome}, doi = {10.25972/OPUS-34648}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-346486}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The recent pandemic has reminded the public that basic research in virology is pivotal for human health. Understanding the mechanisms of successful viral replication and the role of host factors can help to combat viral infections and prevent future pandemics. Our lab has published the first SARS-CoV-2 RNA-protein interaction atlas, laying the foundation to investigate the interplay between viral RNA and host RNA binding proteins (RBP). Based on this, my project created the largest collection of binding profiles of host and viral RBPs on SARS-CoV-2 RNA to date. This revealed the host protein SND1 as the first human RBP that specifically binds negative sense viral RNA at the 5´ end, a region associated with viral transcription initiation. The binding profile shares similarities with the viral RBP nsp9, which binds the 5´ ends of positive and negative sense SARS-CoV-2 RNA. Depletion of SND1 shows reduced levels of viral RNA revealing it as a proviral host factor. To decode the underlying molecular mechanism, I characterized the protein-protein interactions of SND1 in SARS-CoV-2 infected and uninfected cells. Infection remodels the protein interactors of SND1 from general RNA biology to membrane association and viral RNA synthesis. Upon infection, SND1 specifically interacts with nsp9, the RBP that shares the same binding region on the negative strand of SARS-CoV-2 RNA. Recent work demonstrates that nsp9 is NMPylated in vitro suggesting a functional role of nsp9 in priming of viral RNA synthesis. I was able to show that nsp9 is covalently linked to the 5´ ends of SARS-CoV-2 RNA during infection of human cells. Analysing the covalent bond of nsp9 with the viral RNA on nucleotide level shows close proximity to the initiation sites of viral RNA synthesis, suggesting that nsp9 acts as a protein-primer of SARS-CoV-2 RNA synthesis. SND1 modulates the distribution of nsp9 on the viral RNA, since depletion of SND1 results in imbalanced occupancy of nsp9 at the 5´ends of viral RNA. This study is the first to provide evidence for the priming mechanism of SARS-CoV-2 in authentic viral replication and further reveals how this mechanism is modulated by the host RBP SND1. Detailed knowledge about priming of viral RNA synthesis can help to find targeted antivirals that could be used to fight coronaviral infections.}, subject = {SARS-CoV-2}, language = {en} } @phdthesis{SchukraftgebScheffler2024, author = {Schukraft [geb. Scheffler], Nina}, title = {Integrated defensive states and their neuronal correlates in the Periaqueductal Gray}, doi = {10.25972/OPUS-34745}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-347458}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {In the face of threat, animals react with a defensive reaction to avoid or reduce harm. This defensive reaction encompasses apart from behavioral changes also physiological, analgetic, and endocrine adaptations. Nonetheless, most animal studies on fear and anxiety are based on behavioral observations only, disregarding other aspects of the defensive reaction, or integrating their inter-related dynamics only insufficiently. The first part of this thesis aimed in characterizing patterned associations of behavioral and physiological responses, termed integrated defensive states. Analyzing cardiac and behavioral responses in mice undergoing multiple fear and anxiety paradigms revealed a complex and dynamic interaction of those readouts on both, short and long timescales. Microstates, stereotypical combinations of i.e. freezing and decelerating heart rates, are short-lasting and were, in turn, shown to be influenced by slow acting macrostate changes. One of those higher order macrostates, called `rigidity`, was defined as a latent process that constrains the range of momentary displayed heart rate values. Furthermore, integrated defensive states were found to be highly dependent on the cue and the context the animals are confronted with. Importantly, same behavioral observations, i.e. freezing, were associated with distinct cardiac responses, highlighting the importance of multivariate analysis of integrated defensive states. Defensive states are orchestrated by the brain, which has evolved evolutionary conserved survival circuits. A central brain area of these circuits is the periaqueductal gray (PAG) in the midbrain. It plays a pivotal role in mediating defensive states, as it receives signals about external and internal information from multiple brain regions and sends information to both, higher order brain areas as well as to the brainstem ultimately causing the execution of threat responses. In the second part of this thesis, different neuronal circuit elements in the PAG were optically manipulated in order to gain mechanistic insight into the defense network in the brain underlying the previously delineated cardio-behavioral defensive states. Optical activation of glutamatergic PAG neurons evoked heterogeneous, light-intensity dependent responses. However, a further molecular restriction of the glutamatergic neuronal population targeting only Chx10+ neurons, led to a cardio-behavioral state that resembled spontaneous freezing-bradycardia bouts. In summary, this thesis presents a multivariate description of defensive states, which includes the complex interaction of cardiac and behavioral responses on different timescales and, furthermore, functionally dissects different excitatory and inhibitory PAG circuit elements mediating these defensive states.}, subject = {Perianova, Irina}, language = {en} } @phdthesis{Janz2024, author = {Janz, Anna}, title = {Human induced pluripotent stem cells (iPSCs) in inherited cardiomyopathies: Generation and characterization of an iPSC-derived cardiomyocyte model system of dilated cardiomyopathy with ataxia (DCMA)}, doi = {10.25972/OPUS-24096}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240966}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The emergence of human induced pluripotent stem cells (iPSCs) and the rise of the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) gene editing technology innovated the research platform for scientists based on living human pluripotent cells. The revolutionary combination of both Nobel Prize-honored techniques enables direct disease modeling especially for research focused on genetic diseases. To allow the study on mutation-associated pathomechanisms, we established robust human in vitro systems of three inherited cardiomyopathies: arrhythmogenic cardiomyopathy (ACM), dilated cardiomyopathy with juvenile cataract (DCMJC) and dilated cardiomyopathy with ataxia (DCMA). Sendai virus vectors encoding OCT3/4, SOX2, KLF4, and c-MYC were used to reprogram human healthy control or mutation-bearing dermal fibroblasts from patients to an embryonic state thereby allowing the robust and efficient generation of in total five transgene-free iPSC lines. The nucleofection-mediated CRISPR/Cas9 plasmid delivery in healthy control iPSCs enabled precise and efficient genome editing by mutating the respective disease genes to create isogenic mutant control iPSCs. Here, a PKP2 knock-out and a DSG2 knock-out iPSC line were established to serve as a model of ACM. Moreover, a DNAJC19 C-terminal truncated variant (DNAJC19tv) was established to mimic a splice acceptor site mutation in DNAJC19 of two patients with the potential of recapitulating DCMA-associated phenotypes. In total eight self-generated iPSC lines were assessed matching internationally defined quality control criteria. The cells retained their ability to differentiate into cells of all three germ layers in vitro and maintained a stable karyotype. All iPSC lines exhibited a typical stem cell-like morphology as well as expression of characteristic pluripotency markers with high population purities, thus validating the further usage of all iPSC lines in in vitro systems of ACM, DCMA and DCMJC. Furthermore, cardiac-specific disease mechanisms underlying DCMA were investigated using in vitro generated iPSC-derived cardiomyocytes (iPSC-CMs). DCMA is an autosomal recessive disorder characterized by life threatening early onset cardiomyopathy associated with a metabolic syndrome. Causal mutations were identified in the DNAJC19 gene encoding an inner mitochondrial membrane (IMM) protein with a presumed function in mitochondrial biogenesis and cardiolipin (CL) remodeling. In total, two DCMA patient-derived iPSC lines (DCMAP1, DCMAP2) of siblings with discordant cardiac phenotypes, a third isogenic mutant control iPSC line (DNAJC19tv) as well as two control lines (NC6M and NC47F) were directed towards the cardiovascular lineage upon response to extracellular specification cues. The monolayer cardiac differentiation approach was successfully adapted for all five iPSC lines and optimized towards ventricular subtype identity, higher population purities and enhanced maturity states to fulfill all DCMA-specific requirements prior to phenotypic investigations. To provide a solid basis for the study of DCMA, the combination of lactate-based metabolic enrichment, magnetic-activated cell sorting, mattress-based cultivation and prolonged cultivation time was performed in an approach-dependent manner. The application of the designated strategies was sufficient to ensure adult-like characteristics, which included at least 60-day-old iPSC-CMs. Therefore, the novel human DCMA platform was established to enable the study of the pathogenesis underlying DCMA with respect to structural, morphological and functional changes. The disease-associated protein, DNAJC19, is constituent of the TIM23 import machinery and can directly interact with PHB2, a component of the membrane bound hetero-oligomeric prohibitin ring complexes that are crucial for phospholipid and protein clustering in the IMM. DNAJC19 mutations were predicted to cause a loss of the DnaJ interaction domain, which was confirmed by loss of full-length DNAJC19 protein in all mutant cell lines. The subcellular investigation of DNAJC19 demonstrated a nuclear restriction in mutant iPSC-CMs. The loss of DNAJC19 co-localization with mitochondrial structures was accompanied by enhanced fragmentation, an overall reduction of mitochondrial mass and smaller cardiomyocytes. Ultrastructural analysis yielded decreased mitochondria sizes and abnormal cristae providing a link to defects in mitochondrial biogenesis and CL remodeling. Preliminary data on CL profiles revealed longer acyl chains and a more unsaturated acyl chain composition highlighting abnormities in the phospholipid maturation in DCMA. However, the assessment of mitochondrial function in iPSCs and dermal fibroblasts revealed an overall higher oxygen consumption that was even more enhanced in iPSC-CMs when comparing all three mutants to healthy controls. Excess oxygen consumption rates indicated a higher electron transport chain (ETC) activity to meet cellular ATP demands that probably result from proton leakage or the decoupling of the ETC complexes provoked by abnormal CL embedding in the IMM. Moreover, in particular iPSC-CMs presented increased extracellular acidification rates that indicated a shift towards the utilization of other substrates than fatty acids, such as glucose, pyruvate or glutamine. The examination of metabolic features via double radioactive tracer uptakes (18F-FDG, 125I-BMIPP) displayed significantly decreased fatty acid uptake in all mutants that was accompanied by increased glucose uptake in one patient cell line only, underlining a highly dynamic preference of substrates between mutant iPSC-CMs. To connect molecular changes directly to physiological processes, insights on calcium kinetics, contractility and arrhythmic potential were assessed and unraveled significantly increased beating frequencies, elevated diastolic calcium concentrations and a shared trend towards reduced cell shortenings in all mutant cell lines basally and upon isoproterenol stimulation. Extended speed of recovery was seen in all mutant iPSC-CMs but most striking in one patient-derived iPSC-CM model, that additionally showed significantly prolonged relaxation times. The investigations of calcium transient shapes pointed towards enhanced arrhythmic features in mutant cells comprised by both the occurrence of DADs/EADs and fibrillation-like events with discordant preferences. Taken together, new insights into a novel in vitro model system of DCMA were gained to study a genetically determined cardiomyopathy in a patient-specific manner upon incorporation of an isogenic mutant control. Based on our results, we suggest that loss of full-length DNAJC19 impedes PHB2-complex stabilization within the IMM, thus hindering PHB-rings from building IMM-specific phospholipid clusters. These clusters are essential to enable normal CL remodeling during cristae morphogenesis. Disturbed cristae and mitochondrial fragmentation were observed and refer to an essential role of DNAJC19 in mitochondrial morphogenesis and biogenesis. Alterations in mitochondrial morphology are generally linked to reduced ATP yields and aberrant reactive oxygen species production thereby having fundamental downstream effects on the cardiomyocytes` functionality. DCMA-associated cellular dysfunctions were in particular manifested in excess oxygen consumption, altered substrate utilization and abnormal calcium kinetics. The summarized data highlight the usage of human iPSC-derived CMs as a powerful tool to recapitulate DCMA-associated phenotypes that offers an unique potential to identify therapeutic strategies in order to reverse the pathological process and to pave the way towards clinical applications for a personalized therapy of DCMA in the future.}, subject = {Induzierte pluripotente Stammzelle}, language = {en} } @phdthesis{Widmaier2023, author = {Widmaier, Louis}, title = {Die Regulation des Chemokinrezeptors CXCR4 durch Chemotherapeutika in Myelomzelllinien}, doi = {10.25972/OPUS-34568}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-345682}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Untersucht wurde der Einfluss mehrerer Chemotherapeutika auf den Chemokinrezeptor CXCR4 in Myelomzelllinien auf Ebene des Promotors, der mRNA und der Rezeptorverteilung, wobei drei Substanzen (Etoposid, Bortezomib und Dexamethason) als potenzielle Suppressoren des Promotors ausgemacht werden konnten. Abh{\"a}ngig vom Myelom-Zelltyp und der Dosierung k{\"o}nnen so evtl. R{\"u}ckschl{\"u}sse auf die beobachtete Suppression von CXCR4 bei erkrankten Patienten mit hoher CXCR4-Aktivit{\"a}t (hier: Malignes Myelom) durch die begleitende Chemotherapie gezogen werden, welche eine Diagnostik und Therapie bei diesen Patienten erschwert. Hintergrund: Hintergrund f{\"u}r diese Arbeit waren Beobachtungen in klinischen Fallstudien von Lapa et al. am Universit{\"a}tsklinikum W{\"u}rzburg, die sich auf CXCR4 bezogen, welches u.a. bei Patienten mit Multiplem Myelom {\"u}berexprimiert wird und dadurch bereits als Target f{\"u}r Diagnostik und Therapie in der Klinik Anwendung findet. Dabei konnte bei PET-CT Untersuchungen in der Nuklearmedizin beobachtet werden, dass es durch die begleitende Chemotherapie der Patienten zu einer Suppression des markierten CXCR4-Signals kam, so dass es nicht mehr zur Verlaufsbeobachtung und vor allem nicht mehr zur Radiotherapie und Therapiekontrolle verwendet werden konnte. Um den Einfluss und m{\"o}gliche Interaktionen der Chemotherapeutika auf CXCR4 zu untersuchen, war es Ziel dieser Arbeit, ein vergleichbares Szenario in-vitro nachzustellen und Einfl{\"u}sse messbar zu machen, um so m{\"o}gliche Ans{\"a}tze und Verbesserungsvorschl{\"a}ge f{\"u}r die klinische Anwendung zu liefern. Methoden/Ergebnisse: Hierf{\"u}r wurden im ersten Teil INA-6 (Myelomzellen) und Mesenchymale Stammzellen (MSC) kultiviert, in Ko-Kultur gebracht und nach einer bestimmten Zeit wieder getrennt, um anschließend den gegenseitigen Einfluss in Bezug auf CXCR4 zu messen. Zudem wurde der Einfluss von Dexamethason untersucht. Es zeigte sich eine enge Bindung zwischen INA-6 und MSC sowie eine hohe CXCR4-Aktivit{\"a}t bei INA-6, jedoch konnte keine Induktion der CXCR4-Aktivit{\"a}t in MSC durch INA-6-Kontakt oder Dexamethason quantifiziert werden. Die Immunzytologie erwies sich aufgrund einer schweren Anf{\"a}rbbarkeit von CXCR4 - auch mit verschiedensten Antik{\"o}rpern und sogar Liganden-gekoppeltem Farbstoff- als kaum auswertbar, wobei eine Darstellung von CXCR4 generell aber gelang. Der CXCR4-Promotor wurde mittels Software genauer analysiert, wobei einige relevante Bindestellen, u.a. f{\"u}r Glukokortikoide und NFkB gefunden wurden. Die Herstellung eines CXCR4- pGl4.14-Promotor-Konstrukts war erfolgreich, ebenso dessen Einschleusung in Myelomzellen. Auch gelang die Herstellung stabiler transfizierter INA-6, sodass mit diesen anschließend konstantere Ergebnisse erzielt werden konnten. Im gr{\"o}ßten Teil der Arbeit wurden geeignete Chemotherapeutika-Konzentrationen ermittelt und in Viabilit{\"a}ts- und Apoptose-Versuchen {\"u}berpr{\"u}ft. Die Stimulationsversuche mit diesen zeigten variable Effekte abh{\"a}ngig vom Zelltyp (INA-6, MM1S), jedoch konnten Bortezomib, Etoposid und Dexamethason konzentrationsabh{\"a}ngig als starke Suppressoren der CXCR4-Aktivit{\"a}t ausgemacht werden, was sich v.a. auf Ebene der Promotoraktivit{\"a}t - gemessen mittels Luciferase - zeigte. Interpretation: In-vitro konnten somit drei potenzielle Suppressoren der CXCR4-Aktivit{\"a}t ausgemacht werden: Etoposid, Bortezomib und Dexamethason. Zumindest beim INA-6-Zelltyp fiel dieser Effekt deutlich aus, wobei in der Klinik der entsprechende Zelltyp sowie die Dosierung der Medikamente ber{\"u}cksichtigt werden m{\"u}ssen. Hinzu kommen weitere Einflussfaktoren des menschlichen K{\"o}rpers, die nicht ber{\"u}cksichtig werden konnten. Die genauen Mechanismen der Suppression k{\"o}nnten sich aus den Bindestellen des Promotors erkl{\"a}ren, die von uns analysiert wurden, aber auf die in weiteren Arbeiten noch n{\"a}her eingegangen werden muss.}, subject = {Bortezomib}, language = {de} } @phdthesis{Cellini2024, author = {Cellini, Antonella}, title = {Die Rolle der Na\(^+\)/K\(^+\)-ATPase in der Herzinsuffizienz}, doi = {10.25972/OPUS-29789}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297894}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Die Na+ /K+ -ATPase (NKA) ist maßgeblich an der Regulation der kardialen Na+ -Hom{\"o}ostase beteilligt. Im Myokard werden haupts{\"a}chlich zwei Isoformen exprimiert: die α1 (NKA-α1) und die α2-Isoform (NKA-α2). Diese beiden Isoformen unterscheiden sich sowohl in ihrer Lokalisation als auch in ihrer zellul{\"a}ren Funktion. So ist die NKA-α1 recht homogen entlang des Sarkolemms zu finden und ist verantwortlich f{\"u}r die Regulation der globalen intrazellul{\"a}ren Na+ -Konzentration ([Na+ ]i). Die NKA-α2 hingegen konzentriert sich haupts{\"a}chlich in den T-Tubuli und beeinflusst {\"u}ber Ver{\"a}nderung der lokalen [Na+ ]i die Ca2+ -Transienten und die Kontraktilit{\"a}t. Im Rahmen einer Herzinsuffizienz wurde eine verminderte Expression und Aktivit{\"a}t der NKA beobachtet. Gleichzeitig werden Inhibitoren der NKA, sogenannte Digitalisglykoside, in fortgeschrittenen Herzinsuffizienz-Stadien eingesetzt. Die Studienlage {\"u}ber den Einsatz dieser Therapeutika ist recht uneinheitlich und reicht von einer verringerten Hospitalisierung bis hin zu einer erh{\"o}hten Mortalit{\"a}t. Ziel dieser Arbeit war es die Folgen einer NKA-α2 Aktivierung w{\"a}hrend einer Herzinsuffizienz mit Hilfe eines murinen {\"U}berexpressionsmodells zu analysieren. 11-Wochen alte M{\"a}use mit einer kardialen NKA-α2 {\"U}berexpression (NKA-α2) und Wildtyp (WT) Versuchstiere wurden einem 8-w{\"o}chigen Myokardinfarkt (MI) unterzogen. NKA-α2 Versuchstiere waren vor einem pathologischem Remodeling und einer kardialen Dysfunktion gesch{\"u}tzt. NKA-α2 Kardiomyozyten zeigten eine erh{\"o}hte Na+ /Ca2+ -Austauscher (NCX) Aktivit{\"a}t, die zu niedrigeren diastolischen und systolischen Ca2+ -Spiegeln f{\"u}hrte und einer Ca2+ -Desensitisierung der Myofibrillen entgegenwirkte. WT Versuchstiere zeigten nach chronischem MI eine sarkoplasmatische Ca2+ -Akkumulation, die in NKA-α2 Kardiomyozyten ausblieb. Gleichzeitig konnte in der NKA-α2 MI Kohorte im Vergleich zu den WT MI Versuchstieren eine erh{\"o}hte Expression von β1-adrenergen Rezeptoren (β1AR) beobachtet werden, die eine verbesserte Ansprechbarkeit gegen{\"u}ber β-adrenergen Stimuli bewirkte. Zudem konnte in unbehandelten Versuchstieren eine Interaktion zwischen NKA-α2 und dem β1AR nachgewiesen werden, welche in der WT Kohorte gr{\"o}ßer ausfiel als in der NKA-α2 Versuchsgruppe. Gleichzeitig zeigten unbehandelte NKA-α2 Kardiomyozyten eine erh{\"o}hte Sensitivit{\"a}t gegen{\"u}ber β-adrenerger Stimulation auf, welche nicht mit einer erh{\"o}hten Arrhythmie-Neigung oder vermehrten Bildung reaktiver Sauerstoffspezies einherging. Diese Untersuchungen zeigen, dass eine NKA-α2 {\"U}berexpression vor pathologischem Remodeling und einer kardialen Funktionbeeintr{\"a}chtigung sch{\"u}tzt, indem eine systolische, diastolische und sarkoplasmatische Ca2+ -Akkumulation verhindert wird. Gleichzeitig wird die β1AR Expression stabilisert, wodurch es zu einer verminderten neurohumoralen Aktivierung und einer Durchbrechung des Circulus vitiosus kommen k{\"o}nnte. Insgesamt scheint eine Aktivierung der NKA-α2 durchaus ein vielversprechendes Target in der Herzinsuffizienz Therapie darzustellen. Therapie darzustellen.}, subject = {Herzinsuffizienz}, language = {de} } @phdthesis{Massih2024, author = {Massih, Bita}, title = {Human stem cell-based models to analyze the pathophysiology of motor neuron diseases}, publisher = {Frontiers in Cell and Developmental Biology}, doi = {10.25972/OPUS-34637}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-346374}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Motor neuron diseases (MNDs) encompass a variety of clinically and genetically heterogeneous disorders, which lead to the degeneration of motor neurons (MNs) and impaired motor functions. MNs coordinate and control movement by transmitting their signal to a target muscle cell. The synaptic endings of the MN axon and the contact site of the muscle cell thereby form the presynaptic and postsynaptic structures of the neuromuscular junction (NMJ). In MNDs, synaptic dysfunction and synapse elimination precede MN loss suggesting that the NMJ is an early target in the pathophysiological cascade leading to MN death. In this study, we established new experimental strategies to analyze human MNDs by patient derived induced pluripotent stem cells (iPSCs) and investigated pathophysiological mechanisms in two different MNDs. To study human MNDs, specialized cell culture systems that enable the connection of MNs to their target muscle cells are required to allow the formation of NMJs. In the first part of this study, we established and validated a human neuromuscular co-culture system consisting of iPSC derived MNs and 3D skeletal muscle tissue derived from myoblasts. We generated 3D muscle tissue by culturing primary myoblasts in a defined extracellular matrix in self-microfabricated silicone dishes that support the 3D tissue formation. Subsequently, iPSCs from healthy donors and iPSCs from patients with the progressive MND Amyotrophic Lateral Sclerosis (ALS) were differentiated into MNs and used for 3D neuromuscular co-cultures. Using a combination of immunohistochemistry, calcium imaging, and pharmacological stimulations, we characterized and confirmed the functionality of the 3D muscle tissue and the 3D neuromuscular co-cultures. Finally, we applied this system as an in vitro model to study the pathophysiology of ALS and found a decrease in neuromuscular coupling, muscle contraction, and axonal outgrowth in co-cultures with MNs harboring ALS-linked superoxide dismutase 1 (SOD1) mutation. In summary, this co-culture system presents a human model for MNDs that can recapitulate aspects of ALS pathophysiology. In the second part of this study, we identified an impaired unconventional protein secretion (UPS) of Sod1 as pathological mechanisms in Pleckstrin homology domain-containing family G member 5 (Plekhg5)-associated MND. Sod1 is a leaderless cytosolic protein which is secreted in an autophagy-dependent manner. We found that Plekhg5 depletion in primary MNs and NSC34 cells leads to an impaired secretion of wildtype Sod1, indicating that Plekhg5 drives the UPS of Sod1 in vitro. By interfering with different steps during the biogenesis of autophagosomes, we could show that Plekhg5-regulated Sod1 secretion is determined by autophagy. To analyze our findings in a clinically more relevant model we utilized human iPSC MNs from healthy donors and ALS patients with SOD1 mutations. We observed reduced SOD1 secretion in ALS MNs which coincides with reduced protein expression of PLEKHG5 compared to healthy and isogenic control MNs. To confirm this correlation, we depleted PLEKHG5 in control MNs and found reduced extracellular SOD1 levels, implying that SOD1 secretion depends on PLEKHG5. In summary, we found that Plekh5 regulates the UPS of Sod1 in mouse and human MNs and that Sod1 secretion occurs in an autophagy dependent manner. Our data shows an unreported mechanistic link between two MND-associated proteins.}, subject = {Tissue Engineering}, language = {en} } @phdthesis{Zimniak2024, author = {Zimniak, Melissa Maria}, title = {Der Serotonin-Wiederaufnahmehemmer Fluoxetin inhibiert die SARS-CoV-2-Replikation}, doi = {10.25972/OPUS-34719}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-347190}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Die COVID-19 Pandemie ist die bisher verheerendste Pandemie des 21. Jahrhunderts. Durch die Einf{\"u}hrung neuer mRNA-basierter Impfstoffe sowie der hohen Rate nat{\"u}rlicher Infektionen konnte die weltweite SARS-CoV-2-Immunit{\"a}t gesteigert werden. Trotz aller Erfolge zur Eind{\"a}mmung der Pandemie kann eine Infektion auch heute noch zu schweren Verl{\"a}ufen und Tod f{\"u}hren. Eine ad{\"a}quate COVID-19-Therapie ist folglich auf potente Virostatika angewiesen. Eine durch Umgehung zeitaufw{\"a}ndiger klinischer Studien schnell verf{\"u}gbare Alternative zu neu entwickelten Arzneimitteln ist die Anwendung etablierter Medikamente. Wir isolierten und charakterisierten ein von einem Patienten stammendes SARS-CoV-2-Virus. Dieses Virusisolat wurde bisher in elf Publikationen verwendet. Mittels quantitativer Echtzeit-Polymerasekettenreaktion untersuchten wir eine Substanzbibliothek mit mehr als 300 neuen und bereits zugelassenen Wirkstoffen auf ihre Wirksamkeit gegen SARS-CoV-2. Dabei konnten wir zeigen, dass der selektive Serotonin-Wiederaufnahmehemmer Fluoxetin die SARS-CoV-2-Replikation ab einer Dosis von 0,8 μg/ml signifikant inhibiert, einer bei der Behandlung von Depressionen h{\"a}ufig angewandten Dosierung. Der EC50-Wert lag bei 387 ng/ml. Die Behandlung mit Fluoxetin resultierte in einer reduzierten Zahl an Virusprotein-produzierenden Zellen, was darauf hindeutet, dass es die virale Reinfektion und/oder Proteinexpression inhibiert. Fluoxetin ist ein racemisches Gemisch, wobei das (S)-Enantiomer der potentere Serotonin-Wiederaufnahmehemmer ist. Wir konnten zeigen, dass beide Enantiomere einen vergleichbaren antiviralen Effekt gegen SARS-CoV-2 aufweisen, wodurch das (R)-Enantiomer bei virologischer Indikation gegebenenfalls pr{\"a}feriert werden sollte. Fluoxetin hat keinen Einfluss auf die Replikation des Tollwut-Virus und des Humanen Respiratorischen Synzytial-Virus, was auf eine Virusspezifit{\"a}t hindeutet. Weitere aus der Bibliothek stammende signifikante Inhibitoren der SARS-CoV-2-Replikation sind die am Institut f{\"u}r Organische Chemie W{\"u}rzburg entwickelten Substanzen AKS 232 und AKS 128. Neben der medikament{\"o}sen Therapie ist die akkurate Bestimmung neutralisierender Antik{\"o}rper gegen SARS-CoV-2 zur Quantifizierung des bestehenden (Re-) Infektionsschutzes sowie zur Planung zuk{\"u}nftiger Impfstrategien von großer Bedeutung. Im Rahmen dieser Arbeit entwickelten wir unter Verwendung der quantitativen Echtzeit-Polymerasekettenreaktion erfolgreich ein zuverl{\"a}ssiges Testverfahren zur Detektion neutralisierender anti-SARS-CoV-2 Antik{\"o}rper.}, subject = {Fluoxetin}, language = {de} } @phdthesis{Koch2024, author = {Koch, Thorsten Manfred}, title = {Wirt - Pathogen Interaktion bei Hornhautinfektionen durch \(Fusarium\) spp.}, doi = {10.25972/OPUS-34777}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-347774}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Fusarium (F.)-Infektionen des Auges zeigen oft einen schwerwiegenden Verlauf und sind am h{\"a}ufigsten mit Spezies des Fusarium solani species complex assoziiert. Dabei sind das Tragen von weichen Kontaktlinsen sowie Traumata die wichtigsten pr{\"a}disponierenden Faktoren. Vorangegangene Untersuchungen des Nationalen Referenzzentrums f{\"u}r invasive Pilzinfektionen hatten ergeben, dass Infektionen durch F. petroliphilum mit der Nutzung von Kontaktlinsen, Infektionen durch F. falciforme jedoch {\"u}berwiegend traumaassoziiert uns vor allem aus tropischen und subtropischen L{\"a}ndern bekannt sind. Das Ziel dieser Arbeit war es daher zu untersuchen, ob F. falcifomre und F. petroliphilum physiologische Merkmale aufweisen, die f{\"u}r die Unterschiede in den Risikofaktoren f{\"u}r Keratitiden durch die beiden Arten verantwortlich sein k{\"o}nnten.}, subject = {Fusarium}, language = {de} }