@phdthesis{Gotru2020, author = {Gotru, Sanjeev Kiran}, title = {Cation Homeostasis in Platelets}, doi = {10.25972/OPUS-17661}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176616}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Divalent cations are important second messengers triggering various signal transduction events in platelets. Whereas calcium channel blockers have an established antithrombotic effect and the regulation of Ca2+ homeostasis has been elucidated in platelets, the molecular regulation of Mg2+ and Zn2+ homeostasis has not been investigated so far. In the first part of the thesis, the role of -type serine-threonine kinase linked to transient receptor potential cation channel, subfamily M, member 7 (TRPM7) in platelets was investigated. Using Trpm7R/R mice with a point mutation deleting the kinase activity, we showed that the TRPM7 kinase regulates platelet activation via immunoreceptor tyrosine-based activation motif (ITAM), hem(ITAM) and protease-activated receptor (PAR) signaling routes. Furthermore, Trpm7R/R mice were protected from in vivo thrombosis and stroke, thus establishing TRPM7 kinase as a promising anti-thrombotic target. In the second part of the thesis, the role of TRPM7 channel in a megakaryocyte (MK) and platelet-specific knockout mouse, Trpm7fl/fl-Pf4Cre, was investigated. Here, we observed that depending on the type of stimulation, Trpm7fl/fl-Pf4Cre platelets showed either enhanced or inhibited responses. Although Trpm7fl/fl-Pf4Cre mice were thrombocytopenic, no differences to wildtype mice were observed in models of in vivo thrombosis and stroke. The above two studies highlight that inhibition of TRPM7 kinase but not the channel itself (in MKs and platelets) may be a promising anti-thrombotic strategy. Besides TRPM7, we investigated the role of magnesium transporter 1 (MAGT1) in platelet Mg2+ homeostasis and found that MAGT1 primarily regulates receptor-operated calcium entry (ROCE) in platelets specifically upon GPVI activation. This physiological crosstalk is triggered by protein kinase C (PKC) isoforms. Platelets from Magt1-/y mice hyper-reacted to GPVI and thromboxane A2 (TXA2) receptor stimulation in vitro. Consequently, Magt1-/y platelets were found to be pro-thrombotic in disease models of thrombosis and stroke. To compare platelet ITAM-signaling to the immune system, we further investigated the role of MAGT1 in T and B cells. We described the primary role of MAGT1 in mice under pathogen-free conditions. Magt1-/y B cells showed dysregulated Mg2+ and Ca2+ homeostasis upon B-cell receptor activation, thereby altering Syk, LAT, phospholipase C (PLC)2 and PKC phosphorylation. In contrast to human MAGT1-deficient T cells, development and effector functions of mouse Magt1-/y T cells showed no alterations. Finally, in the last part of the thesis, we described methods to measure intracellular free zinc [Zn2+]i in human and mouse platelets with storage pool disease (SPD). We propose to measure the [Zn2+]i status in SPD platelets as a relatively easy diagnostic to screen platelet granule abnormalities.}, subject = {Thrombozyt}, language = {en} } @phdthesis{SchellergebBirkholz2020, author = {Scheller [geb. Birkholz], Inga}, title = {Studies on the role of actin-binding proteins in platelet production and function in mice}, doi = {10.25972/OPUS-16858}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168582}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Platelet activation and aggregation at sites of vascular injury involves massive cytoskeletal re-organization, which is required for proper platelet function. Moreover, the cytoskeleton plays central roles in megakaryo- and thrombopoiesis. Thus, cytoskeletal protein aberrations can be the underlying reason for many pathological phenotypes. Although intensive research is carried out to identify the key players involved in cytoskeletal reorganization, the signaling cascades orchestrating these complex processes are still poorly understood. This thesis investigates the role of three actin-binding proteins, Coactosin-like (Cotl) 1, Profilin (Pfn) 1 and Thymosin (T) β4, in platelet formation and function using genetically modified mice. ADF-H-containing proteins such as Twinfilin or Cofilin are well characterized as regulators of thrombopoesis and cytoskeletal reorganization. Although Cotl1 belongs to the ADF-H protein family, lack of Cotl1 did not affect platelet count or cytoskeletal dynamics. However, Cotl1-deficiency resulted in significant protection from arterial thrombus formation and ischemic stroke in vivo. Defective GPIb-vWF interactions and altered second wave mediator release present potential reasons for the beneficial effect of Cotl1-deficiency. These results reveal an unexpected function of Cotl1 as a regulator of thrombosis and hemostasis, establishing it as a potential target for a safe therapeutic therapy to prevent arterial thrombosis or ischemic stroke. Recent studies showed that the organization of the circumferential actin cytoskeleton modulates calpain-mediated αIIbβ3 integrin closure, thereby also controlling αIIbβ3 integrin localization. The second part of this thesis identified the actin-sequestering protein Pfn1 as a central regulator of platelet integrin function as Pfn1-deficient platelets displayed almost abolished αIIbβ3 integrin signaling. This translated into a profound protection from arterial thrombus formation and prolonged tail bleeding times in vivo which was caused by enhanced calpain-dependent integrin closure. These findings further emphasize the importance of a functional actin cytoskeleton for intact platelet function in vitro and in vivo. Tβ4 is a moonlighting protein, acting as one of the major actin-sequestering proteins in cells of higher eukaryotes and exerting various paracrine functions including anti-inflammatory, immunomodulatory and pro-angiogenic effects. Although excessively studied, its role for cytoskeletal dynamics, the distinction between endo- and exogenous protein function and its uptake and release mechanisms are still poorly understood. Constitutive Tβ4-deficiency resulted in thrombocytopenia accompanied by a largely diminished G-actin pool in platelets and divergent effects on platelet reactivity. Pre-incubation of platelets with recombinant Tβ4 will help to understand the function of endo- and exogenous protein, which is under current investigation.}, subject = {Thrombozyt}, language = {en} } @phdthesis{Volz2020, author = {Volz, Julia}, title = {Studies on the influence of platelets on vascular integrity in primary tumors and the role of BIN2 in platelet calcium signaling}, doi = {10.25972/OPUS-21742}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-217427}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Maintenance of tumor vasculature integrity is indispensable for tumor growth and thus affects tumor progression. Previous studies have identified platelets as major regulators of tumor vascular integrity, as their depletion selectively renders tumor vessels highly permeable, causing massive intratumoral hemorrhage. While these results establish platelets as potential targets for anti-tumor therapy, depletion is not a treatment option due to the essential role of platelets for hemostasis. This thesis demonstrates for the first time that functional inhibition of glycoprotein (GP) VI on the platelet surface rapidly induces tumor hemorrhage and diminishes tumor growth similar to complete platelet depletion but without inducing systemic bleeding complications. Both, the intratumoral bleeding and tumor growth arrest could be reverted by depletion of Ly6G+ cells confirming them to be responsible for the induction of bleeding and necrosis within the tumor. In addition, GPVI inhibition increased intra-tumoral accumulation of co-administered chemotherapeutic agents, thereby resulting in a profound anti-tumor effect. In summary, this thesis manifests platelet GPVI as a key regulator of vascular integrity specifically in growing tumors, serving as a potential basis for the development of anti-tumor strategies. In the second part of this thesis, light is shed on the modulating role of bridging integrator 2 (BIN2) in platelet Ca2+ signaling. Stromal interaction molecule 1 (STIM1) mediated store-operated calcium entry (SOCE) is the major route of Ca2+ influx in platelets, triggered by inositol trisphosphate receptor (IP3R)-dependent Ca2+ store release. In this thesis, the BAR domain superfamily member BIN2 was identified as the first Ca2+ signaling modulator, interacting with both, STIM1 and IP3R in platelets. Deletion of BIN2 resulted in reduced Ca2+ store release and Ca2+ influx in response to all tested platelet agonists. These defects were a consequence of impaired IP3R function in combination with defective STIM1-mediated SOC channel activation, while Ca2+ store content and agonist-induced IP3 production were unaltered. These results establish BIN2 as a central regulator of platelet Ca2+ signaling. The third part of this thesis focuses on the effect of the soluble neuronal guidance protein Sema7A on platelet function. Rosenberger et al. discovered that Sema7A cleavage from red blood cells increases the formation of platelet-neutrophil complexes, thereby reinforcing thrombo-inflammation in myocardial ischemia-reperfusion injury (MIRI). This thesis establishes soluble Sema7A as a stimulator of platelet thrombus formation via its interaction with platelet GPIbα, thereby reinforcing PNC formation. Thus, interfering with the GPIb-Sema7A interaction during MIRI represents a potential strategy to reduce cardiac damage and improve clinical outcome following MI.}, subject = {Thrombozyt}, language = {en} }