@phdthesis{Hofstetter2022, author = {Hofstetter, Julia Eva Ines}, title = {MYC shapes the composition of RNA polymerase II through direct recruitment of transcription elongation factors}, doi = {10.25972/OPUS-24035}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240358}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The transcription factor MYC is a onco-protein, found to be deregulated in many human cancers. High MYC levels correlate with an aggressive tumor outcome and poor survival rates. Despite MYC being discovered as an oncogene already in the 1970s, how MYC regulates transcription of its target genes, which are involved in cellular growth and proliferation, is not fully understood yet. In this study, the question how MYC influences factors interacting with the RNA polymerase II ensuring productive transcription of its target genes was addressed using quantitative mass spectrometry. By comparing the interactome of RNA polymerase II under varying MYC levels, several potential factors involved in transcriptional elongation were identified. Furthermore, the question which of those factors interact with MYC was answered by employing quantitative mass spectrometry of MYC itself. Thereby, the direct interaction of MYC with the transcription elongation factor SPT5, a subunit of the DRB-sensitivity inducing factor, was discovered and analyzed in greater detail. SPT5 was shown to be recruited to chromatin by MYC. In addition, the interaction site of MYC on SPT5 was narrowed down to its evolutionary conserved NGN-domain, which is the known binding site for SPT4, the earlier characterized second subunit of the DRB-sensitivity inducing factor. This finding suggests a model in which MYC and SPT4 compete for binding the NGN-domain of SPT5. Investigations of the SPT5-interacting region on MYC showed binding of SPT5 to MYC's N-terminus including MYC-boxes 0, I and II. In order to analyze proteins interacting specifically with the N-terminal region of MYC, a truncated MYC-mutant was used for quantitative mass spectrometric analysis uncovering reduced binding for several proteins including the well-known interactor TRRAP and TRRAP-associated complexes. Summarized, ...}, subject = {Transkription }, language = {en} } @phdthesis{Braun2021, author = {Braun, Alexandra}, title = {Psychosocial and somatic resilience factors of patients with fibromyalgia syndrome (FMS)}, doi = {10.25972/OPUS-24280}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-242809}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Background: In recent years, health care has increasingly become the focus of public interest, politics, health insurance companies, and research. This includes the development of therapeutic concepts that can respond individually to patients' resources in order to improve coping with chronic diseases. Research into psychosocial and biological resilience factors is very important and the basic objective of the present work. I studied patients with fibromyalgia syndrome (FMS), who suffer among others from chronic pain, fatigue, sleep and gastrointestinal problems. This patient cohort is characterized by a pronounced heterogeneity in terms of clinical outcome, degree in disability and coping. FMS has a prevalence of 3 - 8 \% in the Western population and has a significant socio-economic impact. Validated psychosocial resilience factors include optimism, humor, coherence, self-efficacy, awareness with one's own resources and the ability to apply them profitably (coping), and a healthy social environment with positive relationships. Studies in patients with cancer revealed religiosity as positive and negative factor on the health outcome, but there is little data on religious aspects of pain resilience. Various genetic polymorphisms and anti-inflammatory cytokines are known as biological resilience factors. Various microRNA (miRNA) were detected to contribute to resilience in the context of stress and psychiatric disorders. Objective: The underlying research question of this work is to understand the factors that make some FMS patients resilient and others not, even though they suffer from the same disease. The long-term aim was to understand mechanisms and influencing factors of resilience to design preventive and resource-oriented therapies for FMS patients. Material and Methods: Three studies examined religious, physiological, biological, and psychosocial factors which may contribute to resilience in FMS patients. Study one combined data of questionnaires, a psychosocial interview, and regression analyses to investigate the relevance of religiosity for coping and resilience. Study two examined variance explaining factors and defined clusters among FMS patients by their differences in coping, pain phenotype and disability. The factor analysis used variables derived from questionnaires and qPCR of cytokines in white blood samples (WBC) of patients and healthy controls. Study three assessed cluster-wise miRNA signatures which may underly differences in behaviour, emotional and physiological disability, and resilience among patient clusters. A cluster-specific speculative model of a miRNA-mediated regulatory cycle was proposed and its potential targets verified by an online tool. Results: The data from the first study revealed a not very religious patient cohort, which was rather ambivalent towards the institution church, but described itself as a believer. The degree of religiosity played a role in the choice of coping strategy but had no effect on psychological parameters or health outcomes. The coping strategy "reinterpretation", which is closely related iv to the religious coping "reappraisal", had the highest influence on FMS related disability. Cognitive active coping strategies such as reappraisal which belongs to religious coping had the highest effect on FMS related disability (resilience) and could be trained by a therapist. Results from the second study showed high variances of all measured cytokines within the patient group and no difference between patient and control group. The high dispersion indicated cluster among patients. Factor analysis extracted four variance-explaining factors named as affective load, coping, pain, and pro-inflammatory cytokines. Psychological factors such as depression were the most decisive factors of everyday stress in life and represented the greatest influence on the variance of the data. Study two identified four clusters with respective differences in the factors and characterized them as poorly adapted (maladaptive), well adapted (adaptive), vulnerable and resilient. Their naming was based on characteristics of both resilience concepts, indicated by patients who were less stress-sensitive and impaired as a personal characteristic and by patients who emerged as more resilient from a learning and adaptive process. The data from the variance analysis suggests that problem- and emotion-focused coping strategies and a more anti-inflammatory cytokine pattern are associated with low impairment and contribute to resilience. Additional favorable factors include low anxiety, acceptance, and persistence. Some cluster-specific intervention proposals were created that combine existing concepts of behavioral and mindfulness therapies with alternative therapies such as vitamin D supplementation and a healthy intestinal flora. The results of the third study revealed lower relative gene expression of miR103a-3p, miR107, and miR130a-3p in the FMS cohort compared to the healthy controls with a large effect size. The adaptive cluster had the highest gene expression of miR103a-3p and tendentially of miR107, which was correlated with the subscale score "physical abuse" of the trauma questionnaire. Further correlations were found in particular with pain catastrophizing and FMS-related disability. MiR103a-3p and miR107 form a miRNA-family. Based on this, we proposed a miR103a/107 regulated model of an adaptive process to stress, inflammation and pain by targeting genetic factors which are included in different anti-inflammatory and stress-regulating pathways. Conclusion: All three studies provide new insights into resilience in FMS patients. Cognitive coping (reappraisal/reinterpretation) plays a central role and thus offers therapeutic targets (reframing in the context of behavioral therapy). Religosity as a resilience factor was only partially valid for our patient cohort. Basically, the use of resource-oriented therapy in large institutions still requires research and interdisciplinary cooperation to create a consensus between the humanities, natural sciences and humanism.}, subject = {Resilienz}, language = {en} } @phdthesis{Bittorf2021, author = {Bittorf, Patrick}, title = {Entwicklung, Herstellung und pr{\"a}klinisches Studienprogramm f{\"u}r ein Arzneimittel f{\"u}r neuartige Therapien zur Behandlung der schweren Form der H{\"a}mophilie A}, doi = {10.25972/OPUS-23185}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231858}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Bevor ein zellbasiertes GTMP erstmalig beim Menschen angewendet werden kann, m{\"u}ssen verschiedene notwendige nicht-klinische Studien durchgef{\"u}hrt werden. Wichtig ist hier u.a. die Untersuchung der Biodistribution im Tiermodel. Diese umfasst die Verteilung, das Engraftment, die Persistenz, die Eliminierung und gegebenenfalls die Expansion der humanen Zellen in verschiedenen Organen, meistens im Mausmodel. Deshalb wurde eine qPCR-basierte Analysenmethode entwickelt, mit der humane genomische DNA innerhalb von muriner genomischer DNA bestimmt werden kann, und entsprechend den regulatorischen Richtlinien der European Medicines Agency und des International Council for Harmonisation validiert. Anschließend wurde diese Methode innerhalb einer pr{\"a}klinischen worst-case Szenario Biodistributionsstudie angewendet. Das Ziel dieser Studie war die Untersuchung des Biodistributionsprofils von genetisch modifizierten Blood Outgrowth Endothelial Cells von H{\"a}mophilie A Patienten 24 Stunden und sieben Tage nach intraven{\"o}ser Applikation einer Dosis von 2x106 Zellen. Die Isolation, genetische Modifikation und die Expansion der Zellen sollte entsprechend den Richtlinien der Guten Herstellungspraxis durchgef{\"u}hrt werden. Hierbei ist die Auswahl und Anwendung geeigneter und essentieller Rohstoffe wichtig. Gleichermaßen ist die Durchf{\"u}hrung einer definierten Qualit{\"a}tskontrollstrategie notwendig und die Patientenzellen sollten nur innerhalb von nicht-klinischen Studien eingesetzt werden, wenn alle Akzeptanzkriterien erf{\"u}llt wurden. Die Validierung der qPCR-Methode zeigte eine hohe Genauigkeit, Pr{\"a}zision und Linearit{\"a}t innerhalb des Konzentrationsintervalls von 1:1x103 bis 1:1x106 humanen zu murinen Genomen. Bei Anwendung dieser Methode f{\"u}r die Biodistributionsstudie konnten nach 24 Stunden humane Genome in vier der acht untersuchten Mausorgane bestimmt werden. Nach sieben Tagen konnten in keinem der acht Organe humane Genome nachgewiesen werden...}, subject = {Arzneimittel}, language = {de} } @phdthesis{Vardapour2022, author = {Vardapour, Romina}, title = {Mutations in the DROSHA/DGCR8 microprocessor complex in high-risk blastemal Wilms tumor}, doi = {10.25972/OPUS-23140}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231404}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Wilms tumor (WT) or nephroblastoma is the most common kidney tumor in childhood. Several genetic alterations have been identified in WT over the past years. However, a clear-cut underlying genetic defect has remained elusive. Growing evidence suggests that miRNA processing genes play a major role in the formation of pediatric tumors, including WT. We and others have identified the microprocessor genes DROSHA and DGCR8 as key players in Wilms tumorigenesis. Exome sequence analysis of a cohort of blastemal-type WTs revealed the recurrent hotspot mutations DROSHA E1147K and DGCR8 E518K mapping to regions important for catalyic activity and RNA-binding. These alterations were expected to affect processing of miRNA precursors, ultimately leading to altered miRNA expression. Indeed, mutated tumor samples were characterized by distinct miRNA patterns. Notably, these mutations have been observed almost exclusively in WT, suggesting that they play a specific role in WT formation. The aim of the present work was to first examine the mutation frequency of DROSHA E1147K and DGCR8 E518K in a larger cohort of WTs, and to further characterize these microprocessor gene mutations as potential oncogenic drivers for WT formation. Screening of additional 700 WT samples by allele-specific PCR revealed a high frequency of DROSHA E1147K and DGCR8 E518K mutations, with the highest incidence found in tumors of high-risk histology. DROSHA E1147K was heterozygously expressed in all cases, which strongly implies a dominant negative effect. In contrast, DGCR8 E518K exclusively exhibited homozygous expression, suggestive for the mutation to act recessive. To functionally assess the mutations of the microprocessor complex in vitro, I generated stable HEK293T cell lines with inducible overexpression of DROSHA E1147K, and stable mouse embryonic stem cell (mESC) lines with inducible overexpression of DGCR8 E518K. To mimic the homozygous expression observed in WT, DGCR8 mESC lines were generated on a DGCR8 knockout background. Inducible overexpression of wild-type or mutant DROSHA in HEK293T cells showed that DROSHA E1147K leads to a global downregulation of miRNA expression. It has previously been shown that the knockout of DGCR8 in mESCs also results in a significant downregulation of canonical miRNAs. Inducible overexpression of wild type DGCR8 rescued this processing defect. DGCR8 E518K on the other hand, only led to a partial rescue. Differentially expressed miRNAs comprised members of the ESC cell cycle (ESCC) and let-7 miRNA families whose antagonism is known to play a pivotal role in the regulation of stem cell properties. Along with altered miRNA expression, DGCR8-E518K mESCs exhibited alterations in target gene expression potentially affecting various biological processes. We could observe decreased proliferation rates, most likely due to reduced cell viability. DGCR8-E518K seemed to be able to overcome the block of G1-S transition and to rescue the cell cycle defect in DGCR8-KO mESCs, albeit not to the full extent like DGCR8-wild-type. Moreover, DGCR8-E518K appeared to be unable to completely block epithelial-to-mesenchymal transition (EMT). Embryoid bodies (EBs) with the E518K mutation, however, were still able to silence the self-renewal program rescuing the differentiation defect in DGCR8-KO mESCs. Taken together, I could show that DROSHA E1147K and DGCR8 E518K are frequent events in WT with the highest incidence in high-risk tumor entities. Either mutation led to altered miRNA expression in vitro confirming our previous findings in tumor samples. While the DROSHA E1147K mutation resulted in a global downregulation of canonical miRNAs, DGCR8 E518K was able to retain significant activity of the microprocessor complex, suggesting that partial reduction of activity or altered specificity may be critical in Wilms tumorigenesis. Despite the significant differences found in the miRNA and mRNA profiles of DGCR8 E518K and DGCR8-wild-type mESCs, functional analysis showed that DGCR8 E518K could mostly restore important cellular functions in the knockout and only slightly differed from the wild-type situation. Further studies in a rather physiological environment, such as in a WT blastemal model system, may additionally help to better assess the subtle differences between DGCR8 E518K and DGCR8 wild-type observed in our mESC lines. Together with our findings, these model systems may thus contribute to better understand the role of these microprocessor mutations in the formation of WT.}, subject = {Nephroblastom}, language = {en} } @phdthesis{Gupta2021, author = {Gupta, Rohini}, title = {Intracellular self-activation of the TrkB kinase domain causes FAK phosphorylation and disrupts actin filopodia dynamics}, doi = {10.25972/OPUS-23382}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233829}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The tropomysin receptor kinase B (TrkB), the receptor for the neurotrophin brain-derived neurotrophic factor (BDNF), plays an important role in neuronal survival, neuronal differentiation, and cellular plasticity. Conventionally, TrkB activation is induced by binding of BDNF at extracellular sites and subsequent dimerization of receptor monomers. Classical Trk signaling concepts have failed to explain ligand-independent signaling of intracellular TrkB or oncogenic NTRK-fusion proteins. The intracellular activation domain of TrkB consists of a tyrosine kinase core, with three tyrosine (Y) residues at positions 701, 705 and 706, that catalyzes the phosphorylation reaction between ATPγ and tyrosine. The release of cisautoinhibition of the kinase domain activates the kinase domain and tyrosine residues outside of the catalytic domain become phosphorylated. The aim of this study was to find out how ligand-independent activation of TrkB is brought about. With the help of phosphorylation mutants of TrkB, it has been found that a high, local abundance of the receptor is sufficient to activate TrkB in a ligand-independent manner. This self-activation of TrkB was blocked when either the ATP-binding site or Y705 in the core domain was mutated. The vast majority of this self-active TrkB was found at intracellular locations and was preferentially seen in roundish cells, lacking filopodia. Live cell imaging of actin dynamics showed that self-active TrkB changed the cellular morphology by reducing actin filopodia formation. Signaling cascade analysis confirmed that self-active TrkB is a powerful activator of focal adhesion kinase (FAK). This might be the reason why self-active TrkB is able to disrupt actin filopodia formation. The signaling axis from Y705 to FAK could be mimicked by expression of the soluble, cytosolic TrkB kinase domain. However, the signaling pathway was inactive, when the TrkB kinase domain was targeted to the plasmamembrane with the help of artificial myristoylation membrane anchors. A cancer-related intracellular NTRK2-fusion protein (SQSTM1-NTRK2) also underwent constitutive kinase activation. In glioblastoma-like U87MG cells, self-active TrkB kinase reduced cell migration. These constitutive signaling pathways could be fully blocked within minutes by clinically approved, anti-tumorigenic Trk inhibitors. Moreover, this study found evidences for constitutively active, intracellular TrkB in tissue of human grade IV glioblastoma. In conclusion, the data provide an explanation and biological function for selfactive, constitutive TrkB kinase domain signaling, in the absence of a ligand.}, language = {en} } @phdthesis{Richter2021, author = {Richter, Julian Alexander J{\"u}rgen}, title = {Wave-CAIPI for Accelerated Dynamic MRI of the Thorax}, doi = {10.25972/OPUS-23207}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232071}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {In summary, the wave-CAIPI k-space trajectory presents an efficient sampling strategy for accelerated MR acquisitions. Using wave-CAIPI in parallel imaging reconstructions leads to a reduced noise level in the reconstructed images, compared to the Cartesian standard trajectory. This effect could be quantified by means of noise and SNR calculations. An SNR gain can be traded for a reduced scan time, i.e., additional undersampling, or for an enhanced image quality, keeping scan time constant. Acceleration of MR imaging is especially important in dynamic applications, since these examinations are inherently time-consuming. The impact of wave-CAIPI sampling on image quality and its potential for scan time reduction was investigated for two dynamic applications: self-gated dynamic 3D lung MRI during free breathing and cardiac 4D flow MRI. Dynamic 3D Lung MRI By employing wave-CAIPI sampling in self-gated, free-breathing dynamic 3D lung MRI for the purpose of radiotherapy treatment planning, the image quality of accelerated scans could be enhanced. Volunteer examinations were used to quantify image quality by means of similarity between accelerated and reference images. To this end, the normalized mutual information and the root-mean-square error were chosen as quantitative image similarity measures. The wave-CAIPI sampling was shown to exhibit superior quality, especially for short scan times. The values of the normalized mutual information were (10.2 +- 7.3)\% higher in the wave-CAIPI case -- the root-mean-square error was (18.9 +- 13.2)\% lower on average. SNR calculations suggest an average SNR benefit of around 14\% for the wave-CAIPI, compared to Cartesian sampling. Resolution of the lung in 8 breathing states can be achieved in only 2 minutes. By using the wave-CAIPI k-space trajectory, precise tumor delineation and assessment of respiration-induced displacement is facilitated. Cardiac 4D Flow MRI In 4D flow MRI, acceleration of the image acquisition is essential to incorporate the corresponding scan protocols into clinical routine. In this work, a retrospective 6-fold acceleration of the image acquisition was realized. Cartesian and wave-CAIPI 4D flow examinations of healthy volunteers were used to quantify uncertainties in flow parameters for the respective sampling schemes. By employing wave-CAIPI sampling, the estimated errors in flow parameters in 6-fold accelerated scans could be reduced by up to 55\%. Noise calculations showed that the noise level in 6-fold accelerated 4D flow acquisitions with wave-CAIPI is 43\% lower, compared to Cartesian sampling. Comparisons between Cartesian and wave-CAIPI 4D flow examinations with a prospective acceleration factor R=2 revealed small, but partly statistically significant discrepancies. Differences between 2-fold and 6-fold accelerated wave-CAIPI scans are comparable to the differences between Cartesian and wave-CAIPI examinations at R=2. Wave-CAIPI 4D flow acquisitions of the aorta could be performed with an average, simulated scan time of under 4 minutes, with reduced uncertainties in flow parameters. Important visualizations of hemodynamic flow patterns in the aorta were only slightly affected by undersampling in the wave-CAIPI case, whereas for Cartesian sampling, considerable discrepancies were observed.}, subject = {Magnetresonanztomographie}, language = {en} } @phdthesis{Segebarth2021, author = {Segebarth, Dennis}, title = {Evaluation and validation of deep learning strategies for bioimage analyses}, doi = {10.25972/OPUS-24372}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-243728}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Significant advances in fluorescence imaging techniques enable life scientists today to gain insights into biological systems at an unprecedented scale. The interpretation of image features in such bioimage datasets and their subsequent quantitative analysis is referred to as bioimage analysis. A substantial proportion of bioimage analyses is still performed manually by a human expert - a tedious process that is long known to be subjective. Particularly in tasks that require the annotation of image features with a low signal-to-noise ratio, like in fluorescence images of tissue samples, the inter-rater agreement drops. However, like any other scientific analysis, also bioimage analysis has to meet the general quality criteria of quantitative research, which are objectivity, reliability, and validity. Thus, the automation of bioimage analysis with computer-aided approaches is highly desirable. Albeit conventional hard-coded algorithms are fully unbiased, a human user has to set its respective feature extraction parameters. Thus, also these approaches can be considered subjective. Recently, deep learning (DL) has enabled impressive advances in computer vision research. The predominant difference between DL and conventional algorithms is the capability of DL models to learn the respective task on base of an annotated training dataset, instead of following user-defined rules for feature extraction. This thesis hypothesized that DL can be used to increase the objectivity, reliability, and validity of bioimage analyses, thus going beyond mere automation. However, in absence of ground truth annotations, DL models have to be trained on manual and thus subjective annotations, which could cause the model to incorporate such a bias. Moreover, model training is stochastic and even training on the same data could result in models with divergent outputs. Consequently, both the training on subjective annotations and the model-to-model variability could impair the quality of DL-based bioimage analyses. This thesis systematically assessed the impacts of these two limitations experimentally by analyzing fluorescence signals of a protein called cFOS in mouse brain sections. Since the abundance of cFOS correlates with mouse behavior, behavioral analyses could be used for cross-validation of the bioimage analysis results. Furthermore, this thesis showed that pooling the input of multiple human experts during model training and integration of multiple trained models in a model ensemble can mitigate the impact of these limitations. In summary, the present study establishes guidelines for how DL can be used to increase the general quality of bioimage analyses.}, subject = {Deeplearning}, language = {en} } @phdthesis{Volpato2021, author = {Volpato, Daniela}, title = {Bitopic Ligands and their molecular fragments for the study of the M1 Muscarinic Receptor}, doi = {10.25972/OPUS-24881}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-248815}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The past decades have witnessed the development of new pharmaceutical compounds that modulate receptor function by targeting allosteric sites. Allosteric sites are, by definition, domains topographically distinct from the orthosteric binding pocket where the natural ligand binds. Exploring the possibilities of linking orthosteric and allosteric pharmacophores in one compound to yield 'bitopic' compounds is a strategy derived from the "message-address" concept by Schwyzer , first applied to GPCRs by Portoghese et al. This concept explicitly underlines the orthosteric/allosteric combination, in opposite to the more general umbrella term bivalent. The broad possibilities of bitopic ligands in the pharmaceutical field are under continuous study. Bitopic compounds are promising pharmaceutical tools for taking advantage of the allosteric binding to achieve subtype selectivity while preserving high affinity at the receptor. The development of bitopic ligands, based on the idea of combining high affinity (via orthosteric sites) with high selectivity (via allosteric sites), have led to the development of highly selective bivalent ligands for GPCRs , such as for the opioid receptors , muscarinic acetylcholine receptors (mAChRs), serotonin receptors, cannabinoid receptors, and gonadotropin-releasing hormone receptors. This concept has even been extended to other receptors, for examples nicotinic receptors and other proteins, such as acetylcholinesterases and the tyrosine kinase receptors TrkA and TrkC. The reasons to pursue a bitopic ligand approach are various. An improved affinity for the target GPCR and/or an improved selectivity either at the level of receptor subtype, or at the level of signaling pathway. Another advantage of bitopic ligands over purely allosteric ligands is that the former rely on the appropriate presence of endogenous agonist tone to mediate their effects, whereas a bitopic ligand would engage the orthosteric site irrespective of the presence or absence of endogenous tone. By way of introduction to the hybrid approach, a review of the concept of hybrids compounds targeting the cholinergic system is presented in section A of this thesis. Recent updates in hybrid molecule design as a strategy for selectively addressing multiple target proteins involved in Alzheimer's disease (AD) is here reported . This represents the potential and the growing interest in hybrid compound as pharmacological tools to achieve receptor subtype selectivity and/or, to study the overall functional activity of the receptor. Until now, muscarinic acetylcholine receptors (mAChRs) have proved to be a particularly fruitful receptor model for the development and characterization of bitopic ligands. In this thesis, several examples of new muscarinic bitopic approach are reported in the results section. A study of bipharmacophoric ligands composed of the muscarinic positive allosteric modulators (BQCAderived compounds) linked with chain of various lengths to different orthosteric building blocks is reported in the result part 1. Synthesis and examination of the potential pharmacological characteristic of Oxotremorine-BQCAd compounds and Xanomeline-BQCAd hybrid derivatives are described in results parts 2 and 4, respectively. Moreover, the bitopic concept has even been extended to other proteins, such as acetylcholinesterase. In the result part 5 an overview of the new Tacrine-Xanomeline hybrids aiming to improve the inhibitory potency of the acetylcholinesterase and simultaneously to increase the cholinergic tone, via the xanomelinic portion acting on the M1 receptor is given. A new trivalent approach is presented for the first time to deepen the study of the M1 muscarinic receptor in the result part 6. Moreover, the synthesis of a new series of iperoxo-derived alkane, bis(ammonio)alkane-type and rigidified chain ligands is given in the result part 7 together with some prospects for further research.}, subject = {Ligand }, language = {en} } @phdthesis{Lohr2021, author = {Lohr, David}, title = {Functional and Structural Characterization of the Myocardium}, doi = {10.25972/OPUS-23448}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234486}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Clinical practice in CMR with respect to cardiovascular disease is currently focused on tissue characterization, and cardiac function, in particular. In recent years MRI based diffusion tensor imaging (DTI) has been shown to enable the assessment of microstructure based on the analysis of Brownian motion of water molecules in anisotropic tissue, such as the myocardium. With respect to both functional and structural imaging, 7T MRI may increase SNR, providing access to information beyond the reach of clinically applied field strengths. To date, cardiac 7T MRI is still a research modality that is only starting to develop towards clinical application. In this thesis we primarily aimed to advance methods of ultrahigh field CMR using the latest 7T technology and its application towards the functional and structural characterization of the myocardium. Regarding the assessment of myocardial microstructure at 7T, feasibility of ex vivo DTI of large animal hearts was demonstrated. In such hearts a custom sequence implemented for in vivo DTI was evaluated and fixation induced alterations of derived diffusion metrics and tissue properties were assessed. Results enable comparison of prior and future ex vivo DTI studies and provide information on measurement parameters at 7T. Translating developed methodology to preclinical studies of mouse hearts, ex vivo DTI provided highly sensitive surrogates for microstructural remodeling in response to subendocardial damage. In such cases echocardiography measurements revealed mild diastolic dysfunction and impaired longitudinal deformation, linking disease induced structural and functional alterations. Complementary DTI and echocardiography data also improved our understanding of structure-function interactions in cases of loss of contractile myofiber tracts, replacement fibrosis, and LV systolic failure. Regarding the functional characterization of the myocardium at 7T, sequence protocols were expanded towards a dedicated 7T routine protocol, encompassing accurate cardiac planning and the assessment of cardiac function via cine imaging in humans. This assessment requires segmentation of myocardial contours. For that, artificial intelligence (AI) was developed and trained, enabling rapid automatic generation of cardiac segmentation in clinical data. Using transfer learning, AI models were adapted to cine data acquired using the latest generation 7T system. Methodology for AI based segmentation was translated to cardiac pathology, where automatic segmentation of scar tissue, edema and healthy myocardium was achieved. Developed radiofrequency hardware facilitates translational studies at 7T, providing controlled conditions for future method development towards cardiac 7T MRI in humans. In this thesis the latest 7T technology, cardiac DTI, and AI were used to advance methods of ultrahigh field CMR. In the long run, obtained results contribute to diagnostic methods that may facilitate early detection and risk stratification in cardiovascular disease.}, subject = {Diffusionsgewichtete Magnetresonanztomografie}, language = {en} } @phdthesis{Youssef2022, author = {Youssef, Almoatazbellah}, title = {Fabrication of Micro-Engineered Scaffolds for Biomedical Application}, doi = {10.25972/OPUS-23545}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235457}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Thermoplastic polymers have a history of decades of safe and effective use in the clinic as implantable medical devices. In recent years additive manufacturing (AM) saw increased clinical interest for the fabrication of customizable and implantable medical devices and training models using the patients' own radiological data. However, approval from the various regulatory bodies remains a significant hurdle. A possible solution is to fabricate the AM scaffolds using materials and techniques with a clinical safety record, e.g. melt processing of polymers. Melt Electrowriting (MEW) is a novel, high resolution AM technique which uses thermoplastic polymers. MEW produces scaffolds with microscale fibers and precise fiber placement, allowing the control of the scaffold microarchitecture. Additionally, MEW can process medical-grade thermoplastic polymers, without the use of solvents paving the way for the production of medical devices for clinical applications. This pathway is investigated in this thesis, where the layout is designed to resemble the journey of a medical device produced via MEW from conception to early in vivo experiments. To do so, first, a brief history of the development of medical implants and the regenerative capability of the human body is given in Chapter 1. In Chapter 2, a review of the use of thermoplastic polymers in medicine, with a focus on poly(ε-caprolactone) (PCL), is illustrated, as this is the polymer used in the rest of the thesis. This review is followed by a comparison of the state of the art, regarding in vivo and clinical experiments, of three polymer melt AM technologies: melt-extrusion, selective laser sintering and MEW. The first two techniques already saw successful translation to the bedside, producing patient-specific, regulatory-approved AM implants. To follow in the footsteps of these two technologies, the MEW device parameters need to be optimized. The MEW process parameters and their interplay are further discussed in Chapter 3 focusing on the importance of a steady mass flow rate of the polymer during printing. MEW reaches a balance between polymer flow, the stabilizing electric field and moving collector to produce reproducible, high-resolution scaffolds. An imbalance creates phenomena like fiber pulsing or arcing which result in defective scaffolds and potential printer damage. Chapter 4 shows the use of X-ray microtomography (µCT) as a non-destructive method to characterize the pore-related features: total porosity and the pore size distribution. MEW scaffolds are three-dimensional (3D) constructs but have long been treated in the literature as two-dimensional (2D) ones and characterized mainly by microscopy, including stereo- and scanning electron microscopy, where pore size was simply reported as the distance between the fibers in a single layer. These methods, together with the trend of producing scaffolds with symmetrical pores in the 0/90° and 0/60/120° laydown patterns, disregarded the lateral connections between pores and the potential of MEW to be used for more complex 3D structures, mimicking the extracellular matrix. Here we characterized scaffolds in the aforementioned symmetrical laydown patterns, along with the more complex 0/45/90/135° and 0/30/60/90/120/150° ones. A 2D pore size estimation was done first using stereomicroscopy, followed by and compared to µCT scanning. The scaffolds with symmetrical laydown patterns resulted in the predominance of one pore size, while those with more complex patterns had a broader distribution, which could be better shown by µCT scans. Moreover, in the symmetrical scaffolds, the size of 3D pores was not able to reach the value of the fiber spacing due to a flattening effect of the scaffold, where the thickness of the scaffold was less than the fiber spacing, further restricting the pore size distribution in such scaffolds. This method could be used for quality assurance of fabricated scaffolds prior to use in in vitro or in vivo experiments and would be important for a clinical translation. Chapter 5 illustrates a proof of principle subcutaneous implantation in vivo experiment. MEW scaffolds were already featured in small animal in vivo experiments, but to date, no analysis of the foreign body reaction (FBR) to such implants was performed. FBR is an immune reaction to implanted foreign materials, including medical devices, aimed at protecting the host from potential adverse effects and can interfere with the function of some medical implants. Medical-grade PCL was used to melt electrowrite scaffolds with 50 and 60 µm fiber spacing for the 0/90° and 0/60/120° laydown patterns, respectively. These implants were implanted subcutaneously in immunocompetent, outbred mice, with appropriate controls, and explanted after 2, 4, 7 and 14 days. A thorough characterization of the scaffolds before implantation was done, followed by a full histopathological analysis of the FBR to the implants after excision. The scaffolds, irrespective of their pore geometry, induced an extensive FBR in the form of accumulation of foreign body giant cells around the fiber walls, in a manner that almost occluded available pore spaces with little to no neovascularization. This reaction was not induced by the material itself, as the same reaction failed to develop in the PCL solid film controls. A discussion of the results was given with special regard to the literature available on flat surgical meshes, as well as other hydrogel-based porous scaffolds with similar pore sizes. Finally, a general summary of the thesis in Chapter 6 recapitulates the most important points with a focus on future directions for MEW.}, language = {en} } @phdthesis{Hoefler2022, author = {H{\"o}fler, Dorina}, title = {{\"U}berexpression der katalytischen Na\(^+\)/K\(^+\)-ATPase Untereinheit α2 und nicht α1 verz{\"o}gert kardiales Remodeling nach acht Wochen Myokardinfarkt}, doi = {10.25972/OPUS-25077}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250773}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Die Herzinsuffizienz und damit einhergehend die beeintr{\"a}chtigte kardiale Funktion bei chronischer Isch{\"a}mie nach Myokardinfarkt (MI) wird mit niedrigerer Aktivit{\"a}t der Na+/K+-ATPase (NKA) in Zusammenhang gebracht. Die beiden Isoformen der katalytischen Untereinheit NKA-α1 und α2 unterscheiden sich teilweise in Lokalisation, Funktion und Interaktion mit dem NCX und weiterer Signalpartner. Das Ziel des Projekts war es herauszufinden, ob die Isoform NKA-α2 im Gegensatz zu NKA-α1 einen protektiven Effekt bei chronischer Isch{\"a}mie nach einem Myokardinfarkt aufweist und was die Hintergr{\"u}nde hierf{\"u}r sind. Hierf{\"u}r wurden transgene M{\"a}use verwendet, die kardial entweder NKA-α1 oder NKA-α2 stark {\"u}berexprimieren. Diese M{\"a}use wurden mit WT M{\"a}use verglichen. Ein Myokardinfarkt wurde mittels Legierung der LAD induziert und die Herzen nach acht Wochen entnommen. Um das Remodeling bei chronischer Isch{\"a}mie in M{\"a}usen zu untersuchen, wurden die Zellgr{\"o}ße (WGA F{\"a}rbung) und der Anteil des fibrotisch umgebauten Gewebes (PSR F{\"a}rbung) gemessen. TG α2 Tiere zeigten nach chronischer Isch{\"a}mie einerseits weniger stark hypertrophierte Zellen, andererseits in der kritischen Borderzone zwischen vitalem Gewebe und infarziertem Bereich weniger Fibrose. Dies ging einher mit einem signifikant weniger starkem Verlust der linksventrikul{\"a}ren Verk{\"u}rzungsfraktion nach MI, welche ein Parameter der kardialen Funktion ist. Das Level des oxidativen Stresses (ROS Detektion) {\"a}nderte sich nach acht Wochen MI in TG α2 Tieren im Vergleich zu TG α1 und WT nicht. Nach acht Wochen MI zeigte sich die Expression der totalen NKA reduziert; v.a. TG α2 Tiere zeigten tendenziell sehr niedrige Expressionslevel der totalen NKA. Die geringere NKA Aktivit{\"a}t k{\"o}nnte mit der verbesserten kardialen Funktion zusammenh{\"a}ngen. Da jedoch nach MI in WT M{\"a}usen die NKA-α2 verst{\"a}rkt und NKA-α1 reduziert exprimiert wird, gehen wir davon aus, dass die Expression der NKA-α2 eine f{\"u}r die Zelle protektive Anpassung nach chronischer Isch{\"a}mie ist, um sich vor Remodeling und damit einhergehendem Funktionsverlust zu sch{\"u}tzen. Vermutlich wird NKA so lange auf geringerem Niveau exprimiert, bis die Natrium- und Calciumkonzentration so stark ansteigt, dass die Gefahr der Arrhythmie und die kardiale Dysfunktion zu groß wird. Der Vorteil der TG α2 Tiere entsteht vermutlich aus der Reduzierung der totalen NKA nach acht Wochen MI, um die Inotropie kompensatorisch hoch zu halten, bis spezifisch die Isoform NKA-α2 verst{\"a}rkt exprimiert wird, um den Natrium{\"u}berhang und konsekutiv via NCX den Calcium{\"u}berhang zu reduzieren. Hinzu kommt, dass die Isoform NKA-α2 die pr{\"a}dominierende Isoform ist, die in der Mikrodom{\"a}ne der T-Tubuli mit dem NCX agiert und f{\"u}r den Ausgleich des Natrium- und Calciumhaushalts nach MI sorgt. Die gesteigerte Expression des NCXs nach MI in TG α2 Tieren mit verbessertem Abtransport von Calcium k{\"o}nnte zu der reduzierten Entwicklung von Hypertrophie und Fibrosierung beitragen. Dies wiederum verhindert den Progress der dilatativen Herzinsuffizienz bei chronischer Isch{\"a}mie und bringt somit einen protektiven Effekt auf die Prognose und die kardiale Funktion nach MI mit sich.}, subject = {Na+/K+-ATPase}, language = {de} } @phdthesis{Schaebler2022, author = {Sch{\"a}bler, Stefan}, title = {Charakterisierung des circadianen Drosophila Metaboloms unter Zuhilfenahme massenspektrometrischer Methoden}, doi = {10.25972/OPUS-25190}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-251908}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Die F{\"a}higkeit sich an die Rotation der Erde und den daraus resultierenden Tag- und Nacht-Rhythmus anzupassen, basiert auf einer komplexen Regulation verschiedener physiologischer Prozesse. Auf molekularer Ebene liegt diesen Prozessen eine Orchestration von Uhr-Genen zugrunde - auch als innere Uhr bezeichnet - die einen aktivierenden bzw. reprimierenden Einfluss auf die Expression einer Vielzahl weiterer Gene hat. Ausgehend von dieser Regulation lassen sich auf unterschiedlichsten Ebenen tageszeitabh{\"a}ngige, wiederkehrende Rhythmen beobachten. W{\"a}hrend diese wiederkehrenden Rhythmen auf einigen Ebenen bereits gut erforscht und beschrieben sind, gibt es weitere Ebenen wie den Metabolismus, {\"u}ber die das Wissen bisher noch begrenzt ist. So handelt es sich bei Drosophila beispielsweise um den Organismus, dessen innere Uhr auf molekularer Ebene wahrscheinlich mit am besten charakterisiert ist. Dennoch ist bisher nur wenig {\"u}ber Stoffklassen bekannt, deren Metabolismus durch die innere Uhr kontrolliert wird. Zwar konnte bereits gezeigt werden, dass sich eine gest{\"o}rte innere Uhr auf die Anlage der Energiespeicher auswirkt, inwiefern dies allerdings einen Einfluss auf dem intermedi{\"a}ren Stoffwechsel hat, blieb bisher weitgehend unerforscht. Auch die Frage, welche Metaboliten wiederkehrende, tageszeitabh{\"a}ngige Rhythmen aufweisen, wurde bisher nur f{\"u}r eine begrenzte Anzahl Metaboliten untersucht. Bei der hier durchgef{\"u}hrten Arbeit wurden deshalb zun{\"a}chst die globalen Metabolit-Profile von Fliegen mit einer auf molekularer Ebene gest{\"o}rten inneren Uhr (per01) mit Fliegen, die {\"u}ber eine funktionale Uhr verf{\"u}gen (CantonS), zu zwei Zeitpunkten verglichen. Um die Anzahl der zeitgleich untersuchten Gewebe und somit die Komplexit{\"a}t der Probe zu reduzieren, wurden hierf{\"u}r die K{\"o}pfe von den K{\"o}rpern der Fliegen getrennt und separat analysiert. Beide K{\"o}rperteile wurden sowohl auf kleine hydrophile als auch auf hydrophobe Metaboliten hin mittels UPLC-ESI-qTOF-MS untersucht. Die anschließend durchgef{\"u}hrte, statistische Analyse brachte hervor, dass sich Unterschiede zwischen den beiden Fliegenlinien besonders in den Spiegeln der essentiellen Aminos{\"a}uren, den Kynureninen, den Pterinaten sowie den Spiegeln der Glycero(phospho)lipiden und Fetts{\"a}ureester zeigten. Bei den Lipiden zeigte sich, dass die Auswirkungen weniger ausgepr{\"a}gt f{\"u}r die Anlage der Speicher- und Strukturlipide als f{\"u}r die Intermediate des Lipidabbaus, die Diacylglycerole (DAGs) sowie die Acylcarnitine (ACs), waren. Um zu best{\"a}tigen, dass die inneren Uhr tats{\"a}chlich einen regulatorischen Einfluss auf die ausgemachten Stoffwechselwege hat, wurden anschließend die Spiegel aller Mitglieder darauf hin untersucht, ob diese wiederkehrende, tageszeitabh{\"a}ngige Schwankungen aufweisen. Hierf{\"u}r wurden Proben alle zwei Stunden {\"u}ber drei aufeinanderfolgende Tage genommen und analysiert, bevor mittels JTK_CYCLE eine statistische Analyse der Daten durchgef{\"u}hrt und die Metaboliten herausgefiltert wurden, die ein rhythmisches Verhalten bei einer Periodenl{\"a}nge von 24h zeigten. Hierbei best{\"a}tigte sich, dass besonders die Mitglieder des intermedi{\"a}ren Lipidmetablismus hiervon betroffen waren. So konnten zwar auch f{\"u}r einige Aminos{\"a}uren robuste Rhythmen ausgemacht werden, besonders ausgepr{\"a}gt waren diese jedoch erneut bei den DAGs und den ACs. Die abschließende Untersuchung letzterer unter Freilaufbedingungen (DD) sowie in per01 brachte hervor, dass die ausgemachten Rhythmen unter diesen Bedingungen entweder nicht mehr detektiert werden konnten oder deutlich abgeschw{\"a}cht vorlagen. Lediglich zwei kurzkettige ACs zeigten auch unter DD-Bedingungen statistisch signifikante Rhythmen in ihren Spiegeln. Dies spricht daf{\"u}r, dass neben der Regulation durch die innere Uhr weitere Faktoren, wie beispielsweise das Licht, eine entscheidende Rolle zu spielen scheinen.}, subject = {Drosophila}, language = {de} } @phdthesis{SalasRamirez2020, author = {Salas Ramirez, Maikol}, title = {Methods to Improve Bone Marrow Dosimetry in Molecular Radiotherapy}, doi = {10.25972/OPUS-20850}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208503}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Bone marrow dosimetry is a topic of high interest in molecular radiotherapy. Predicting the level of hematological toxicity is one of the most important goals of nuclear medicine radiation dosimetry. To achieve this, it is necessary to quantify the absorbed dose to the active bone marrow, thus aiming at administering the most efficient therapy with a minimum level of adverse effects in the patient. The anatomical complexity of trabecular bone and bone marrow leads to the need of applying non-nuclear medicine imaging methods for determining the spatial distribution of soft tissue, adipose tissue, and bone in spongiosa. Therefore, the two objectives of this dissertation are: i) to apply magnetic resonance imaging (MRI) for quantification of the fat volume fraction, and ii) to validate a method based on dual-energy quantitative computed tomography (DEQCT) for quantification of the trabecular bone volume fraction. In a first step, an MRI sequence (two-point Dixon) for fat-water separation was validated in a 3 Tesla system by quantifying the fat volume fraction in a phantom and the lumbar vertebrae of volunteers and comparing with magnetic resonance spectroscopy (MRS). After successful validation, the fat volume fraction was retrospectively measured in the five lumbar vertebrae of 44 patient images acquired in the clinical routine. The two-point Dixon showed a good quantification of the fat volume fraction in the phantom experiment (-9.8\% maximum relative error with respect to the nominal values). In the volunteers, a non-significant difference between MRI and MRS was found for the quantification of the fat volume fraction in volumes-of-interest with similar dimensions and position in both quantification methodologies (MRI and MRS). In the study with patient data, the marrow conversion (red → yellow marrow) was found to be age-dependent, and slower in males (0.3\% per year) than in females (0.5\% per year). Also, considerable variability of the fat volume fraction in patients of similar ages and the same gender was observed. These results enable the use of two-point Dixon MRI in the quantification of the fat volume fraction in the bone marrow. Additionally, the constant marrow conversion during adulthood suggests that a patient-specific approach should replace the assumption of a constant cellularity volume fraction of 0.7 (reference man) (1,2) as proposed by the International Commission on Radiological Protection (ICRP). In a second step, a quantification method based on DEQCT was validated in two CT systems: i) a clinical CT integrated into a SPECT/CT and ii) a dual-source computed tomography (DSCT) system. The method was applied in two phantoms: the first was used to validate the DEQCT method by the quantification of the hydroxyapatite volume fraction in three vials of 50 ml each and three different hydroxyapatite concentrations (100 mg/cm3, 200 mg/cm3, 300 mg/cm3). The second phantom was the European spine phantom (ESP), an anthropomorphic spine phantom. It was used to quantify the bone mineral content (BMC) on the whole vertebra and the hydroxyapatite volume fraction (VFHA) in the spongiosa region of each vertebra of the phantom. Lastly, the BMC of lumbar vertebrae 1 (LV1) and 2 (LV2) was measured in a patient using DEQCT and dual-energy X-ray absorptiometry (DEXA). Furthermore, the hydroxyapatite volume fraction (VFHA) and the bone volume fraction (VFB) was calculated for both the whole vertebrae and the spongiosa region of LV1 and LV2. The measured and nominal hydroxyapatite volume fraction in the vial phantom showed a good correlation (maximum relative error: 14.2\%). The quantification of the BMC on the whole vertebra and the VFHA on the spongiosa region showed larger relative errors than in the validation phantom. The quantification of BMC on LV1 and LV2 showed relative errors between DEXA and DSCT equal to 7.6\% (LV1) and -8.4\% (LV2). Also, the values of the VFHA (mineral bone) were smaller than the VFB. This result is consistent with the bone composition (mineral bone plus organic material). The DEQCT method enables the quantification of hydroxyapatite (mineral bone) and bone (mineral bone plus organic material) in a clinical setting. However, the method showed an overestimation of the quantified mineral bone volume fraction. This overestimation might be related to the lack of detailed information on the CT X-ray spectra and detector sensitivity. Also, the DEQCT method showed a dependency on the CT reconstruction kernel and the chemical description of the materials to be quantified. Based on the results of this work, the feasibility for quantifying the fat volume fraction and the bone volume fraction in the spongiosa in a clinical setting has been demonstrated/proven. Furthermore, the differences in fat volume fraction in females and males, as well as the variability of the fat volume fraction in subjects of similar ages, questions the approximation of the cellularity volume fraction by only a single ICRP reference value in bone marrow dosimetry for molecular radiotherapy. Lastly, this study presents the first approach for non-invasive quantification of the bone volume fraction (mineral bone plus organic material) for improved bone marrow dosimetry.}, language = {en} } @phdthesis{Hu2021, author = {Hu, Xiawei}, title = {Role of claudin-12 in neuronal barriers in painful murine and human neuropathy}, doi = {10.25972/OPUS-20806}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208065}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {In peripheral nervous system (PNS), the blood-nerve barrier (BNB) and myelin barrier (MB) are important physiological fences for maintaining the environment for axons, Schwann cells and other associated cells within peripheral nerves. The perineurium surrounding the nerves and endoneurial vessels nourishing the nerves compose the BNB. Schwann cells wrapping around neurons form the MB. Destruction or malfunction of the barriers has been postulated as an initial step in the development of pathologic conditions concerning human peripheral nerves, such as traumatic neuropathy and the disease of chronic inflammatory demyelination polyneuropathy (CIDP). Tight junction proteins (TJPs) are intercellular junctions building the microstructure of barriers. They play a key role in tightly connecting adjacent cells, controlling the passage of ions, water and other molecules via the paracellular pathway, and maintaining the cell polarity. Among the family of TJPs, claudins are the major structural components which form the backbone of TJs. Certain key TJPs [e.g. claudins (claudin-1, -5, -19, occludin, zona occludens (ZO-1)] have been identified in neural barriers and explored for therapeutic targets. The expression of Cldn12 gene has been documented in human/rodent tibial nerves, spinal cord and DRG. However, the role of claudin-12 in PNS is unknown. In the present study, we firstly found a loss of claudin-12 immunoreactivity (IR) in male or postmenopausal female patients with painful CIDP or non-inflammatory polyneuropathy (PNP). Then, we utilized male and female Cldn12-KO mice and the chronic constriction injury (CCI) model. Cldn12 mRNA and IR were reduced in WT mice after nerve injury. Deletion of Cldn12 via general knockout (KO) induced mechanical allodynia at baseline level and after CCI in time-dependent manner in male mice. KO of Cldn12 in males resulted in loss of small axons, perineurial barrier and MB breakdown, as well as TJP complex disruption with claudin-1, -19 and Pmp22 reduction. Moreover, local Cldn12 siRNA application mimicked mechanical allodynia and MB breakdown. In conclusion, claudin-12 deficiency is associated with painful CIDP/non-inflammatory PNP. Claudin-12 is a regulatory TJP crucial for mechanical nociception, perineurial barrier and MB integrity, and proper TJP composition in mice. Therefore, further investigating the functions of claudin-12 and its mechanism is important to prompt the development of new therapeutic approaches for painful neuropathies.}, language = {en} } @phdthesis{Hoer2020, author = {H{\"o}r, Jens}, title = {Discovery of RNA/protein complexes by Grad-seq}, doi = {10.25972/OPUS-21181}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-211811}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Complex formation between macromolecules constitutes the foundation of most cellular processes. Most known complexes are made up of two or more proteins interacting in order to build a functional entity and therefore enabling activities which the single proteins could otherwise not fulfill. With the increasing knowledge about noncoding RNAs (ncRNAs) it has become evident that, similar to proteins, many of them also need to form a complex to be functional. This functionalization is usually executed by specific or global RNA-binding proteins (RBPs) that are specialized binders of a certain class of ncRNAs. For instance, the enterobacterial global RBPs Hfq and ProQ together bind >80 \% of the known small regulatory RNAs (sRNAs), a class of ncRNAs involved in post-transcriptional regulation of gene expression. However, identification of RNA-protein interactions so far was performed individually by employing low-throughput biochemical methods and thereby hindered the discovery of such interactions, especially in less studied organisms such as Gram-positive bacteria. Using gradient profiling by sequencing (Grad-seq), the present thesis aimed to establish high-throughput, global RNA/protein complexome resources for Escherichia coli and Streptococcus pneumoniae in order to provide a new way to investigate RNA-protein as well as protein-protein interactions in these two important model organisms. In E. coli, Grad-seq revealed the sedimentation profiles of 4,095 (∼85 \% of total) transcripts and 2,145 (∼49 \% of total) proteins and with that reproduced its major ribonucleoprotein particles. Detailed analysis of the in-gradient distribution of the RNA and protein content uncovered two functionally unknown molecules—the ncRNA RyeG and the small protein YggL—to be ribosomeassociated. Characterization of RyeG revealed it to encode for a 48 aa long, toxic protein that drastically increases lag times when overexpressed. YggL was shown to be bound by the 50S subunit of the 70S ribosome, possibly indicating involvement of YggL in ribosome biogenesis or translation of specific mRNAs. S. pneumoniae Grad-seq detected 2,240 (∼88 \% of total) transcripts and 1,301 (∼62 \% of total) proteins, whose gradient migration patterns were successfully reconstructed, and thereby represents the first RNA/protein complexome resource of a Gram-positive organism. The dataset readily verified many conserved major complexes for the first time in S. pneumoniae and led to the discovery of a specific interaction between the 3'!5' exonuclease Cbf1 and the competence-regulating ciadependent sRNAs (csRNAs). Unexpectedly, trimming of the csRNAs by Cbf1 stabilized the former, thereby promoting their inhibitory function. cbf1 was further shown to be part of the late competence genes and as such to act as a negative regulator of competence.}, subject = {Multiproteinkomplex}, language = {en} } @phdthesis{Bauriedl2020, author = {Bauriedl, Saskia Corinna}, title = {The influence of riboregulation on fitness and virulence in Neisseria meningitidis}, doi = {10.25972/OPUS-19297}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192978}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Neisseria meningitidis (N. meningitidis) is a human commensal that occasionally causes life-threatening infections such as bacterial meningitis and septicemia. Despite experi-mental evidence that the expression of small non-coding RNAs (sRNAs) as well as the RNA chaperone Hfq affect meningococcal physiology, the impact of RNA-based regula-tion (riboregulation) on fitness and virulence in N. meningitidis is only poorly understood. Therefore, this study addressed these issues using a combination of high-throughput tech-nologies. A differential RNA-sequencing (dRNA-seq) approach was applied to produce a single-nucleotide resolution map of the primary transcriptome of N. meningitidis strain 8013. The dRNA-seq analysis predicted 1,625 transcriptional start sites including 65 putative sRNAs, of which 20 were further validated by northern blot analysis. By Hfq RNA im-munopreci-pitation sequencing a large Hfq-centered post-transcriptional regulatory net-work comprising 23 sRNAs and 401 potential mRNA targets was identified. Rifampicin stability assays demonstrated that Hfq binding confers enhanced stability on its associat-ed sRNAs. Based on these data, the interactions of two paralogous sRNAs and their cog-nate target mRNA prpB were validated in vivo as well as in vitro. Both sRNAs directly repress prpB encoding a methylisocitrate lyse which was previously shown to be involved in meningococcal colonization of the human nasopharynx. Besides the well-described RNA chaperone Hfq, FinO-domain proteins have recently been recognized as a widespread family of RNA-binding proteins (RBPs) with regulatory roles in diverse bacteria. They display an intriguing bandwidth of target sites, ranging from a single RNA pair as recognized by plasmid-encoded FinO to the global RNA regu-lons of enterobacterial ProQ proteins. To better understand the intrinsic targeting mode of this RBP family, in vivo targets of the minimal ProQ protein of N. meningitidis were de-termined. In vivo UV crosslinking with RNA deep sequencing (UV-CLIP) identified as-sociations of ProQ with 16 sRNAs and 166 mRNAs encoding a variety of biological functions and thus revealed ProQ as another global RBP in meningococci. It could be shown that meningococcal ProQ predominantly binds to highly structured RNA regions including DNA uptake sequences (DUS) and rho-independent transcription terminators and stabilizes many of its RNA targets as proved by rifampicin stability experiments. As expected from the large suite of ProQ-bound RNAs, proQ deletion globally affects both gene and protein expression in N. meningitidis, changing the expression levels of at least 244 mRNAs and 80 proteins. Phenotypic analyses suggested that ProQ promotes oxida-tive stress tolerance and UV damage repair capacity, both of which are required for full virulence of N. meningitidis. Together, this work uncovers the co-existence of two major post-transcriptional regulons, one governed by ProQ, the other by Hfq, in N. meningitidis. It further highlights the role of these distinct RBPs and its associated sRNAs to bacterial virulence and indicates that riboregulation is likely to contribute to the way how meningococci adapt to different host niches.}, subject = {Neisseria meningitidis}, language = {en} } @phdthesis{Kollert2021, author = {Kollert, Leonie}, title = {Epigenetics of anxiety and depression - a differential role of TGFB-Inducible Early Growth Response Protein 2 gene promoter methylation}, doi = {10.25972/OPUS-21126}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-211268}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Among mental disorders, panic disorder (PD) is one of the most common anxiety disorders characterized by recurring and unexpected episodes of extreme fear i.e. panic attacks. PD displays lifetime prevalence rates in the general population between 2.1-4.7 \% and in about 30 to 40 \% occurs comorbid with major depressive disorder (MDD). Differential methylation levels of the monoamine oxidase A (MAOA) gene have previously been associated with the etiology of both PD and MDD. The TGFB-Inducible Early Growth Response Protein 2 (TIEG2; alias KLF11), an activating transcription factor of the MAOA gene, has been reported to be increased in MDD, but has not yet been investigated in PD on any level. Therefore, in an attempt to further define the role of an impaired TIEG2-MAOA pathway in anxiety and affective disorders, in the present thesis TIEG2 promoter DNA methylation was analyzed in two independent samples of I) PD patients with or without comorbid MDD in a case/control design and II) MDD patients with and without anxious depression. Additionally, in PD patients of sample I), TIEG2 methylation was correlated with Beck Depression Inventory (BDI-II) scores. Finally, in a third independent healthy control sample, correlation of TIEG2 promoter methylation levels with Anxiety Sensitivity Index (ASI) scores as a PD-related measure was analyzed. No overall association of TIEG2 promoter methylation with PD was detected. However, PD patients with comorbid MDD showed significant TIEG2 hypomethylation compared to PD patients without comorbid MDD (p=.008) as well as to healthy controls (p=.010). In addition, MDD patients without anxious features displayed a statistical trend in decreased TIEG2 methylation in comparison to MDD patients with anxious depression (p=.052). Furthermore, TIEG2 methylation was negatively correlated with BDI-II scores in PD patients (p=.013) and positively correlated with ASI scores in the healthy control sample (p=.043). In sum, the current study suggests TIEG2 promoter hypomethylation as a potential epigenetic marker of MDD comorbidity in PD or of non-anxious depression, respectively. If replicated and verified in future studies, altered TIEG2 methylation might therefore represent a differential pathomechanism of anxiety and mood disorders.}, subject = {Epigenetik}, language = {en} } @article{RossowVeitlVorlovaetal.2018, author = {Rossow, Leonie and Veitl, Simona and Vorlov{\´a}, Sandra and Wax, Jacqueline K. and Kuhn, Anja E. and Maltzahn, Verena and Upcin, Berin and Karl, Franziska and Hoffmann, Helene and G{\"a}tzner, Sabine and Kallius, Matthias and Nandigama, Rajender and Scheld, Daniela and Irmak, Ster and Herterich, Sabine and Zernecke, Alma and Erg{\"u}n, S{\"u}leyman and Henke, Erik}, title = {LOX-catalyzed collagen stabilization is a proximal cause for intrinsic resistance to chemotherapy}, series = {Oncogene}, volume = {37}, journal = {Oncogene}, doi = {10.1038/s41388-018-0320-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227008}, pages = {4921-4940}, year = {2018}, abstract = {The potential of altering the tumor ECM to improve drug response remains fairly unexplored. To identify targets for modification of the ECM aiming to improve drug response and overcome resistance, we analyzed expression data sets from pre-treatment patient cohorts. Cross-evaluation identified a subset of chemoresistant tumors characterized by increased expression of collagens and collagen-stabilizing enzymes. We demonstrate that strong collagen expression and stabilization sets off a vicious circle of self-propagating hypoxia, malignant signaling, and aberrant angiogenesis that can be broken by an appropriate auxiliary intervention: Interfering with collagen stabilization by inhibition of lysyl oxidases significantly enhanced response to chemotherapy in various tumor models, even in metastatic disease. Inhibition of collagen stabilization by itself can reduce or enhance tumor growth depending on the tumor type. The mechanistical basis for this behavior is the dependence of the individual tumor on nutritional supply on one hand and on high tissue stiffness for FAK signaling on the other.}, language = {en} } @phdthesis{Mohammadi2019, author = {Mohammadi, Milad}, title = {Role of oxidized phospholipids in inflammatory pain}, doi = {10.25972/OPUS-19240}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192402}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Introduction: During inflammation, reactive oxygen species (ROS) such as Hydrogen peroxide accumulate at the inflammation site and by oxidizing lipids, they produce metabolites such as 4-hydroxynonenal (4-HNE) and oxidized phospholipids (OxPLs). Transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) are ligand gated ion channels that are expressed on nociceptors and their activation elicits pain. Hydrogen peroxide and 4-HNE are endogenous ligands for TRPA1 and their role in inflammatory pain conditions has been shown. OxPLs play a major pro-inflammatory role in many pathologies including atherosclerosis and multiple sclerosis. E06/T15 is a mouse IgM mAb that specifically binds oxidized phosphatidylcholine. D-4F is an apolipoprotein A-I mimetic peptide with a very high affinity for OxPLs and possess anti-inflammatory properties. E06 mAb and D-4F peptide protect against OxPLs-induced damage in atherosclerosis in vivo. Methods: To investigate the role of ROS and their metabolites in inflammatory pain, I utilized a combination of diverse and complex behavioral pain measurements and binding assays. I examined E06 mAb and D-4F as local treatment options for hypersensitivity evoked by endogenous and exogenous activators of TRPA1 and TRPV1 as well as in inflammatory and OxPL-induced pain models in vivo. 4-HNE, hydrogen peroxide as ROS source and mustard oil (AITC) were used to activate TRPA1, while capsaicin was used to activate TRPV1. Results: Intraplantar injection of oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC) into rats' hind paw elicited thermal and mechanical hypersensitivity. Genetic and pharmacological evidence in vivo confirmed the role of TRPA1 in OxPLs-induced hypersensitivity. OxPLs formation increased in complete Freund's adjuvant (CFA)-induced inflamed rats' paw. E06 mAb and D-4F prevented OxPAPC-induced mechanical and thermal hypersensitivity (hyperalgesia) as well as CFA-induced mechanical hypersensitivity. Also, all irritants induced thermal and mechanical hypersensitivity as well as affective-emotional responses and spontaneous nocifensive behaviors. E06 mAb blocked prolonged mechanical hypersensitivity by all but hydrogen peroxide. In parallel, D-4F prevented mechanical hypersensitivity induced by all irritants as well as thermal hypersensitivity induced by capsaicin and 4-HNE. In addition, competitive binding assays showed that all TRPA1/V1 agonists induced prolonged formation of OxPLs in the paw tissue explaining the anti-nociceptive properties of E06 mAb and D-4F. Finally, the potential of gait analysis as a readout for non-provoked pain behavioral measurements were examined. Conclusion and implications: OxPLs were characterized as novel targets in inflammatory pain. Treatment with the monoclonal antibody E06 or apolipoprotein A-I mimetic peptide D-4F are suggested as potential inflammatory pain medications. OxPLs' role in neuropathic pain is yet to be investigated.}, language = {en} } @phdthesis{Becker2020, author = {Becker, Mira Caroline}, title = {Principles of olfactory-visual integration to form a common percept in honeybees}, doi = {10.25972/OPUS-19919}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-199190}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {The honeybee is a well studied and important organism in neuroethology. The possibility to train them with a classical conditioning paradigm and their miniature brain provide a perfect requisite to investigate the neuronal principles of learning and memory. Honeybees use visual and olfactory cues to detect flowers during their foraging trips. Hence, the reward association of a nectar source is a multi-modal construct, which has at least two major components - olfactory and visual cues. It is still an open question, how both sensory components are converged in the mushroom body, which represent the multi-modal integration centre of the honeybee brain. The main goal of this study, is to investigate the processing of multiple modalities and how a reward association is formed. This includes, how and wether both sensory modalities interfere during learning. Thus, in this study stimulation with UV, blue and green light was used to evoke distinct photoreceptor activities in the compound eye. Furthermore, three different odours (Geraniol, Citronellol and Farnesol) were used. These stimuli were tested in three different experimental series. The first experiment involved classical differential conditioning of the single modalities - odour and colour. Honeybees showed high learning performances in differentiating olfactory stimuli and also reliable responses for visual conditioning. Furthermore, a temporal discrepancy in the stimulus length for best learning in the olfatcoty and visual cues was found. In the second series, it was tested how multi-modal compounds are perceived. This includes, unique cues (configural processing) or the sum of the single components of a compound (elemen- tal processing). This was tested by combining single odour components with monochromatic light in a positive (PP) and negative patterning (NP) experiment. During PP, the olfactory- visual compound was rewarded, whereas the single components were unrewarded. In contrast, during NP the single components were reinforced, but the compound was not. In addition, the ability to distinguish between two different light stimuli presented as a part of an olfactory-visual compound with the same odour component during acquisition was tested. In a memory test, the light stimuli were presented again as a compound and in addition as the single components. The results revealed that bees used elemental processing with compounds containing green and blue light. In contrast, when UV light was presented the bees used configural processing. Finally, a third experiment was conducted at the neuronal level. Multi-unit recordings were established to provide a suitable method to analyse extrinsic neurons at the mushroom body output region, the so called ventral lobe of the pedunculus. Here, three different odours (Geran- iol, Farnesol and Citronellol), two colours (green and blue) and two combined stimuli (colour + odour) were chosen as stimuli, to search for possible variations in processing stimuli with different modalities. Two units could be detected that responded mainly to visual stimuli.}, language = {en} }