@article{LandwehrAltieriSchreineretal.2020, author = {Landwehr, Laura-Sophie and Altieri, Barbara and Schreiner, Jochen and Sbiera, Iuliu and Weigand, Isabel and Kroiss, Matthias and Fassnacht, Martin and Sbiera, Silviu}, title = {Interplay between glucocorticoids and tumor-infiltrating lymphocytes on the prognosis of adrenocortical carcinoma}, series = {Journal for ImmunoTherapy of Cancer}, volume = {8}, journal = {Journal for ImmunoTherapy of Cancer}, doi = {10.1136/jitc-2019-000469}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229893}, year = {2020}, abstract = {Background Adrenocortical carcinoma (ACC) is a rare endocrine malignancy. Tumor-related glucocorticoid excess is present in similar to 60\% of patients and associated with particularly poor prognosis. Results of first clinical trials using immune checkpoint inhibitors were heterogeneous. Here we characterize tumor-infiltrating T lymphocytes (TILs) in ACC in association with glucocorticoids as potential explanation for resistance to immunotherapy. Methods We performed immunofluorescence analysis to visualize tumor-infiltrating T cells (CD3\(^+\)), T helper cells (CD3\(^+\)CD4\(^+\)), cytotoxic T cells (CD3\(^+\)CD8\(^+\)) and regulatory T cells (Tregs; CD3\(^+\)CD4\(^+\)FoxP3\(^+\)) in 146 ACC tissue specimens (107 primary tumors, 16 local recurrences, 23 metastases). Quantitative data of immune cell infiltration were correlated with clinical data (including glucocorticoid excess). Results 86.3\% of ACC specimens showed tumor infiltrating T cells (7.7 cells/high power field (HPF)), including T helper (74.0\%, 6.7 cells/HPF), cytotoxic T cells (84.3\%, 5.7 cells/HPF) and Tregs (49.3\%, 0.8 cells/HPF). The number of TILs was associated with better overall survival (HR for death: 0.47, 95\% CI 0.25 to 0.87), which was true for CD4\(^+\)- and CD8\(^+\) subpopulations as well. In localized, non-metastatic ACC, the favorable impact of TILs on overall and recurrence-free survival was manifested even independently of ENSAT (European Network for the Study of Adrenal Tumors) stage, resection status and Ki67 index. T helper cells were negatively correlated with glucocorticoid excess (Phi=-0.290, p=0.009). Patients with glucocorticoid excess and low TILs had a particularly poor overall survival (27 vs. 121 months in patients with TILs without glucocorticoid excess). Conclusion Glucocorticoid excess is associated with T cell depletion and unfavorable prognosis. To reactivate the immune system in ACC by checkpoint inhibitors, an inhibition of adrenal steroidogenesis might be pivotal and should be tested in prospective studies.}, language = {en} } @article{TrifaultMamontovaCossaetal.2024, author = {Trifault, Barbara and Mamontova, Victoria and Cossa, Giacomo and Ganskih, Sabina and Wei, Yuanjie and Hofstetter, Julia and Bhandare, Pranjali and Baluapuri, Apoorva and Nieto, Blanca and Solvie, Daniel and Ade, Carsten P. and Gallant, Peter and Wolf, Elmar and Larsen, Dorthe H. and Munschauer, Mathias and Burger, Kaspar}, title = {Nucleolar detention of NONO shields DNA double-strand breaks from aberrant transcripts}, series = {Nucleic Acids Research}, volume = {52}, journal = {Nucleic Acids Research}, number = {6}, doi = {10.1093/nar/gkae022}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350208}, pages = {3050-3068}, year = {2024}, abstract = {RNA-binding proteins emerge as effectors of the DNA damage response (DDR). The multifunctional non-POU domain-containing octamer-binding protein NONO/p54\(^{nrb}\) marks nuclear paraspeckles in unperturbed cells, but also undergoes re-localization to the nucleolus upon induction of DNA double-strand breaks (DSBs). However, NONO nucleolar re-localization is poorly understood. Here we show that the topoisomerase II inhibitor etoposide stimulates the production of RNA polymerase II-dependent, DNA damage-inducible antisense intergenic non-coding RNA (asincRNA) in human cancer cells. Such transcripts originate from distinct nucleolar intergenic spacer regions and form DNA-RNA hybrids to tether NONO to the nucleolus in an RNA recognition motif 1 domain-dependent manner. NONO occupancy at protein-coding gene promoters is reduced by etoposide, which attenuates pre-mRNA synthesis, enhances NONO binding to pre-mRNA transcripts and is accompanied by nucleolar detention of a subset of such transcripts. The depletion or mutation of NONO interferes with detention and prolongs DSB signalling. Together, we describe a nucleolar DDR pathway that shields NONO and aberrant transcripts from DSBs to promote DNA repair.}, language = {en} } @article{HofstetterOgunleyeKutschkeetal.2024, author = {Hofstetter, Julia and Ogunleye, Ayoola and Kutschke, Andr{\´e} and Buchholz, Lisa Marie and Wolf, Elmar and Raabe, Thomas and Gallant, Peter}, title = {Spt5 interacts genetically with Myc and is limiting for brain tumor growth in Drosophila}, series = {Life Science Alliance}, volume = {7}, journal = {Life Science Alliance}, number = {1}, issn = {2575-1077}, doi = {10.26508/lsa.202302130}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350197}, year = {2024}, abstract = {The transcription factor SPT5 physically interacts with MYC oncoproteins and is essential for efficient transcriptional activation of MYC targets in cultured cells. Here, we use Drosophila to address the relevance of this interaction in a living organism. Spt5 displays moderate synergy with Myc in fast proliferating young imaginal disc cells. During later development, Spt5-knockdown has no detectable consequences on its own, but strongly enhances eye defects caused by Myc overexpression. Similarly, Spt5-knockdown in larval type 2 neuroblasts has only mild effects on brain development and survival of control flies, but dramatically shrinks the volumes of experimentally induced neuroblast tumors and significantly extends the lifespan of tumor-bearing animals. This beneficial effect is still observed when Spt5 is knocked down systemically and after tumor initiation, highlighting SPT5 as a potential drug target in human oncology.}, language = {en} } @article{FerberGerhardsSaueretal.2020, author = {Ferber, Elena and Gerhards, Julian and Sauer, Miriam and Krischke, Markus and Dittrich, Marcus T. and M{\"u}ller, Tobias and Berger, Susanne and Fekete, Agnes and Mueller, Martin J.}, title = {Chemical Priming by Isothiocyanates Protects Against Intoxication by Products of the Mustard Oil Bomb}, series = {Frontiers in Plant Science}, volume = {11}, journal = {Frontiers in Plant Science}, issn = {1664-462X}, doi = {10.3389/fpls.2020.00887}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-207104}, year = {2020}, abstract = {In Brassicaceae, tissue damage triggers the mustard oil bomb i.e., activates the degradation of glucosinolates by myrosinases leading to a rapid accumulation of isothiocyanates at the site of damage. Isothiocyanates are reactive electrophilic species (RES) known to covalently bind to thiols in proteins and glutathione, a process that is not only toxic to herbivores and microbes but can also cause cell death of healthy plant tissues. Previously, it has been shown that subtoxic isothiocyanate concentrations can induce transcriptional reprogramming in intact plant cells. Glutathione depletion by RES leading to breakdown of the redox potential has been proposed as a central and common RES signal transduction mechanism. Using transcriptome analyses, we show that after exposure of Arabidopsis seedlings (grown in liquid culture) to subtoxic concentrations of sulforaphane hundreds of genes were regulated without depletion of the cellular glutathione pool. Heat shock genes were among the most highly up-regulated genes and this response was found to be dependent on the canonical heat shock factors A1 (HSFA1). HSFA1-deficient plants were more sensitive to isothiocyanates than wild type plants. Moreover, pretreatment of Arabidopsis seedlings with subtoxic concentrations of isothiocyanates increased resistance against exposure to toxic levels of isothiocyanates and, hence, may reduce the autotoxicity of the mustard oil bomb by inducing cell protection mechanisms.}, language = {en} } @article{GarciaBetancurGoniMorenoHorgeretal.2017, author = {Garc{\´i}a-Betancur, Juan-Carlos and Go{\~n}i-Moreno, Angel and Horger, Thomas and Schott, Melanie and Sharan, Malvika and Eikmeier, Julian and Wohlmuth, Barbara and Zernecke, Alma and Ohlsen, Knut and Kuttler, Christina and Lopez, Daniel}, title = {Cell differentiation defines acute and chronic infection cell types in Staphylococcus aureus}, series = {eLife}, volume = {6}, journal = {eLife}, number = {e28023}, doi = {10.7554/eLife.28023}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170346}, year = {2017}, abstract = {A central question to biology is how pathogenic bacteria initiate acute or chronic infections. Here we describe a genetic program for cell-fate decision in the opportunistic human pathogen Staphylococcus aureus, which generates the phenotypic bifurcation of the cells into two genetically identical but different cell types during the course of an infection. Whereas one cell type promotes the formation of biofilms that contribute to chronic infections, the second type is planktonic and produces the toxins that contribute to acute bacteremia. We identified a bimodal switch in the agr quorum sensing system that antagonistically regulates the differentiation of these two physiologically distinct cell types. We found that extracellular signals affect the behavior of the agr bimodal switch and modify the size of the specialized subpopulations in specific colonization niches. For instance, magnesium-enriched colonization niches causes magnesium binding to S. aureusteichoic acids and increases bacterial cell wall rigidity. This signal triggers a genetic program that ultimately downregulates the agr bimodal switch. Colonization niches with different magnesium concentrations influence the bimodal system activity, which defines a distinct ratio between these subpopulations; this in turn leads to distinct infection outcomes in vitro and in an in vivo murine infection model. Cell differentiation generates physiological heterogeneity in clonal bacterial infections and helps to determine the distinct infection types.}, language = {en} } @article{KraftSchuhmannGarzetal.2017, author = {Kraft, Peter and Schuhmann, Michael K. and Garz, Cornelia and Jandke, Solveig and Urlaub, Daniela and Mencl, Stine and Zernecke, Alma and Heinze, Hans-Jochen and Carare, Roxana O. and Kleinschnitz, Christoph and Schreiber, Stefanie}, title = {Hypercholesterolemia induced cerebral small vessel disease}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {8}, doi = {10.1371/journal.pone.0182822}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170493}, pages = {e0182822}, year = {2017}, abstract = {Background While hypercholesterolemia plays a causative role for the development of ischemic stroke in large vessels, its significance for cerebral small vessel disease (CSVD) remains unclear. We thus aimed to understand the detailed relationship between hypercholesterolemia and CSVD using the well described Ldlr\(^{-/-}\) mouse model. Methods We used Ldlr\(^{-/-}\) mice (n = 16) and wild-type (WT) mice (n = 15) at the age of 6 and 12 months. Ldlr\(^{-/-}\) mice develop high plasma cholesterol levels following a high fat diet. We analyzed cerebral capillaries and arterioles for intravascular erythrocyte accumulations, thrombotic vessel occlusions, blood-brain barrier (BBB) dysfunction and microbleeds. Results We found a significant increase in the number of erythrocyte stases in 6 months old Ldlr\(^{-/-}\) mice compared to all other groups (P < 0.05). Ldlr\(^{-/-}\) animals aged 12 months showed the highest number of thrombotic occlusions while in WT animals hardly any occlusions could be observed (P < 0.001). Compared to WT mice, Ldlr\(^{-/-}\) mice did not display significant gray matter BBB breakdown. Microhemorrhages were observed in one Ldlr\(^{-/-}\) mouse that was 6 months old. Results did not differ when considering subcortical and cortical regions. Conclusions In Ldlr\(^{-/-}\) mice, hypercholesterolemia is related to a thrombotic CSVD phenotype, which is different from hypertension-related CSVD that associates with a hemorrhagic CSVD phenotype. Our data demonstrate a relationship between hypercholesterolemia and the development of CSVD. Ldlr\(^{-/-}\) mice appear to be an adequate animal model for research into CSVD.}, language = {en} } @article{HowangyinZlatanovaPintoetal.2016, author = {Howangyin, Kiave-Yune and Zlatanova, Ivana and Pinto, Cristina and Ngkelo, Anta and Cochain, Cl{\´e}ment and Rouanet, Marie and Vilar, Jos{\´e} and Lemitre, Mathilde and Stockmann, Christian and Fleischmann, Bernd K. and Mallat, Ziad and Silvestre, Jean-S{\´e}bastien}, title = {Myeloid-epithelial-reproductive receptor tyrosine kinase and milk fat globule epidermal growth factor 8 coordinately improve remodeling after myocardial infarction via local delivery of vascular endothelial growth factor}, series = {Circulation}, volume = {133}, journal = {Circulation}, number = {9}, doi = {10.1161/CIRCULATIONAHA.115.020857}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-190755}, pages = {826-839}, year = {2016}, abstract = {Background: In infarcted heart, improper clearance of dying cells by activated neighboring phagocytes may precipitate the transition to heart failure. We analyzed the coordinated role of 2 major mediators of efferocytosis, the myeloid-epithelial-reproductive protein tyrosine kinase (Mertk) and the milk fat globule epidermal growth factor (Mfge8), in directing cardiac remodeling by skewing the inflammatory response after myocardial infarction. Methods and Results: We generated double-deficient mice for Mertk and Mfge8 (Mertk\(^{-/-}\)/Mfge8\(^{-/-}\)) and challenged them with acute coronary ligature. Compared with wild-type, Mertk-deficient (Mertk\(^{-/-}\)), or Mfge8-deficient (Mfge8\(^{-/-}\)) animals, Mertk\(^{-/-}\)/Mfge8\(^{-/-}\) mice displayed greater alteration in cardiac function and remodeling. Mertk and Mfge8 were expressed mainly by cardiac Ly6C\(^{High and Low}\) monocytes and macrophages. In parallel, Mertk\(^{-/-}\)/Mfge8\(^{-/-}\) bone marrow chimeras manifested increased accumulation of apoptotic cells, enhanced fibrotic area, and larger infarct size, as well as reduced angiogenesis. We found that the abrogation of efferocytosis affected neither the ability of circulating monocytes to infiltrate cardiac tissue nor the number of resident Ly6C\(^{High}\) and Ly6C\(^{Low}\) monocytes/macrophages populating the infarcted milieu. In contrast, combined Mertk and Mfge8 deficiency in Ly6C\(^{High}\)/Ly6C\(^{Low}\) monocytes/macrophages either obtained from in vitro differentiation of bone marrow cells or isolated from infarcted hearts altered their capacity of efferocytosis and subsequently blunted vascular endothelial growth factor A (VEGFA) release. Using LysMCre\(^+\)/VEGFA\(^{fl/fl}\) mice, we further identified an important role for myeloid-derived VEGFA in improving cardiac function and angiogenesis. Conclusions: After myocardial infarction, Mertk- and Mfge8-expressing monocyte/macrophages synergistically engage the clearance of injured cardiomyocytes, favoring the secretion of VEGFA to locally repair the dysfunctional heart.}, language = {en} } @article{WildgruberAschenbrennerWendorffetal.2016, author = {Wildgruber, Moritz and Aschenbrenner, Teresa and Wendorff, Heiko and Czubba, Maria and Glinzer, Almut and Haller, Bernhard and Schiemann, Matthias and Zimmermann, Alexander and Berger, Hermann and Eckstein, Hans-Henning and Meier, Reinhard and Wohlgemuth, Walter A. and Libby, Peter and Zernecke, Alma}, title = {The "Intermediate" CD14\(^{++}\)CD16\(^{+}\) monocyte subset increases in severe peripheral artery disease in humans}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {39483}, doi = {10.1038/srep39483}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167476}, year = {2016}, abstract = {Monocytes are key players in atherosclerotic. Human monocytes display a considerable heterogeneity and at least three subsets can be distinguished. While the role of monocyte subset heterogeneity has already been well investigated in coronary artery disease (CAD), the knowledge about monocytes and their heterogeneity in peripheral artery occlusive disease (PAOD) still is limited. Therefore, we aimed to investigate monocyte subset heterogeneity in patients with PAOD. Peripheral blood was obtained from 143 patients suffering from PAOD (Rutherford stage I to VI) and three monocyte subsets were identified by flow cytometry: CD14\(^{++}\)CD16\(^{-}\) classical monocytes, CD14\(^{+}\)CD16\(^{++}\) non-classical monocytes and CD14\(^{++}\)CD16\(^{+}\) intermediate monocytes. Additionally the expression of distinct surface markers (CD106, CD162 and myeloperoxidase MPO) was analyzed. Proportions of CD14\(^{++}\)CD16\(^{+}\) intermediate monocyte levels were significantly increased in advanced stages of PAOD, while classical and non-classical monocytes displayed no such trend. Moreover, CD162 and MPO expression increased significantly in intermediate monocyte subsets in advanced disease stages. Likewise, increased CD162 and MPO expression was noted in CD14\(^{++}\)CD16\(^{-}\) classical monocytes. These data suggest substantial dynamics in monocyte subset distributions and phenotypes in different stages of PAOD, which can either serve as biomarkers or as potential therapeutic targets to decrease the inflammatory burden in advanced stages of atherosclerosis.}, language = {en} } @article{WiegeringRiegelWagneretal.2017, author = {Wiegering, Armin and Riegel, Johannes and Wagner, Johanna and Kunzmann, Volker and Baur, Johannes and Walles, Thorsten and Dietz, Ulrich and Loeb, Stefan and Germer, Christoph-Thomas and Steger, Ulrich and Klein, Ingo}, title = {The impact of pulmonary metastasectomy in patients with previously resected colorectal cancer liver metastases}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {3}, doi = {10.1371/journal.pone.0173933}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158036}, pages = {e0173933}, year = {2017}, abstract = {Background 40-50\% of patients with colorectal cancer (CRC) will develop liver metastases (CRLM) during the course of the disease. One third of these patients will additionally develop pulmonary metastases. Methods 137 consecutive patients with CRLM, were analyzed regarding survival data, clinical, histological data and treatment. Results were stratified according to the occurrence of pulmonary metastases and metastases resection. Results 39\% of all patients with liver resection due to CRLM developed additional lung metastases. 44\% of these patients underwent subsequent pulmonary resection. Patients undergoing pulmonary metastasectomy showed a significantly better five-year survival compared to patients not qualified for curative resection (5-year survival 71.2\% vs. 28.0\%; p = 0.001). Interestingly, the 5-year survival of these patients was even superior to all patients with CRLM, who did not develop pulmonary metastases (77.5\% vs. 63.5\%; p = 0.015). Patients, whose pulmonary metastases were not resected, were more likely to redevelop liver metastases (50.0\% vs 78.6\%; p = 0.034). However, the rate of distant metastases did not differ between both groups (54.5 vs.53.6; p = 0.945). Conclusion The occurrence of colorectal lung metastases after curative liver resection does not impact patient survival if pulmonary metastasectomy is feasible. Those patients clearly benefit from repeated resections of the liver and the lung metastases.}, language = {en} } @article{GambaryanSubramanianKehreretal.2016, author = {Gambaryan, Stepan and Subramanian, Hariharan and Kehrer, Linda and Mindukshev, Igor and Sudnitsyna, Julia and Reiss, Cora and Rukoyatkina, Natalia and Friebe, Andreas and Sharina, Iraida and Martin, Emil and Walter, Ulrich}, title = {Erythrocytes do not activate purified and platelet soluble guanylate cyclases even in conditions favourable for NO synthesis}, series = {Cell Communication and Signaling}, volume = {14}, journal = {Cell Communication and Signaling}, number = {16}, doi = {10.1186/s12964-016-0139-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161223}, year = {2016}, abstract = {Background Direct interaction between Red blood cells (RBCs) and platelets is known for a long time. The bleeding time is prolonged in anemic patients independent of their platelet count and could be corrected by transfusion of RBCs, which indicates that RBCs play an important role in hemostasis and platelet activation. However, in the last few years, opposing mechanisms of platelet inhibition by RBCs derived nitric oxide (NO) were proposed. The aim of our study was to identify whether RBCs could produce NO and activate soluble guanylate cyclase (sGC) in platelets. Methods To test whether RBCs could activate sGC under different conditions (whole blood, under hypoxia, or even loaded with NO), we used our well-established and highly sensitive models of NO-dependent sGC activation in platelets and activation of purified sGC. The activation of sGC was monitored by detecting the phosphorylation of Vasodilator Stimulated Phosphoprotein (VASPS239) by flow cytometry and Western blot. ANOVA followed by Bonferroni's test and Student's t-test were used as appropriate. Results We show that in the whole blood, RBCs prevent NO-mediated inhibition of ADP and TRAP6-induced platelet activation. Likewise, coincubation of RBCs with platelets results in strong inhibition of NO-induced sGC activation. Under hypoxic conditions, incubation of RBCs with NO donor leads to Hb-NO formation which inhibits sGC activation in platelets. Similarly, RBCs inhibit activation of purified sGC, even under conditions optimal for RBC-mediated generation of NO from nitrite. Conclusions All our experiments demonstrate that RBCs act as strong NO scavengers and prevent NO-mediated inhibition of activated platelets. In all tested conditions, RBCs were not able to activate platelet or purified sGC.}, language = {en} }