@article{BrumbergSchroeterBlazhenetsetal.2020, author = {Brumberg, Joachim and Schr{\"o}ter, Nils and Blazhenets, Ganna and Frings, Lars and Volkmann, Jens and Lapa, Constantin and Jost, Wolfgang H. and Isaias, Ioannis U. and Meyer, Philipp T.}, title = {Differential diagnosis of parkinsonism: a head-to-head comparison of FDG PET and MIBG scintigraphy}, series = {NPJ Parkinsons Disease}, volume = {6}, journal = {NPJ Parkinsons Disease}, doi = {10.1038/s41531-020-00141-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230675}, year = {2020}, abstract = {[\(^{18}\)F]fluorodeoxyglucose (FDG) PET and [\(^{123}\)I]metaiodobenzylguanidine (MIBG) scintigraphy may contribute to the differential diagnosis of neurodegenerative parkinsonism. To identify the superior method, we retrospectively evaluated 54 patients with suspected neurodegenerative parkinsonism, who were referred for FDG PET and MIBG scintigraphy. Two investigators visually assessed FDG PET scans using an ordinal 6-step score for disease-specific patterns of Lewy body diseases (LBD) or atypical parkinsonism (APS) and assigned the latter to the subgroups multiple system atrophy (MSA), progressive supranuclear palsy (PSP), or corticobasal syndrome. Regions-of-interest analysis on anterior planar MIBG images served to calculate the heart-to-mediastinum ratio. Movement disorder specialists blinded to imaging results established clinical follow-up diagnosis by means of guideline-derived case vignettes. Clinical follow-up (1.7 +/- 2.3 years) revealed the following diagnoses: n = 19 LBD (n = 17 Parkinson's disease [PD], n = 1 PD dementia, and n = 1 dementia with Lewy bodies), n = 31 APS (n = 28 MSA, n = 3 PSP), n = 3 non-neurodegenerative parkinsonism; n = 1 patient could not be diagnosed and was excluded. Receiver operating characteristic analyses for discriminating LBD vs. non-LBD revealed a larger area under the curve for FDG PET than for MIBG scintigraphy at statistical trend level for consensus rating (0.82 vs. 0.69, p = 0.06; significant for investigator \#1: 0.83 vs. 0.69, p = 0.04). The analysis of PD vs. MSA showed a similar difference (0.82 vs. 0.69, p = 0.11; rater \#1: 0.83 vs. 0.69, p = 0.07). Albeit the notable differences in diagnostic performance did not attain statistical significance, the authors consider this finding clinically relevant and suggest that FDG PET, which also allows for subgrouping of APS, should be preferred.}, language = {en} } @article{WesterKellerSchotteliusetal.2015, author = {Wester, Hans J{\"u}rgen and Keller, Ulrich and Schottelius, Margret and Beer, Ambros and Philipp-Abbrederis, Kathrin and Hoffmann, Frauke and Šimeček, Jakub and Gerngross, Carlos and Lassmann, Michael and Herrmann, Ken and Pellegata, Natalia and Rudelius, Martina and Kessler, Horst and Schwaiger, Markus}, title = {Disclosing the CXCR4 expression in lymphoproliferative diseases by targeted molecular imaging}, series = {Theranostics}, volume = {5}, journal = {Theranostics}, number = {6}, doi = {10.7150/thno.11251}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144537}, pages = {618-630}, year = {2015}, abstract = {Chemokine ligand-receptor interactions play a pivotal role in cell attraction and cellular trafficking, both in normal tissue homeostasis and in disease. In cancer, chemokine receptor-4 (CXCR4) expression is an adverse prognostic factor. Early clinical studies suggest that targeting CXCR4 with suitable high-affinity antagonists might be a novel means for therapy. In addition to the preclinical evaluation of [\(^{68}\)Ga]Pentixafor in mice bearing human lymphoma xenografts as an exemplary CXCR4-expressing tumor entity, we report on the first clinical applications of [\(^{68}\)Ga]Pentixafor-Positron Emission Tomography as a powerful method for CXCR4 imaging in cancer patients. [\(^{68}\)Ga]Pentixafor binds with high affinity and selectivity to human CXCR4 and exhibits a favorable dosimetry. [\(^{68}\)Ga]Pentixafor-PET provides images with excellent specificity and contrast. This non-invasive imaging technology for quantitative assessment of CXCR4 expression allows to further elucidate the role of CXCR4/CXCL12 ligand interaction in the pathogenesis and treatment of cancer, cardiovascular diseases and autoimmune and inflammatory disorders.}, language = {en} } @article{SchumannScherthanPfestroffetal.2021, author = {Schumann, S. and Scherthan, H. and Pfestroff, K. and Schoof, S. and Pfestroff, A. and Hartrampf, P. and Hasenauer, N. and Buck, A. K. and Luster, M. and Port, M. and Lassmann, M. and Eberlein, U.}, title = {DNA damage and repair in peripheral blood mononuclear cells after internal ex vivo irradiation of patient blood with \(^{131}\)I}, series = {European Journal of Nuclear Medicine and Molecular Imaging}, journal = {European Journal of Nuclear Medicine and Molecular Imaging}, doi = {10.1007/s00259-021-05605-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258863}, year = {2021}, abstract = {Aim The aim of this study was to provide a systematic approach to characterize DNA damage induction and repair in isolated peripheral blood mononuclear cells (PBMCs) after internal ex vivo irradiation with [\(^{131}\)I]NaI. In this approach, we tried to mimic ex vivo the irradiation of patient blood in the first hours after radioiodine therapy. Material and methods Blood of 33 patients of two centres was collected immediately before radioiodine therapy of differentiated thyroid cancer (DTC) and split into two samples. One sample served as non-irradiated control. The second sample was exposed to ionizing radiation by adding 1 ml of [\(^{131}\)I]NaI solution to 7 ml of blood, followed by incubation at 37 °C for 1 h. PBMCs of both samples were isolated, split in three parts each and (i) fixed in 70\% ethanol and stored at - 20 °C directly (0 h) after irradiation, (ii) after 4 h and (iii) 24 h after irradiation and culture in RPMI medium. After immunofluorescence staining microscopically visible co-localizing γ-H2AX + 53BP1 foci were scored in 100 cells per sample as biomarkers for radiation-induced double-strand breaks (DSBs). Results Thirty-two of 33 blood samples could be analysed. The mean absorbed dose to the blood in all irradiated samples was 50.1 ± 2.3 mGy. For all time points (0 h, 4 h, 24 h), the average number of γ-H2AX + 53BP1 foci per cell was significantly different when compared to baseline and the other time points. The average number of radiation-induced foci (RIF) per cell after irradiation was 0.72 ± 0.16 at t = 0 h, 0.26 ± 0.09 at t = 4 h and 0.04 ± 0.09 at t = 24 h. A monoexponential fit of the mean values of the three time points provided a decay rate of 0.25 ± 0.05 h\(^{-1}\), which is in good agreement with data obtained from external irradiation with γ- or X-rays. Conclusion This study provides novel data about the ex vivo DSB repair in internally irradiated PBMCs of patients before radionuclide therapy. Our findings show, in a large patient sample, that efficient repair occurs after internal irradiation with 50 mGy absorbed dose, and that the induction and repair rate after \(^{131}\)I exposure is comparable to that of external irradiation with γ- or X-rays.}, language = {en} } @article{SchumannScherthanFranketal.2020, author = {Schumann, Sarah and Scherthan, Harry and Frank, Torsten and Lapa, Constantin and M{\"u}ller, Jessica and Seifert, Simone and Lassmann, Michael and Eberlein, Uta}, title = {DNA Damage in Blood Leukocytes of Prostate Cancer Patients Undergoing PET/CT Examinations with [\(^{68}\)Ga]Ga-PSMA I\&T}, series = {Cancers}, volume = {12}, journal = {Cancers}, number = {2}, issn = {2072-6694}, doi = {10.3390/cancers12020388}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200585}, pages = {388}, year = {2020}, abstract = {The aim was to investigate the induction and repair of radiation-induced DNA double-strand breaks (DSBs) as a function of the absorbed dose to the blood of patients undergoing PET/CT examinations with [68Ga]Ga-PSMA. Blood samples were collected from 15 patients before and at four time points after [68Ga]Ga-PSMA administration, both before and after the PET/CT scan. Absorbed doses to the blood were calculated. In addition, blood samples with/without contrast agent from five volunteers were irradiated ex vivo by CT while measuring the absorbed dose. Leukocytes were isolated, fixed, and stained for co-localizing γ-H2AX+53BP1 DSB foci that were enumerated manually. In vivo, a significant increase in γ-H2AX+53BP1 foci compared to baseline was observed at all time points after administration, although the absorbed dose to the blood by 68Ga was below 4 mGy. Ex vivo, the increase in radiation-induced foci depended on the absorbed dose and the presence of contrast agent, which could have caused a dose enhancement. The CT-dose contribution for the patients was estimated at about 12 mGy using the ex vivo calibration. The additional number of DSB foci induced by CT, however, was comparable to the one induced by 68Ga. The significantly increased foci numbers after [68Ga]Ga-PSMA administration may suggest a possible low-dose hypersensitivity.}, language = {en} } @article{SchumannEberleinMuhtadietal.2018, author = {Schumann, Sarah and Eberlein, Uta and Muhtadi, Razan and Lassmann, Michael and Scherthan, Harry}, title = {DNA damage in leukocytes after internal ex-vivo irradiation of blood with the α-emitter Ra-223}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, number = {2286}, doi = {10.1038/s41598-018-20364-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175596}, year = {2018}, abstract = {Irradiation with high linear energy transfer α-emitters, like the clinically used Ra-223 dichloride, severely damages cells and induces complex DNA damage including closely spaced double-strand breaks (DSBs). As the hematopoietic system is an organ-at-risk for the treatment, knowledge about Ra-223-induced DNA damage in blood leukocytes is highly desirable. Therefore, 36 blood samples from six healthy volunteers were exposed ex-vivo (in solution) to different concentrations of Ra-223. Absorbed doses to the blood were calculated assuming local energy deposition of all α- and β-particles of the decay, ranging from 0 to 142 mGy. γ-H2AX + 53BP1 co-staining and analysis was performed in leukocytes isolated from the irradiated blood samples. For DNA damage quantification, leukocyte samples were screened for occurrence of α-induced DNA damage tracks and small γ-H2AX + 53BP1 DSB foci. This revealed a linear relationship between the frequency of α-induced γ-H2AX damage tracks and the absorbed dose to the blood, while the frequency of small γ-H2AX + 53BP1 DSB foci indicative of β-irradiation was similar to baseline values, being in agreement with a negligible β-contribution (3.7\%) to the total absorbed dose to the blood. Our calibration curve will contribute to the biodosimetry of Ra-223-treated patients and early after incorporation of α-emitters.}, language = {en} } @article{TamihardjaZehnerHartrampfetal.2022, author = {Tamihardja, J{\"o}rg and Zehner, Leonie and Hartrampf, Philipp E. and Cirsi, Sinan and Wegener, Sonja and Buck, Andreas K. and Flentje, Michael and Polat, B{\"u}lent}, title = {Dose-escalated salvage radiotherapy for macroscopic local recurrence of prostate cancer in the prostate-specific membrane antigen positron emission tomography era}, series = {Cancers}, volume = {14}, journal = {Cancers}, number = {19}, issn = {2072-6694}, doi = {10.3390/cancers14194956}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290302}, year = {2022}, abstract = {Simple Summary Prostate cancer often relapses after initial radical prostatectomy, and salvage radiotherapy offers a second chance of cure for relapsed patients. Modern imaging techniques, especially prostate-specific membrane antigen positron emission tomography/computed tomography (PSMA PET/CT), enable radiation oncologists to target radiotherapy at the involved sites of disease. In a group of patients, PSMA PET/CT imaging can detect a macroscopic local recurrence with or without locoregional lymph node metastasis. In these cases, an escalation of the radiotherapy dose is often considered for controlling the visible tumor mass. As the evidence for dose-escalated salvage radiotherapy for macroscopic recurrent prostate cancer after PSMA PET/CT imaging is still limited, we address this topic in the current analysis. We found that the outcome of patients with dose-escalated salvage radiotherapy for macroscopic prostate cancer recurrence is encouragingly favorable, while the toxicity is very limited. Abstract Background: The purpose of this study was to access the oncological outcome of prostate-specific membrane antigen positron emission tomography (PSMA PET/CT)-guided salvage radiotherapy (SRT) for localized macroscopic prostate cancer recurrence. Methods: Between February 2010 and June 2021, 367 patients received SRT after radical prostatectomy. Out of the 367 screened patients, 111 patients were staged by PSMA PET/CT before SRT. A total of 59 out of these 111 (53.2\%) patients were treated for PSMA PET-positive macroscopic prostatic fossa recurrence. Dose-escalated SRT was applied with a simultaneous integrated boost at a median prescribed dose of 69.3 Gy (IQR 69.3-72.6 Gy). The oncological outcome was investigated using Kaplan-Meier and Cox regression analyses. The genitourinary (GU)/gastrointestinal (GI) toxicity evaluation utilized Common Toxicity Criteria for Adverse Events (version 5.0). Results: The median follow-up was 38.2 months. The three-year biochemical progression-free survival rate was 89.1\% (95\% CI: 81.1-97.8\%) and the three-year metastasis-free survival rate reached 96.2\% (95\% CI: 91.2-100.0\%). The cumulative three-year late grade 3 GU toxicity rate was 3.4\%. No late grade 3 GI toxicity occurred. Conclusions: Dose-escalated PSMA PET/CT-guided salvage radiotherapy for macroscopic prostatic fossa recurrence resulted in favorable survival and toxicity rates.}, language = {en} } @phdthesis{SoaresMachado2019, author = {Soares Machado, J{\´e}ssica}, title = {Dosimetry-based Assessment of Radiation-associated Cancer risk for \(^9\)\(^9\)\(^m\)Tc-MAG3 Scans in Infants and Optimization of Administered Activities for \(^6\)\(^8\)Ga-labelled Peptides in Children and Adolescents}, doi = {10.25972/OPUS-19264}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192640}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {In 2006, 0.18 Mio pediatric nuclear medicine diagnostic exams were performed worldwide. However, for most of the radiopharmaceuticals used data on biokinetics and, as a consequence on dosimetry, are missing or have not been made publicly available. Therefore, most of the dosimetry assessments presented today for diagnostic agents in children and adolescents rely on the biokinetics data of adults. Even for one of the most common nuclear medicine exams for this patient group, renal scintigraphy with 99mTc-MAG3 for assessing renal function measured data on biokinetics is available only from a study performed on four children of different ages. In particular, renal scans are among the most frequent exams performed on infants and toddlers. Due to the young age, this patient group can be classified as a risk group with a higher probability of developing stochastic radiation effects compared to adults. As there are only limited data on biokinetics and dosimetry in this patient group, the aim of this study is to reassess the dosimetry and the associated radiation risk for a larger number of infants undergoing 99mTc-MAG3 renal scans based on a retrospective analysis of existing patient data. Data were collected retrospectively from 34 patients younger than 20 months with normal (20 patients) and abnormal renal function (14 patients) undergoing 99mTc-MAG3 scans. The patient-specific organ activity was estimated based on a retrospective calibration which was performed based on a set of two 3D-printed infant kidneys (newborns: 8.6 ml; 1-year-old: 23.4 ml) filled with known activities. Both phantoms were scanned at different positions along the anteroposterior axis inside a water phantom, providing depth- and size-dependent attenuation correction factors for planar imaging. Time-activity curves were determined by drawing kidney, bladder, and whole body regions-of-interest for each patient, and subsequently applying the calibration factor for conversion of counts to activity. Patient-specific time-integrated activity coefficients were obtained by integrating the organ-specific time-activity curves. Absorbed and effective dose coefficients for each patient were assessed with OLINDA/EXM for the provided newborn and 1-year-old phantom. Based on absorbed dose values, the radiation risk estimation was performed individually for each of the 34 patients with the National Cancer Institute's Radiation Risk Assessment Tool. The patients' organ-specific mean absorbed dose coefficients for the patients with normal renal function were 0.04±0.03 mGy/MBq for the kidneys and 0.27±0.24 mGy/MBq for the bladder. This resulted in a mean effective dose coefficient of 0.02±0.02 mSv/MBq. Based on the dosimetry results, the evaluation of the excess lifetime risk (ELR) for the development of radiation-induced cancer showed that the group of newborns has an ELR of 16.8 per 100,000 persons, which is higher in comparison with the 1-year-old group with an ELR of 14.7 per 100,000 persons. With regard to the 14 patients with abnormal renal function, the mean values for the organ absorbed dose coefficients for the patients were: 0.40±0.34 mGy/MBq for the kidneys and 0.46±0.37 mGy/MBq for the bladder. The corresponding effective dose coefficients (mSv/MBq) was: 0.05±0.02 mSv/MBq. The mean ELR (per 100,000 persons) for developing cancer from radiation exposure for patients with abnormal renal function was 29.2±18.7 per 100,000 persons. As a result, the radiation-associated stochastic risk increases with the organ doses, taking age- and gender-specific influences into account. Overall, the lifetime radiation risk associated with the 99mTc-MAG3 scans is very low in comparison to the general population risk for developing cancer. Furthermore, due to the increasing demand for PET-scans in children and adolescents with 68Ga-labelled peptides, in this work published data sets for those compounds were analyzed to derive recommendations for the administered activities in children and adolescents. The recommendation for the activities to be administered were based on the weight-independent effective dose model, proposed by the EANM Pediatric Dosage Card for application in pediatric nuclear medicine. The aim was to derive recommendations on administered activities for obtaining age-independent effective doses. Consequently, the corresponding weight-dependent effective dose coefficients were rescaled according to the formalism of the EANM dosage card, to determine the radiopharmaceutical class of 68Ga-labeled peptides ("multiples"), and to calculate the baseline activities based on the biokinetics of these compounds and an upper limit of the administered activity of 185 MBq for an adult. Analogous to 18F-fluoride, a minimum activity of 14 MBq is recommended. As a result, for those pediatric nuclear medicine applications involving 68Ga-labeled peptides, new values for the EANM dosage card were proposed and implemented based on the results derived in this work. Overall, despite the low additional radiation-related cancer risk, all efforts should be undertaken to optimize administered activities in children and adolescents for obtaining sufficient diagnostic information with minimal associated radiation risk.}, subject = {Biokinetics}, language = {en} } @article{KonijnenbergHerrmannKobeetal.2021, author = {Konijnenberg, Mark and Herrmann, Ken and Kobe, Carsten and Verburg, Frederik and Hindorf, Cecilia and Hustinx, Roland and Lassmann, Michael}, title = {EANM position paper on article 56 of the Council Directive 2013/59/Euratom (basic safety standards) for nuclear medicine therapy}, series = {European Journal of Nuclear Medicine and Molecular Imaging}, volume = {48}, journal = {European Journal of Nuclear Medicine and Molecular Imaging}, issn = {1619-7070}, doi = {10.1007/s00259-020-05038-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235280}, pages = {67-72}, year = {2021}, abstract = {The EC Directive 2013/59/Euratom states in article 56 that exposures of target volumes in nuclear medicine treatments shall be individually planned and their delivery appropriately verified. The Directive also mentions that medical physics experts should always be appropriately involved in those treatments. Although it is obvious that, in nuclear medicine practice, every nuclear medicine physician and physicist should follow national rules and legislation, the EANM considered it necessary to provide guidance on how to interpret the Directive statements for nuclear medicine treatments. For this purpose, the EANM proposes to distinguish three levels in compliance to the optimization principle in the directive, inspired by the indication of levels in prescribing, recording and reporting of absorbed doses after radiotherapy defined by the International Commission on Radiation Units and Measurements (ICRU): Most nuclear medicine treatments currently applied in Europe are standardized. The minimum requirement for those treatments is ICRU level 1 ("activity-based prescription and patient-averaged dosimetry"), which is defined by administering the activity within 10\% of the intended activity, typically according to the package insert or to the respective EANM guidelines, followed by verification of the therapy delivery, if applicable. Non-standardized treatments are essentially those in developmental phase or approved radiopharmaceuticals being used off-label with significantly (> 25\% more than in the label) higher activities. These treatments should comply with ICRU level 2 ("activity-based prescription and patient-specific dosimetry"), which implies recording and reporting of the absorbed dose to organs at risk and optionally the absorbed dose to treatment regions. The EANM strongly encourages to foster research that eventually leads to treatment planning according to ICRU level 3 ("dosimetry-guided patient-specific prescription and verification"), whenever possible and relevant. Evidence for superiority of therapy prescription on basis of patient-specific dosimetry has not been obtained. However, the authors believe that a better understanding of therapy dosimetry, i.e. how much and where the energy is delivered, and radiobiology, i.e. radiation-related processes in tissues, are keys to the long-term improvement of our treatments.}, language = {en} } @article{AertsEberleinHolmetal.2021, author = {Aerts, An and Eberlein, Uta and Holm, S{\"o}ren and Hustinx, Roland and Konijnenberg, Mark and Strigari, Lidia and van Leeuwen, Fijs W. B. and Glatting, Gerhard and Lassmann, Michael}, title = {EANM position paper on the role of radiobiology in nuclear medicine}, series = {European Journal of Nuclear Medicine and Molecular Imaging}, volume = {48}, journal = {European Journal of Nuclear Medicine and Molecular Imaging}, number = {11}, doi = {10.1007/s00259-021-05345-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265595}, pages = {3365-3377}, year = {2021}, abstract = {With an increasing variety of radiopharmaceuticals for diagnostic or therapeutic nuclear medicine as valuable diagnostic or treatment option, radiobiology plays an important role in supporting optimizations. This comprises particularly safety and efficacy of radionuclide therapies, specifically tailored to each patient. As absorbed dose rates and absorbed dose distributions in space and time are very different between external irradiation and systemic radionuclide exposure, distinct radiation-induced biological responses are expected in nuclear medicine, which need to be explored. This calls for a dedicated nuclear medicine radiobiology. Radiobiology findings and absorbed dose measurements will enable an improved estimation and prediction of efficacy and adverse effects. Moreover, a better understanding on the fundamental biological mechanisms underlying tumor and normal tissue responses will help to identify predictive and prognostic biomarkers as well as biomarkers for treatment follow-up. In addition, radiobiology can form the basis for the development of radiosensitizing strategies and radioprotectant agents. Thus, EANM believes that, beyond in vitro and preclinical evaluations, radiobiology will bring important added value to clinical studies and to clinical teams. Therefore, EANM strongly supports active collaboration between radiochemists, radiopharmacists, radiobiologists, medical physicists, and physicians to foster research toward precision nuclear medicine.}, language = {en} } @article{KlaesnerBuchmannGemptetal.2015, author = {Kl{\"a}sner, Benjamin and Buchmann, Niels and Gempt, Jens and Ringel, Florian and Lapa, Constantin and Krause, Bernd Joachim}, title = {Early [\(^{18}\)F]FET-PET in Gliomas after Surgical Resection: Comparison with MRI and Histopathology}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {10}, doi = {10.1371/journal.pone.0141153}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139549}, pages = {e0141153}, year = {2015}, abstract = {Background The precise definition of the post-operative resection status in high-grade gliomas (HGG) is crucial for further management. We aimed to assess the feasibility of assessment of the resection status with early post-operative positron emission tomography (PET) using [\(^{18}\)F]O-(2-[\(^{18}\)F]-fluoroethyl)-L-tyrosine ([\(^{18}\)F]FET). Methods 25 patients with the suspicion of primary HGG were enrolled. All patients underwent preoperative [\(^{18}\)F]FET-PET and magnetic resonance imaging (MRI). Intra-operatively, resection status was assessed using 5-aminolevulinic acid (5-ALA). Imaging was repeated within 72h after neurosurgery. Post-operative [\(^{18}\)F]FET-PET was compared with MRI, intra-operative assessment and clinical follow-up. Results [\(^{18}\)F]FET-PET, MRI and intra-operative assessment consistently revealed complete resection in 12/25 (48\%) patients and incomplete resection in 6/25 cases (24\%). In 7 patients, PET revealed discordant findings. One patient was re-resected. 3/7 experienced tumor recurrence, 3/7 died shortly after brain surgery. Conclusion Early assessment of the resection status in HGG with [\(^{18}\)F]FET-PET seems to be feasible.}, language = {en} }