@phdthesis{Moritz2011, author = {Moritz, Maria Christine}, title = {Experimentelle Induktion von Sprunggelenksfrakturen bei Osteoporose: biomechanischer Vergleich unterschiedlicher Plattenosteosynthesen an humanen Unterschenkeln}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-65172}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {In 20 humanen, osteoporotischen Unterschenkeln wurde versucht eine Lauge-Hansen Supination-Eversions-Verletzung Stadium II zu reproduzieren. In 15 der 18 auswertbaren Proben waren Außenkn{\"o}chelfrakturen induzierbar. Die Voraussetzung f{\"u}r die erfolgreiche Frakturinduktion war eine Mindestknochen- und Spongiosadichte des Außenkn{\"o}chels gemessen mit pQCT an Innen- und Außenkn{\"o}chel. Ansonsten kam es nur zu ligament{\"a}ren fibularen oder tibialen Avuslionen. Entscheidend, ob eine Außenkn{\"o}chelfraktur auf H{\"o}he der Syndesmose oder distal entstand, war eine effektive, lateral gerichtete talofibulare Kraft. Jeweils sechs der 15 Außenkn{\"o}chelfrakturen wurden mit winkelstabilen und nicht winkelstabilen Konturenplatten versorgt und biomechanisch getestet. Mit p kleiner 0,05 konnte signifikant gezeigt werden, dass zum Versagen der winkelstabilen Konturenplatte ein h{\"o}heres Drehmoment und ein gr{\"o}ßere Außenrotation n{\"o}tig waren, als f{\"u}r die nicht winkelstabilen Konturenplatte. Neben der biomechanischen {\"U}berlegenheit der winkelstabilen Konturenplatte konnte gezeigt werden, dass ihr Versagen im Gegensatz zur nicht winkelstabilen Konturenplatte unabh{\"a}ngig ist von der Knochendichte des Außenkn{\"o}chels.}, subject = {Sprungelenksfrakturen}, language = {de} } @article{GramGenslerWinteretal.2022, author = {Gram, Maximilian and Gensler, Daniel and Winter, Patrick and Seethaler, Michael and Arias-Loza, Paula Anahi and Oberberger, Johannes and Jakob, Peter Michael and Nordbeck, Peter}, title = {Fast myocardial T\(_{1P}\) mapping in mice using k-space weighted image contrast and a Bloch simulation-optimized radial sampling pattern}, series = {Magnetic Resonance Materials in Physics, Biology and Medicine}, volume = {35}, journal = {Magnetic Resonance Materials in Physics, Biology and Medicine}, number = {2}, issn = {1352-8661}, doi = {10.1007/s10334-021-00951-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-268903}, pages = {325-340}, year = {2022}, abstract = {Purpose T\(_{1P}\) dispersion quantification can potentially be used as a cardiac magnetic resonance index for sensitive detection of myocardial fibrosis without the need of contrast agents. However, dispersion quantification is still a major challenge, because T\(_{1P}\) mapping for different spin lock amplitudes is a very time consuming process. This study aims to develop a fast and accurate T\(_{1P}\) mapping sequence, which paves the way to cardiac T1ρ dispersion quantification within the limited measurement time of an in vivo study in small animals. Methods A radial spin lock sequence was developed using a Bloch simulation-optimized sampling pattern and a view-sharing method for image reconstruction. For validation, phantom measurements with a conventional sampling pattern and a gold standard sequence were compared to examine T\(_{1P}\) quantification accuracy. The in vivo validation of T\(_{1P}\) mapping was performed in N = 10 mice and in a reproduction study in a single animal, in which ten maps were acquired in direct succession. Finally, the feasibility of myocardial dispersion quantification was tested in one animal. Results The Bloch simulation-based sampling shows considerably higher image quality as well as improved T\(_{1P}\) quantification accuracy (+ 56\%) and precision (+ 49\%) compared to conventional sampling. Compared to the gold standard sequence, a mean deviation of - 0.46 ± 1.84\% was observed. The in vivo measurements proved high reproducibility of myocardial T\(_{1P}\) mapping. The mean T\(_{1P}\) in the left ventricle was 39.5 ± 1.2 ms for different animals and the maximum deviation was 2.1\% in the successive measurements. The myocardial T\(_{1P}\) dispersion slope, which was measured for the first time in one animal, could be determined to be 4.76 ± 0.23 ms/kHz. Conclusion This new and fast T\(_{1P}\) quantification technique enables high-resolution myocardial T\(_{1P}\) mapping and even dispersion quantification within the limited time of an in vivo study and could, therefore, be a reliable tool for improved tissue characterization.}, language = {en} } @unpublished{YinWernerHiguchietal.2018, author = {Yin, Yafu and Werner, Rudolf A. and Higuchi, Takahiro and Lapa, Constantin and Pienta, Kenneth J. and Pomper, Martin G. and Gorin, Michael A. and Rowe, Steven P.}, title = {Follow-Up of Lesions with Equivocal Radiotracer Uptake on PSMA-Targeted PET in Patients with Prostate Cancer: Predictive Values of the PSMA-RADS-3A and PSMARADS- 3B Categories}, series = {Journal of Nuclear Medicine}, journal = {Journal of Nuclear Medicine}, issn = {0161-5505}, doi = {10.2967/jnumed.118.217653}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167594}, year = {2018}, abstract = {Purpose: Prostate-specific membrane antigen (PSMA)-targeted positron emission tomography (PET) imaging has become commonly utilized in patients with prostate cancer (PCa). The PSMA reporting and data system version 1.0 (PSMA-RADS version 1.0) categorizes lesions on the basis of the likelihood of PCa involvement, with PSMA-RADS-3A (soft tissue) and PSMA-RADS-3B (bone) lesions being indeterminate for the presence of disease. We retrospectively reviewed the imaging follow-up of such lesions to determine the rate at which they underwent changes suggestive of underlying PCa. Methods: PET/CT imaging with \(^{18}\)F-DCFPyL was carried out in 110 patients with PCa and lesions were categorized according to PSMA-RADS Version 1.0. 56/110 (50.9\%) patients were determined to have indeterminate PSMA-RADS-3A or PSMA-RADS-3B lesions and 22/56 (39.3\%) patients had adequate follow-up to be included in the analysis. The maximum standardized uptake values (SUV\(_{max}\)) of the lesions were obtained and the ratios of SUV\(_{max}\) of the lesions to SUV\(_{mean}\) of blood pool (SUV\(_{max}\)-lesion/SUV\(_{mean}\)-bloodpool) were calculated. Pre-determined criteria were used to evaluate the PSMA-RADS-3A and PSMA-RADS-3B lesions on follow-up imaging to determine if they demonstrated evidence of underlying malignancy. Results: A total of 46 lesions in 22 patients were considered indeterminate for PCa (i.e. PSMA-RADS-3A (32 lesions) or PSMA-RADS-3B (14 lesions)) and were evaluable on follow-up imaging. 27/46 (58.7\%) lesions demonstrated changes on follow-up imaging consistent with the presence of underlying PCa at baseline. These lesions included 24/32 (75.0\%) PSMA-RADS-3A lesions and 3/14 (21.4\%) lesions categorized as PSMA-RADS-3B. The ranges of SUVmax and SUVmax-lesion/SUVmean-bloodpool overlapped between those lesions demonstrating changes consistent with malignancy on follow-up imaging and those lesions that remained unchanged on follow-up. Conclusion: PSMA-RADS-3A and PSMA-RADS-3B lesions are truly indeterminate in that proportions of findings in both categories demonstrate evidence of malignancy on follow-up imaging. Overall, PSMA-RADS-3A lesions are more likely than PSMA-RADS-3B lesions to represent sites of PCa and this information should be taken into when guiding patient therapy.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @article{RichterWechWengetal.2020, author = {Richter, Julian A. J. and Wech, Tobias and Weng, Andreas M. and Stich, Manuel and Weick, Stefan and Breuer, Kathrin and Bley, Thorsten A. and K{\"o}stler, Herbert}, title = {Free-breathing self-gated 4D lung MRI using wave-CAIPI}, series = {Magnetic Resonance in Medicine}, volume = {84}, journal = {Magnetic Resonance in Medicine}, number = {6}, doi = {10.1002/mrm.28383}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218075}, pages = {3223 -- 3233}, year = {2020}, abstract = {Purpose The aim of this study was to compare the wave-CAIPI (controlled aliasing in parallel imaging) trajectory to the Cartesian sampling for accelerated free-breathing 4D lung MRI. Methods The wave-CAIPI k-space trajectory was implemented in a respiratory self-gated 3D spoiled gradient echo pulse sequence. Trajectory correction applying the gradient system transfer function was used, and images were reconstructed using an iterative conjugate gradient SENSE (CG SENSE) algorithm. Five healthy volunteers and one patient with squamous cell carcinoma in the lung were examined on a clinical 3T scanner, using both sampling schemes. For quantitative comparison of wave-CAIPI and standard Cartesian imaging, the normalized mutual information and the RMS error between retrospectively accelerated acquisitions and their respective references were calculated. The SNR ratios were investigated in a phantom study. Results The obtained normalized mutual information values indicate a lower information loss due to acceleration for the wave-CAIPI approach. Average normalized mutual information values of the wave-CAIPI acquisitions were 10\% higher, compared with Cartesian sampling. Furthermore, the RMS error of the wave-CAIPI technique was lower by 19\% and the SNR was higher by 14\%. Especially for short acquisition times (down to 1 minute), the undersampled Cartesian images showed an increased artifact level, compared with wave-CAIPI. Conclusion The application of the wave-CAIPI technique to 4D lung MRI reduces undersampling artifacts, in comparison to a Cartesian acquisition of the same scan time. The benefit of wave-CAIPI sampling can therefore be traded for shorter examinations, or enhancing image quality of undersampled 4D lung acquisitions, keeping the scan time constant.}, language = {en} } @article{WernerWakabyashiChenetal.2018, author = {Werner, Rudolf and Wakabyashi, Hiroshi and Chen, Xinyu and Hirano, Mitsuru and Shinaji, Tetsuya and Lapa, Constantin and Rowe, Steven and Javadi, Mehrbod and Higuchi, Takahiro}, title = {Functional renal imaging with \(^{18}\)F-FDS PET in rat models of renal disorders}, series = {Journal of Nuclear Medicine}, journal = {Journal of Nuclear Medicine}, issn = {0161-5505}, doi = {10.2967/jnumed.117.203828}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161279}, year = {2018}, abstract = {Background: Precise regional quantitative assessment of renal function is limited with conventional \(^{99m}\)Tc-labeled renal radiotracers. A recent study reported that the positron emission tomography (PET) radiotracer 2-deoxy-2-(\(^{18}\)F-fluorosorbitol (\(^{18}\)F-FDS) has ideal pharmacokinetics for functional renal imaging. Furthermore, (\(^{18}\)F-FDS is available via simple reduction from routinely used 2-deoxy-2-(\(^{18}\)F-fluoro-D-glucose ((\(^{18}\)F-FDG). We aimed to further investigate the potential of (\(^{18}\)F-FDS PET as a functional renal imaging agent using rat models of kidney diseases. Methods: Two different rat models of renal impairment were investigated: Glycerol induced acute renal failure (ARF) by intramuscular administration of glycerol in hind legs and unilateral ureteral obstruction (UUO) by ligation of the left ureter. 24h after these treatments, dynamic 30 min 18F-FDS PET data were acquired using a dedicated small animal PET system. Urine 18F-FDS radioactivity 30 min after radiotracer injection was measured together with co-injected \(^{99m}\)Tc-diethylenetriaminepentaacetic acid (\(^{99m}\)Tc-DTPA) urine activity. Results: Dynamic PET imaging demonstrated rapid (\(^{18}\)F-FDS accumulation in the renal cortex and rapid radiotracer excretion via kidneys in control healthy rats. On the other hand, significantly delayed renal radiotracer uptake (continuous slow uptake) was observed in ARF rats and UUO-treated kidneys. Measured urine radiotracer concentrations of (\(^{18}\)F-FDS and \(^{99m}\)Tc-DTPA were well correlated (R=0.84, P<0.05). Conclusions: (\(^{18}\)F-FDS PET demonstrated favorable kinetics for functional renal imaging in rat models of kidney diseases. Advantages of high spatiotemporal resolution of PET imaging and simple tracer production could potentially complement or replace conventional renal scintigraphy in select cases and significantly improve the diagnostic performance of renal functional imaging.}, subject = {Nierenfunktionsst{\"o}rung}, language = {en} } @article{PalmisanoBrandtVissanietal.2020, author = {Palmisano, Chiara and Brandt, Gregor and Vissani, Matteo and Pozzi, Nicol{\´o} G. and Canessa, Andrea and Brumberg, Joachim and Marotta, Giorgio and Volkmann, Jens and Mazzoni, Alberto and Pezzoli, Gianni and Frigo, Carlo A. and Isaias, Ioannis U.}, title = {Gait Initiation in Parkinson's Disease: Impact of Dopamine Depletion and Initial Stance Condition}, series = {Frontiers in Bioengineering and Biotechnology}, volume = {8}, journal = {Frontiers in Bioengineering and Biotechnology}, issn = {2296-4185}, doi = {10.3389/fbioe.2020.00137}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200801}, year = {2020}, abstract = {Postural instability, in particular at gait initiation (GI), and resulting falls are a major determinant of poor quality of life in subjects with Parkinson's disease (PD). Still, the contribution of the basal ganglia and dopamine on the feedforward postural control associated with this motor task is poorly known. In addition, the influence of anthropometric measures (AM) and initial stance condition on GI has never been consistently assessed. The biomechanical resultants of anticipatory postural adjustments contributing to GI [imbalance (IMB), unloading (UNL), and stepping phase) were studied in 26 unmedicated subjects with idiopathic PD and in 27 healthy subjects. A subset of 13 patients was analyzed under standardized medication conditions and the striatal dopaminergic innervation was studied in 22 patients using FP-CIT and SPECT. People with PD showed a significant reduction in center of pressure (CoP) displacement and velocity during the IMB phase, reduced first step length and velocity, and decreased velocity and acceleration of the center of mass (CoM) at toe off of the stance foot. All these measurements correlated with the dopaminergic innervation of the putamen and substantially improved with levodopa. These results were not influenced by anthropometric parameters or by the initial stance condition. In contrast, most of the measurements of the UNL phase were influenced by the foot placement and did not correlate with putaminal dopaminergic innervation. Our results suggest a significant role of dopamine and the putamen particularly in the elaboration of the IMB phase of anticipatory postural adjustments and in the execution of the first step. The basal ganglia circuitry may contribute to defining the optimal referent body configuration for a proper initiation of gait and possibly gait adaptation to the environment.}, language = {en} } @article{IsraelRiehlButtetal.2023, author = {Israel, Ina and Riehl, Gabriele and Butt, Elke and Buck, Andreas K. and Samnick, Samuel}, title = {Gallium-68-labeled KISS1-54 peptide for mapping KISS1 receptor via PET: initial evaluation in human tumor cell lines and in tumor-bearing mice}, series = {Pharmaceuticals}, volume = {17}, journal = {Pharmaceuticals}, number = {1}, issn = {1424-8247}, doi = {10.3390/ph17010044}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-355898}, year = {2023}, abstract = {Kisspeptins (KPs, KISS1) and their receptor (KISS1R) play a pivotal role as metastasis suppressor for many cancers. Low or lost KP expression is associated with higher tumor grade, increased metastatic potential, and poor prognosis. Therefore, KP expression has prognostic relevance and correlates with invasiveness in cancers. Furthermore, KISS1R represents a very promising target for molecular imaging and therapy for KISS1R-expressing tumors. The goal of this study was to evaluate the developed KISS1-54 derivative, [\(^{68}\)Ga]KISS1-54, as a PET-imaging probe for KISS1R-expressing tumors. The NODAGA-KISS1-54 peptide was labeled by Gallium-68, and the stability of the resulting [\(^{68}\)Ga]KISS1-54 evaluated in injection solution and human serum, followed by an examination in different KISS1R-expressing tumor cell lines, including HepG2, HeLa, MDA-MB-231, MCF7, LNCap, SK-BR-3, and HCT116. Finally, [\(^{68}\)Ga]KISS1-54 was tested in LNCap- and MDA-MB-231-bearing mice, using µ-PET, assessing its potential as an imaging probe for PET. [\(^{68}\)Ga]KISS1-54 was obtained in a 77 ± 7\% radiochemical yield and at a >99\% purity. The [\(^{68}\)Ga]KISS1-54 cell uptake amounted to 0.6-4.4\% per 100,000 cells. Moreover, the accumulation of [\(^{68}\)Ga]KISS1-54 was effectively inhibited by nonradioactive KISS1-54. In [\(^{68}\)Ga]KISS1-54-PET, KISS1R-positive LNCap-tumors were clearly visualized as compared to MDA-MB-231-tumor implant with predominantly intracellular KISS1R expression. Our first results suggest that [\(^{68}\)Ga]KISS1-54 is a promising candidate for a radiotracer for targeting KISS1R-expressing tumors via PET.}, language = {en} } @article{WernerHiguchiNoseetal.2022, author = {Werner, Rudolf A. and Higuchi, Takahiro and Nose, Naoko and Toriumi, Fujio and Matsusaka, Yohji and Kuji, Ichiei and Kazuhiro, Koshino}, title = {Generative adversarial network-created brain SPECTs of cerebral ischemia are indistinguishable to scans from real patients}, series = {Scientific reports}, volume = {12}, journal = {Scientific reports}, doi = {10.1038/s41598-022-23325-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300757}, year = {2022}, abstract = {Deep convolutional generative adversarial networks (GAN) allow for creating images from existing databases. We applied a modified light-weight GAN (FastGAN) algorithm to cerebral blood flow SPECTs and aimed to evaluate whether this technology can generate created images close to real patients. Investigating three anatomical levels (cerebellum, CER; basal ganglia, BG; cortex, COR), 551 normal (248 CER, 174 BG, 129 COR) and 387 pathological brain SPECTs using N-isopropyl p-I-123-iodoamphetamine (123I-IMP) were included. For the latter scans, cerebral ischemic disease comprised 291 uni- (66 CER, 116 BG, 109 COR) and 96 bilateral defect patterns (44 BG, 52 COR). Our model was trained using a three-compartment anatomical input (dataset 'A'; including CER, BG, and COR), while for dataset 'B', only one anatomical region (COR) was included. Quantitative analyses provided mean counts (MC) and left/right (LR) hemisphere ratios, which were then compared to quantification from real images. For MC, 'B' was significantly different for normal and bilateral defect patterns (P < 0.0001, respectively), but not for unilateral ischemia (P = 0.77). Comparable results were recorded for LR, as normal and ischemia scans were significantly different relative to images acquired from real patients (P ≤ 0.01, respectively). Images provided by 'A', however, revealed comparable quantitative results when compared to real images, including normal (P = 0.8) and pathological scans (unilateral, P = 0.99; bilateral, P = 0.68) for MC. For LR, only uni- (P = 0.03), but not normal or bilateral defect scans (P ≥ 0.08) reached significance relative to images of real patients. With a minimum of only three anatomical compartments serving as stimuli, created cerebral SPECTs are indistinguishable to images from real patients. The applied FastGAN algorithm may allow to provide sufficient scan numbers in various clinical scenarios, e.g., for "data-hungry" deep learning technologies or in the context of orphan diseases.}, language = {en} } @article{KazuhinoWernerToriumietal.2018, author = {Kazuhino, Koshino and Werner, Rudolf A. and Toriumi, Fuijo and Javadi, Mehrbod S. and Pomper, Martin G. and Solnes, Lilja B. and Verde, Franco and Higuchi, Takahiro and Rowe, Steven P.}, title = {Generative Adversarial Networks for the Creation of Realistic Artificial Brain Magnetic Resonance Images}, series = {Tomography}, volume = {4}, journal = {Tomography}, number = {4}, doi = {10.18383/j.tom.2018.00042}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172185}, pages = {159-163}, year = {2018}, abstract = {Even as medical data sets become more publicly accessible, most are restricted to specific medical conditions. Thus, data collection for machine learning approaches remains challenging, and synthetic data augmentation, such as generative adversarial networks (GAN), may overcome this hurdle. In the present quality control study, deep convolutional GAN (DCGAN)-based human brain magnetic resonance (MR) images were validated by blinded radiologists. In total, 96 T1-weighted brain images from 30 healthy individuals and 33 patients with cerebrovascular accident were included. A training data set was generated from the T1-weighted images and DCGAN was applied to generate additional artificial brain images. The likelihood that images were DCGAN-created versus acquired was evaluated by 5 radiologists (2 neuroradiologists [NRs], vs 3 non-neuroradiologists [NNRs]) in a binary fashion to identify real vs created images. Images were selected randomly from the data set (variation of created images, 40\%-60\%). None of the investigated images was rated as unknown. Of the created images, the NRs rated 45\% and 71\% as real magnetic resonance imaging images (NNRs, 24\%, 40\%, and 44\%). In contradistinction, 44\% and 70\% of the real images were rated as generated images by NRs (NNRs, 10\%, 17\%, and 27\%). The accuracy for the NRs was 0.55 and 0.30 (NNRs, 0.83, 0.72, and 0.64). DCGAN-created brain MR images are similar enough to acquired MR images so as to be indistinguishable in some cases. Such an artificial intelligence algorithm may contribute to synthetic data augmentation for "data-hungry" technologies, such as supervised machine learning approaches, in various clinical applications.}, subject = {Magnetresonanztomografie}, language = {en} } @article{GieselKratochwilSchlittenhardtetal.2021, author = {Giesel, Frederik L. and Kratochwil, Clemens and Schlittenhardt, Joel and Dendl, Katharina and Eiber, Matthias and Staudinger, Fabian and Kessler, Lukas and Fendler, Wolfgang P. and Lindner, Thomas and Koerber, Stefan A. and Cardinale, Jens and Sennung, David and Roehrich, Manuel and Debus, Juergen and Sathekge, Mike and Haberkorn, Uwe and Calais, Jeremie and Serfling, Sebastian and Buck, Andreas L.}, title = {Head-to-head intra-individual comparison of biodistribution and tumor uptake of \(^{68}\)Ga-FAPI and \(^{18}\)F-FDG PET/CT in cancer patients}, series = {European Journal of Nuclear Medicine and Molecular Imaging}, volume = {48}, journal = {European Journal of Nuclear Medicine and Molecular Imaging}, number = {13}, issn = {1619-7070}, doi = {10.1007/s00259-021-05307-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-307252}, pages = {4377-4385}, year = {2021}, abstract = {Purpose FAPI ligands (fibroblast activation protein inhibitor), a novel class of radiotracers for PET/CT imaging, demonstrated in previous studies rapid and high tumor uptake. The purpose of this study is the head-to-head intra-individual comparison of \(^{68}\)Ga-FAPI versus standard-of-care \(^{18}\)F-FDG in PET/CT in organ biodistribution and tumor uptake in patients with various cancers. Material and Methods This international retrospective multicenter analysis included PET/CT data from 71 patients from 6 centers who underwent both \(^{68}\)Ga-FAPI and \(^{18}\)F-FDG PET/CT within a median time interval of 10 days (range 1-89 days). Volumes of interest (VOIs) were manually drawn in normal organs and tumor lesions to quantify tracer uptake by SUVmax and SUVmean. Furthermore, tumor-to-background ratios (TBR) were generated (SUVmax tumor/ SUVmax organ). Results A total of 71 patients were studied of, which 28 were female and 43 male (median age 60). In 41 of 71 patients, the primary tumor was present. Forty-three of 71 patients exhibited 162 metastatic lesions. \(^{68}\)Ga-FAPI uptake in primary tumors and metastases was comparable to 18F-FDG in most cases. The SUVmax was significantly lower for \(^{68}\)Ga-FAPI than \(^{18}\)F-FDG in background tissues such as the brain, oral mucosa, myocardium, blood pool, liver, pancreas, and colon. Thus, \(^{68}\)Ga-FAPI TBRs were significantly higher than 18F-FDG TBRs in some sites, including liver and bone metastases. Conclusion Quantitative tumor uptake is comparable between \(^{68}\)Ga-FAPI and \(^{18}\)F-FDG, but lower background uptake in most normal organs results in equal or higher TBRs for \(^{68}\)Ga-FAPI. Thus, \(^{68}\)Ga-FAPI PET/CT may yield improved diagnostic information in various cancers and especially in tumor locations with high physiological \(^{18}\)F-FDG uptake.}, language = {en} } @article{LisowskiTroemelLutyjetal.2022, author = {Lisowski, Dominik and Tr{\"o}mel, Jannik and Lutyj, Paul and Lewitzki, Victor and Hartrampf, Philipp E. and Polat, B{\"u}lent and Flentje, Michael and Tamihardja, J{\"o}rg}, title = {Health-related quality of life and clinical outcome after radiotherapy of patients with intracranial meningioma}, series = {Scientific Reports}, volume = {12}, journal = {Scientific Reports}, doi = {10.1038/s41598-022-24192-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301233}, year = {2022}, abstract = {This retrospective, single-institutional study investigated long-term outcome, toxicity and health-related quality of life (HRQoL) in meningioma patients after radiotherapy. We analyzed the data of 119 patients who received radiotherapy at our department from 1997 to 2014 for intracranial WHO grade I-III meningioma. Fractionated stereotactic radiotherapy (FSRT), intensity modulated radiotherapy (IMRT) or radiosurgery radiation was applied. The EORTC QLQ-C30 and QLQ-BN20 questionnaires were completed for assessment of HRQoL. Overall survival (OS) for the entire study group was 89.6\% at 5 years and 75.9\% at 10 years. Local control (LC) at 5 and 10 years was 82.4\% and 73.4\%, respectively. Local recurrence was observed in 22 patients (18.5\%). Higher grade acute and chronic toxicities were observed in seven patients (5.9\%) and five patients (4.2\%), respectively. Global health status was rated with a mean of 59.9 points (SD 22.3) on QLQ-C30. In conclusion, radiotherapy resulted in very good long-term survival and tumor control rates with low rates of severe toxicities but with a deterioration of long-term HRQoL.}, language = {en} } @article{MacedoJavadiHiguchietal.2015, author = {Macedo, Robson and Javadi, Som Mehrbod and Higuchi, Takahiro and Ferreira de Carvalho, Marilia Daniela and Lima Paiva Medeiros, Vanessa de F{\´a}tima and Azevedo, {\´I}talo Medeiros and Lima, Francisco Pignataro and Medeiros, Aldo Cunha}, title = {Heart and systemic effects of statin pretreatment in a rat model of abdominal sepsis. Assessment by Tc\(^{99m}\)-sestamibi biodistribition}, series = {Acta Cir{\´u}rgica Brasileira}, volume = {30}, journal = {Acta Cir{\´u}rgica Brasileira}, number = {6}, doi = {10.1590/S0102-865020150060000003}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151887}, pages = {388 -- 393}, year = {2015}, abstract = {PURPOSE: To evaluate the heart and the Tc-99m-sestamibi biodistribution after statin pretreatment in a rat model of abdominal sepsis. METHODS: Twenty-four Wistar rats were randomly distributed into four groups (n=6 per group): 1) sepsis with simvastatin treatment, 2) sepsis with vehicle, 3) sham control with simvastatin and 4) sham control with vehicle. 24 hours after cecal ligation and puncture rats received 1.0MBq of Tc-99m-sestamibi i.v. 30min after, animals were euthanized for ex-vivo tissue counting and myocardium histological analysis. RESULTS: Myocardial histologic alterations were not detected 24 hours post-sepsis. There was significantly increased cardiac Tc-99m-sestamibi activity in the sepsis group with simvastatin treatment (1.9\(\pm\)0.3\%ID/g, p<0.001) in comparison to the sepsis group+vehicle (1.0\(\pm\)0.2\% ID/g), control sham group+ simvastatin (1.2\(\pm\)0.3\% ID/g) and control sham group (1.3\(\pm\)0.2\% ID/g). Significant Tc-99m-sestamibi activity in liver, kidney and lungs was also detected in the sepsis group treated with simvastatinin comparison to the other groups. CONCLUSIONS: Statin treatment altered the biodistribution of Tc-99m-sestamibi with increased cardiac and solid organ activity in rats with abdominal sepsis, while no impact on controls. Increased myocardial tracer activity may be a result of a possible protection effect due to increased tissue perfusion mediated by statins.}, language = {en} } @article{HartrampfWeinzierlSerflingetal.2022, author = {Hartrampf, Philipp E. and Weinzierl, Franz-Xaver and Serfling, Sebastian E. and Pomper, Martin G. and Rowe, Steven P. and Higuchi, Takahiro and Seitz, Anna Katharina and K{\"u}bler, Hubert and Buck, Andreas K. and Werner, Rudolf A.}, title = {Hematotoxicity and nephrotoxicity in prostate cancer patients undergoing radioligand therapy with [\(^{177}\)Lu]Lu-PSMA I\&T}, series = {Cancers}, volume = {14}, journal = {Cancers}, number = {3}, issn = {2072-6694}, doi = {10.3390/cancers14030647}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-254825}, year = {2022}, abstract = {(1) Background: Prostate-specific membrane antigen (PSMA)-directed radioligand therapy (RLT) has shown remarkable results in patients with advanced prostate cancer. We aimed to evaluate the toxicity profile of the PSMA ligand [\(^{177}\)Lu]Lu-PSMA I\&T. (2) Methods: 49 patients with metastatic, castration-resistant prostate cancer treated with at least three cycles of [\(^{177}\)Lu]Lu-PSMA I\&T were evaluated. Prior to and after RLT, we compared leukocytes, hemoglobin, platelet counts, and renal functional parameters (creatinine, eGFR, n = 49; [\(^{99m}\)Tc]-MAG3-derived tubular extraction rate (TER), n = 42). Adverse events were classified according to the Common Terminology Criteria for Adverse Events (CTCAE) v5.0 and KDIGO Society. To identify predictive factors, we used Spearman's rank correlation coefficient. (3) Results: A substantial fraction of the patients already showed impaired renal function and reduced leukocyte counts at baseline. Under RLT, 11/49 (22\%) patients presented with nephrotoxicity CTCAE I or II according to creatinine, but 33/49 (67\%) according to eGFR. Only 5/42 (13\%) showed reduced TER, defined as <70\% of the age-adjusted mean normal values. Of all renal functional parameters, absolute changes of only 2\% were recorded. CTCAE-based re-categorization was infrequent, with creatinine worsening from I to II in 2/49 (4.1\%; GFR, 1/49 (2\%)). Similar results were recorded for KDIGO (G2 to G3a, 1/49 (2\%); G3a to G3b, 2/49 (4.1\%)). After three cycles, follow-up eGFR correlated negatively with age (r = -0.40, p = 0.005) and the eGFR change with Gleason score (r = -0.35, p < 0.05) at baseline. Leukocytopenia CTCAE II occurred only in 1/49 (2\%) (CTCAE I, 20/49 (41\%)) and CTCAE I thrombocytopenia in 7/49 (14\%), with an absolute decrease of 15.2\% and 16.6\% for leukocyte and platelet counts. Anemia CTCAE II occurred in 10/49 (20\%) (CTCAE I, 36/49 (73\%)) with a decrease in hemoglobin of 4.7\%. (4) Conclusions: After PSMA-targeted therapy using [\(^{177}\)Lu]Lu-PSMA I\&T, no severe (CTCAE III/IV) toxicities occurred, thereby demonstrating that serious adverse renal or hematological events are unlikely to be a frequent phenomenon with this agent.}, language = {en} } @article{WernerHabachaLuetjeetal.2022, author = {Werner, Rudolf A. and Habacha, Bil{\^e}l and L{\"u}tje, Susanne and Bundschuh, Lena and Higuchi, Takahiro and Hartrampf, Philipp and Serfling, Sebastian E. and Derlin, Thorsten and Lapa, Constantin and Buck, Andreas K. and Essler, Markus and Pienta, Kenneth J. and Eisenberger, Mario A. and Markowski, Mark C. and Shinehouse, Laura and AbdAllah, Rehab and Salavati, Ali and Lodge, Martin A. and Pomper, Martin G. and Gorin, Michael A. and Bundschuh, Ralph A. and Rowe, Steven P.}, title = {High SUVs Have More Robust Repeatability in Patients with Metastatic Prostate Cancer: Results from a Prospective Test-Retest Cohort Imaged with \(^{18}\)F-DCFPyL}, series = {Molecular Imaging}, volume = {2022}, journal = {Molecular Imaging}, doi = {10.1155/2022/7056983}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300748}, year = {2022}, abstract = {No abstract available.}, language = {en} } @article{BuckDecristoforo2016, author = {Buck, Andreas and Decristoforo, Clemens}, title = {Highlights lecture EANM 2015: the search for nuclear medicine's superheroes}, series = {European Journal of Nuclear Medicine and Molecular Imaging}, volume = {43}, journal = {European Journal of Nuclear Medicine and Molecular Imaging}, number = {10}, doi = {10.1007/s00259-016-3423-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187613}, pages = {1910-1927}, year = {2016}, abstract = {The EANM 2015 Annual Congress, held from October 10th to 14th in Hamburg, Germany, was outstanding in many respects. With 5550 participants, this was by far the largest European congress concerning nuclear medicine. More than 1750 scientific presentations were submitted, with more than 250 abstracts from young scientists, indicating that the future success of our discipline is fuelled by a high number of young individuals becoming involved in a multitude of scientific activities. Significant improvements have been made in molecular imaging of cancer, particularly in prostate cancer. PSMA-directed PET/CT appears to become a new gold standard for staging and restaging purposes. Novel tumour specific compounds have shown their potential for target identification also in other solid neoplasms and further our understanding of tumour biology and heterogeneity. In addition, a variety of nuclear imaging techniques guiding surgical interventions have been introduced. A particular focus of the congress was put on targeted, radionuclide based therapies. Novel theranostic concepts addressing also tumour entities with high incidence rates such as prostate cancer, melanoma, and lymphoma, have shown effective anti-tumour activity. Strategies have been presented to improve further already established therapeutic regimens such as somatostatin receptor based radio receptor therapy for treating advanced neuroendocrine tumours. Significant contributions were presented also in the neurosciences track. An increasing number of target structures of high interest in neurology and psychiatry are now available for PET and SPECT imaging, facilitating specific imaging of different subtypes of dementia and movement disorders as well as neuroinflammation. Major contributions in the cardiovascular track focused on further optimization of cardiac perfusion imaging by reducing radiation exposure, reducing scanning time, and improving motion correction. Besides coronary artery disease, many contributions focused on cardiac inflammation, cardiac sarcoidosis, and specific imaging of large vessel vasculitis. The physics and instrumentation track included many highlights such as novel, high resolution scanners. The most noteworthy news and developments of this meeting were summarized in the highlights lecture. Only 55 scientific contributions were mentioned, and hence they represent only a brief summary, which is outlined in this article. For a more detailed view, all presentations can be accessed by the online version of the European Journal of Nuclear Medicine and Molecular Imaging (Volume 42, Supplement 1).}, language = {en} } @article{NeubauerHassoldWarmuthMetzetal.2014, author = {Neubauer, Henning and Hassold, Nicole and Warmuth-Metz, Monika and Winkler, Beate and Kreissl, Michael C. and Ernestus, Karen and Beer, Meinrad}, title = {Hit the mark with diffusion-weighted imaging: metastases of rhabdomyosarcoma to the extraocular eye muscles}, doi = {10.1186/1471-2431-14-57}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-110106}, year = {2014}, abstract = {Background Rhabdomyosarcoma is the most frequent malignant intraorbital tumour in paediatric patients. Differentiation of tumour recurrence or metastases from post-therapeutic signal alteration can be challenging, using standard MR imaging techniques. Diffusion-weighted MRI (DWI) is increasingly considered a helpful supplementary imaging tool for differentiation of orbital masses. Case presentation We report on a 15-year-old female adolescent of Caucasian ethnicity who developed isolated bilateral thickening of extraocular eye muscles about two years after successful multimodal treatment of orbital alveolar rhabdomyosarcoma. Intramuscular restricted diffusion was the first diagnostic indicator suggestive of metastatic disease to the eye muscles. DWI subsequently showed signal changes consistent with tumour progression, complete remission under chemoradiotherapy and tumour recurrence. Conclusions Restricted diffusivity is a strong early indicator of malignancy in orbital tumours. DWI can be the key to correct diagnosis in unusual tumour manifestations and can provide additional diagnostic information beyond standard MRI and PET/CT. Diffusion-weighted MRI is useful for monitoring therapy response and for detecting tumour recurrence.}, language = {en} } @article{FecherHofmannBucketal.2016, author = {Fecher, David and Hofmann, Elisabeth and Buck, Andreas and Bundschuh, Ralph and Nietzer, Sarah and Dandekar, Gudrun and Walles, Thorsten and Walles, Heike and L{\"u}ckerath, Katharina and Steinke, Maria}, title = {Human Organotypic Lung Tumor Models: Suitable For Preclinical \(^{18}\)F-FDG PET-Imaging}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {8}, doi = {10.1371/journal.pone.0160282}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179678}, year = {2016}, abstract = {Development of predictable in vitro tumor models is a challenging task due to the enormous complexity of tumors in vivo. The closer the resemblance of these models to human tumor characteristics, the more suitable they are for drug-development and -testing. In the present study, we generated a complex 3D lung tumor test system based on acellular rat lungs. A decellularization protocol was established preserving the architecture, important ECM components and the basement membrane of the lung. Human lung tumor cells cultured on the scaffold formed cluster and exhibited an up-regulation of the carcinoma-associated marker mucin1 as well as a reduced proliferation rate compared to respective 2D culture. Additionally, employing functional imaging with 2-deoxy-2-[\(^{18}\)F]fluoro-D-glucose positron emission tomography (FDG-PET) these tumor cell cluster could be detected and tracked over time. This approach allowed monitoring of a targeted tyrosine kinase inhibitor treatment in the in vitro lung tumor model non-destructively. Surprisingly, FDG-PET assessment of single tumor cell cluster on the same scaffold exhibited differences in their response to therapy, indicating heterogeneity in the lung tumor model. In conclusion, our complex lung tumor test system features important characteristics of tumors and its microenvironment and allows monitoring of tumor growth and -metabolism in combination with functional imaging. In longitudinal studies, new therapeutic approaches and their long-term effects can be evaluated to adapt treatment regimes in future.}, language = {en} } @article{ReinersDrozdYamashita2020, author = {Reiners, Christoph and Drozd, Valentina and Yamashita, Shunichi}, title = {Hypothyroidism after radiation exposure: brief narrative review}, series = {Journal of Neural Transmission}, volume = {127}, journal = {Journal of Neural Transmission}, issn = {0300-9564}, doi = {10.1007/s00702-020-02260-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235653}, pages = {1455-1466}, year = {2020}, abstract = {The thyroid gland is among the organs at the greatest risk of cancer from ionizing radiation. Epidemiological evidence from survivors of radiation therapy, atomic bombing, and the Chernobyl reactor accident, clearly shows that radiation exposure in childhood can cause thyroid cancer and benign thyroid nodules. Radiation exposure also may induce hypothyroidism and autoimmune reactions against the thyroid, but these effects are less well-documented. The literature includes only a few, methodologically weak animal studies regarding genetic/molecular mechanisms underlying hypothyroidism and thyroid autoimmunity after radiation exposure. Rather, evidence about radiation-induced hypothyroidism and thyroid autoimmunity derives mainly from follow-up studies in patients treated with external beam radiotherapy (EBRT) or iodine-131, and from epidemiological studies in the atomic bombing or nuclear accident survivors. Historically, hypothyroidism after external irradiation of the thyroid in adulthood was considered not to develop below a 10-20 Gy dose threshold. Newer data suggest a 10 Gy threshold after EBRT. By contrast, data from patients after iodine-131 "internal radiation therapy" of Graves´ disease indicate that hypothyroidism rarely occurs below thyroid doses of 50 Gy. Studies in children affected by the Chernobyl accident indicate that the dose threshold for hypothyroidism may be considerably lower, 3-5 Gy, aligning with observations in A-bomb survivors exposed as children. The reasons for these dose differences in radiosensitivity are not fully understood. Other important questions about the development of hypothyroidism after radiation exposure e.g., in utero, about the interaction between autoimmunity and hypofunction, and about the different effects of internal and external irradiation still must be answered.}, language = {en} } @article{BrumbergBlazhenetsSchroeteretal.2019, author = {Brumberg, Joachim and Blazhenets, Ganna and Schr{\"o}ter, Nils and Frings, Lars and Jost, Wolfgang H. and Lapa, Constantin and Meyer, Philipp T.}, title = {Imaging cardiac sympathetic innervation with MIBG: linear conversion of the heart-to-mediastinum ratio between different collimators}, series = {EJNMMI Physics}, volume = {6}, journal = {EJNMMI Physics}, doi = {10.1186/s40658-019-0250-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-221675}, year = {2019}, abstract = {Background The heart-to-mediastinum (H/M) ratio is a commonly used parameter to measure cardiac I-123 metaiodobenzylguanidine (MIBG) uptake. Since the H/M ratio is substantially influenced by the collimator type, we investigated whether an empirical linear conversion of H/M ratios between camera systems with low-energy (LE) and medium-energy (ME) collimator is possible. Methods We included 18 patients with parkinsonism who were referred to one of the two participating molecular imaging facilities for the evaluation of cardiac sympathetic innervation by MIBG scintigraphy. Two consecutive planar image datasets were acquired with LE and ME collimators at 4 h after MIBG administration. Linear regression analyses were performed to describe the association between the H/M ratios gained with both collimator settings, and the accuracy of a linear transfer of the H/M ratio between collimators and across centers was assessed using a leave-one-out procedure. Results H/M ratios acquired with LE and ME collimators showed a strong linear relationship both within each imaging facility (R\(^2\) = 0.99, p < 0.001 and R\(^2\) = 0.90, p < 0.001) and across centers (H/M-LE = 0.41 × H/M-ME + 0.63, R\(^2\) = 0.97, p < 0.001). A linear conversion of H/M ratios between collimators and across centers was estimated to be very accurate (mean absolute error 0.05 ± 0.04; mean relative absolute error 3.2 ± 2.6\%). Conclusions The present study demonstrates that a simple linear conversion of H/M ratios acquired with different collimators is possible with high accuracy. This should greatly facilitate the exchange of normative data between settings and pooling of data from different institutions.}, language = {en} } @article{WernerWeichHiguchietal.2017, author = {Werner, Rudolf A. and Weich, Alexander and Higuchi, Takahiro and Schmid, Jan S. and Schirbel, Andreas and Lassmann, Michael and Wild, Vanessa and Rudelius, Martina and Kudlich, Theodor and Herrmann, Ken and Scheurlen, Michael and Buck, Andreas K. and Kropf, Saskia and Wester, Hans-J{\"u}rgen and Lapa, Constantin}, title = {Imaging of Chemokine Receptor 4 Expression in Neuroendocrine Tumors - a Triple Tracer Comparative Approach}, series = {Theranostics}, volume = {7}, journal = {Theranostics}, number = {6}, doi = {10.7150/thno.18754}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158008}, pages = {1489-1498}, year = {2017}, abstract = {C-X-C motif chemokine receptor 4 (CXCR4) and somatostatin receptors (SSTR) are overexpressed in gastro-entero-pancreatic neuroendocrine tumors (GEP-NET). In this study, we aimed to elucidate the feasibility of non-invasive CXCR4 positron emission tomography/computed tomography (PET/CT) imaging in GEP-NET patients using [\(^{68}\)Ga]Pentixafor in comparison to \(^{68}\)Ga-DOTA-D-Phe-Tyr3-octreotide ([\(^{68}\)Ga]DOTATOC) and \(^{18}\)F-fluorodeoxyglucose ([\(^{18}\)F]FDG). Twelve patients with histologically proven GEP-NET (3xG1, 4xG2, 5xG3) underwent [\(^{68}\)Ga]DOTATOC, [\(^{18}\)F]FDG, and [\(^{68}\)Ga]Pentixafor PET/CT for staging and planning of the therapeutic management. Scans were analyzed on a patient as well as on a lesion basis and compared to immunohistochemical staining patterns of CXCR4 and somatostatin receptors SSTR2a and SSTR5. [\(^{68}\)Ga]Pentixafor visualized tumor lesions in 6/12 subjects, whereas [\(^{18}\)F]FDG revealed sites of disease in 10/12 and [\(^{68}\)Ga]DOTATOC in 11/12 patients, respectively. Regarding sensitivity, SSTR-directed PET was the superior imaging modality in all G1 and G2 NET. CXCR4-directed PET was negative in all G1 NET. In contrast, 50\% of G2 and 80\% of G3 patients exhibited [\(^{68}\)Ga]Pentixafor-positive tumor lesions. Whereas CXCR4 seems to play only a limited role in detecting well-differentiated NET, increasing receptor expression could be non-invasively observed with increasing tumor grade. Thus, [\(^{68}\)Ga]Pentixafor PET/CT might serve as non-invasive read-out for evaluating the possibility of CXCR4-directed endoradiotherapy in advanced dedifferentiated SSTR-negative tumors.}, subject = {Positronen-Emissions-Tomografie}, language = {en} }