@article{BeykanDamEberleinetal.2016, author = {Beykan, Seval and Dam, Jan S. and Eberlein, Uta and Kaufmann, Jens and Kj{\ae}rgaard, Benedict and J{\o}dal, Lars and Bouterfa, Hakim and Bejot, Romain and Lassmann, Michael and Jensen, Svend Borup}, title = {\(^{177}\)Lu-OPS201 targeting somatostatin receptors: in vivo biodistribution and dosimetry in a pig model}, series = {EJNMMI Research}, volume = {6}, journal = {EJNMMI Research}, number = {50}, doi = {10.1186/s13550-016-0204-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146888}, year = {2016}, abstract = {Background \(^{177}\)Lu is used in peptide receptor radionuclide therapies for the treatment of neuroendocrine tumors. Based on the recent literature, SST2 antagonists are superior to agonists in tumor uptake. The compound OPS201 is the novel somatostatin antagonist showing the highest SST2 affinity. The aim of this study was to measure the in vivo biodistribution and dosimetry of \(^{177}\)Lu-OPS201 in five anesthetized Danish Landrace pigs as an appropriate substitute for humans to quantitatively assess the absorbed doses for future clinical applications. Results \(^{177}\)Lu-OPS201 was obtained with a specific activity ranging from 10 to 17 MBq/μg. Prior to administration, the radiochemical purity was measured as s > 99.7 \% in all cases. After injection, fast clearance of the compound from the blood stream was observed. Less than 5 \% of the injected activity was presented in blood 10 min after injection. A series of SPECT/CT and whole-body scans conducted until 10 days after intravenous injection showed uptake mostly in the liver, spine, and kidneys. There was no visible uptake in the spleen. Blood samples were taken to determine the time-activity curve in the blood. Time-activity curves and time-integrated activity coefficients were calculated for the organs showing visible uptake. Based on these data, the absorbed organ dose coefficients for a 70-kg patient were calculated with OLINDA/EXM. For humans after an injection of 5 GBq \(^{177}\)Lu-OPS201, the highest predicted absorbed doses are obtained for the kidneys (13.7 Gy), the osteogenic cells (3.9 Gy), the urinary bladder wall (1.8 Gy), and the liver (1.0 Gy). No metabolites of 177Lu-OPS201 were found by radio HPLC analysis. None of the absorbed doses calculated will exceed organ toxicity levels. Conclusions The \(^{177}\)Lu-OPS201 was well tolerated and caused no abnormal physiological or behavioral signs. In vivo distributions and absorbed doses of pigs are comparable to those observed in other publications. According to the biodistribution data in pigs, presented in this work, the expected radiation exposure in humans will be within the acceptable range.}, language = {en} } @article{WernerLueckerathSchmidetal.2016, author = {Werner, R. A. and L{\"u}ckerath, K. and Schmid, J. S. and Higuchi, T. and Kreissl, M. C. and Grelle, I. and Reiners, C. and Buck, A. K. and Lapa, C.}, title = {Thyroglobulin fluctuations in patients with iodine-refractory differentiated thyroid carcinoma on lenvatinib treatment - initial experience}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, doi = {10.1038/srep28081}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147407}, pages = {28081}, year = {2016}, abstract = {Tyrosine kinase inhibitors (TKI) have shown clinical effectiveness in iodine-refractory differentiated thyroid cancer (DTC). The corresponding role of serum thyroglobulin (Tg) in iodine-refractory DTC has not been investigated yet. 9 patients (3 female, 61 ± 8y) with progressive iodine-refractory DTC starting on lenvatinib were considered. Tumor restaging was performed every 2-3 months including contrast-enhanced computed tomography (CT, RECIST 1.1). Serum Tg was measured and compared to imaging findings. After treatment initiation, serum Tg levels dropped in all patients with a median reduction of 86.2\%. During long-term follow-up (median, 25.2 months), fluctuations in Tg could be observed in 8/9 subjects. According to RECIST, 6/9 subjects achieved a partial response or stable disease with the remaining 3/9 experiencing progressive disease (2/3 with Tg levels rising above baseline). All of the patients with disease progression presented with a preceding continuous rise in serum Tg, whereas tumor marker oscillations in the subjects with controlled disease were only intermittent. Initiation of lenvatinib in iodine-refractory DTC patients is associated with a significant reduction in serum Tg levels as a marker of treatment response. In the course of treatment, transient Tg oscillations are a frequent phenomenon that may not necessarily reflect morphologic tumor progression.}, language = {en} } @article{BluemelLinkeHerrmannetal.2016, author = {Bluemel, Christina and Linke, Fraenze and Herrmann, Ken and Simunovic, Iva and Eiber, Matthias and Kestler, Christian and Buck, Andreas K. and Schirbel, Andreas and Bley, Thorsten A. and Wester, Hans-Juergen and Vergho, Daniel and Becker, Axel}, title = {Impact of \(^{68}\)Ga-PSMA PET/CT on salvage radiotherapy planning in patients with prostate cancer and persisting PSA values or biochemical relapse after prostatectomy}, series = {EJNMMI Research}, volume = {6}, journal = {EJNMMI Research}, number = {78}, doi = {10.1186/s13550-016-0233-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147798}, year = {2016}, abstract = {Background Salvage radiotherapy (SRT) is clinically established in prostate cancer (PC) patients with PSA persistence or biochemical relapse (BCR) after prior radical surgery. PET/CT imaging prior to SRT may be performed to localize disease recurrence. The recently introduced \(^{68}\)Ga-PSMA outperforms other PET tracers for detection of recurrence and is therefore expected also to impact radiation planning. Forty-five patients with PSA persistence (16 pts) or BCR (29 pts) after prior prostatectomy, scheduled to undergo SRT of the prostate bed, underwent \(^{68}\)Ga-PSMA PET/CT. The median PSA level was 0.67 ng/ml. The impact of \(^{68}\)Ga-PSMA PET/CT on the treatment decision was assessed. Patients with oligometastatic (≤5 lesions) PC underwent radiotherapy (RT), with the extent of the RT area and dose escalation being based on PET positivity. Results Suspicious lesions were detected in 24/45 (53.3 \%) patients. In 62.5 \% of patients, lesions were only detected by 68Ga-PSMA PET. Treatment was changed in 19/45 (42.2 \%) patients, e.g., extending SRT to metastases (9/19), administering dose escalation in patients with morphological local recurrence (6/19), or replacing SRT by systemic therapy (2/19). 38/45 (84.4 \%) followed the treatment recommendation, with data on clinical follow-up being available in 21 patients treated with SRT. All but one showed biochemical response (mean PSA decline 78 ± 19 \%) within a mean follow-up of 8.12 ± 5.23 months. Conclusions \(^{68}\)Ga-PSMA PET/CT impacts treatment planning in more than 40 \% of patients scheduled to undergo SRT. Future prospective studies are needed to confirm this significant therapeutic impact on patients prior to SRT.}, language = {en} } @article{IpIsaiasKuscheTekinetal.2016, author = {Ip, Chi Wang and Isaias, Ioannis U. and Kusche-Tekin, Burak B. and Klein, Dennis and Groh, Janos and O´Leary, Aet and Knorr, Susanne and Higuchi, Takahiro and Koprich, James B. and Brotchie, Jonathan M. and Toyka, Klaus V. and Reif, Andreas and Volkmann, Jens}, title = {Tor1a+/- mice develop dystonia-like movements via a striatal dopaminergic dysregulation triggered by peripheral nerve injury}, series = {Acta Neuropathologica Communications}, volume = {4}, journal = {Acta Neuropathologica Communications}, number = {108}, doi = {10.1186/s40478-016-0375-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147839}, year = {2016}, abstract = {Isolated generalized dystonia is a central motor network disorder characterized by twisted movements or postures. The most frequent genetic cause is a GAG deletion in the Tor1a (DYT1) gene encoding torsinA with a reduced penetrance of 30-40 \% suggesting additional genetic or environmental modifiers. Development of dystonia-like movements after a standardized peripheral nerve crush lesion in wild type (wt) and Tor1a+/- mice, that express 50 \% torsinA only, was assessed by scoring of hindlimb movements during tail suspension, by rotarod testing and by computer-assisted gait analysis. Western blot analysis was performed for dopamine transporter (DAT), D1 and D2 receptors from striatal and quantitative RT-PCR analysis for DAT from midbrain dissections. Autoradiography was used to assess the functional DAT binding in striatum. Striatal dopamine and its metabolites were analyzed by high performance liquid chromatography. After nerve crush injury, we found abnormal posturing in the lesioned hindlimb of both mutant and wt mice indicating the profound influence of the nerve lesion (15x vs. 12x relative to control) resembling human peripheral pseudodystonia. In mutant mice the phenotypic abnormalities were increased by about 40 \% (p < 0.05). This was accompanied by complex alterations of striatal dopamine homeostasis. Pharmacological blockade of dopamine synthesis reduced severity of dystonia-like movements, whereas treatment with L-Dopa aggravated these but only in mutant mice suggesting a DYT1 related central component relevant to the development of abnormal involuntary movements. Our findings suggest that upon peripheral nerve injury reduced torsinA concentration and environmental stressors may act in concert in causing the central motor network dysfunction of DYT1 dystonia.}, language = {en} } @article{IsraelOhsiekAlMomanietal.2016, author = {Israel, Ina and Ohsiek, Andrea and Al-Momani, Ehab and Albert-Weissenberger, Christiane and Stetter, Christian and Mencl, Stine and Buck, Andreas K. and Kleinschnitz, Christoph and Samnick, Samuel and Sir{\´e}n, Anna-Leena}, title = {Combined [\(^{18}\)F]DPA-714 micro-positron emission tomography and autoradiography imaging of microglia activation after closed head injury in mice}, series = {Journal of Neuroinflammation}, volume = {13}, journal = {Journal of Neuroinflammation}, number = {140}, doi = {10.1186/s12974-016-0604-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146606}, year = {2016}, abstract = {Background Traumatic brain injury (TBI) is a major cause of death and disability. Neuroinflammation contributes to acute damage after TBI and modulates long-term evolution of degenerative and regenerative responses to injury. The aim of the present study was to evaluate the relationship of microglia activation to trauma severity, brain energy metabolism, and cellular reactions to injury in a mouse closed head injury model using combined in vivo PET imaging, ex vivo autoradiography, and immunohistochemistry. Methods A weight-drop closed head injury model was used to produce a mixed diffuse and focal TBI or a purely diffuse mild TBI (mTBI) in C57BL6 mice. Lesion severity was determined by evaluating histological damage and functional outcome using a standardized neuroscore (NSS), gliosis, and axonal injury by immunohistochemistry. Repeated intra-individual in vivo μPET imaging with the specific 18-kDa translocator protein (TSPO) radioligand [\(^{18}\)F]DPA-714 was performed on day 1, 7, and 16 and [\(^{18}\)F]FDG-μPET imaging for energy metabolism on days 2-5 after trauma using freshly synthesized radiotracers. Immediately after [\(^{18}\)F]DPA-714-μPET imaging on days 7 and 16, cellular identity of the [\(^{18}\)F]DPA-714 uptake was confirmed by exposing freshly cut cryosections to film autoradiography and successive immunostaining with antibodies against the microglia/macrophage marker IBA-1. Results Functional outcome correlated with focal brain lesions, gliosis, and axonal injury. [\(^{18}\)F]DPA-714-μPET showed increased radiotracer uptake in focal brain lesions on days 7 and 16 after TBI and correlated with reduced cerebral [\(^{18}\)F]FDG uptake on days 2-5, with functional outcome and number of IBA-1 positive cells on day 7. In autoradiography, [\(^{18}\)F]DPA-714 uptake co-localized with areas of IBA1-positive staining and correlated strongly with both NSS and the number of IBA1-positive cells, gliosis, and axonal injury. After mTBI, numbers of IBA-1 positive cells with microglial morphology increased in both brain hemispheres; however, uptake of [\(^{18}\)F]DPA-714 was not increased in autoradiography or in μPET imaging. Conclusions [\(^{18}\)F]DPA-714 uptake in μPET/autoradiography correlates with trauma severity, brain metabolic deficits, and microglia activation after closed head TBI.}, language = {en} } @article{WernerBeykanHiguchietal.2016, author = {Werner, Rudolf A. and Beykan, Seval and Higuchi, Takahiro and L{\"u}ckerath, Katharina and Weich, Alexander and Scheurlen, Michael and Bluemel, Christina and Herrmann, Ken and Buck, Andreas K. and Lassmann, Michael and Lapa, Constantin and H{\"a}nscheid, Heribert}, title = {The impact of \(^{177}\)Lu-octreotide therapy on \(^{99m}\)Tc-MAG3 clearance is not predictive for late nephropathy}, series = {Oncotarget}, volume = {7}, journal = {Oncotarget}, number = {27}, doi = {10.18632/oncotarget.9775}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177318}, pages = {41233-41241}, year = {2016}, abstract = {Peptide Receptor Radionuclide Therapy (PRRT) for the treatment of neuroendocrine tumors may lead to kidney deterioration. This study aimed to evaluate the suitability of \(^{99m}\)Tc-mercaptoacetyltriglycine (\(^{99m}\)Tc-MAG3) clearance for the early detection of PRRT-induced changes on tubular extraction (TE). TE rate (TER) was measured prior to 128 PRRT cycles (7.6±0.4 GBq \(^{177}\)Lu-octreotate/octreotide each) in 32 patients. TER reduction during PRRT was corrected for age-related decrease and analyzed for the potential to predict loss of glomerular filtration (GF). The GF rate (GFR) as measure for renal function was derived from serum creatinine. The mean TER was 234 ± 53 ml/min/1.73 m² before PRRT (baseline) and 221 ± 45 ml/min/1.73 m² after a median follow-up of 370 days. The age-corrected decrease (mean: -3\%, range: -27\% to +19\%) did not reach significance (p=0.09) but significantly correlated with the baseline TER (Spearman p=-0.62, p<0.001). Patients with low baseline TER showed an improved TER after PRRT, high decreases were only observed in individuals with high baseline TER. Pre-therapeutic TER data were inferior to plasma creatinine-derived GFR estimates in predicting late nephropathy. TER assessed by \(^{99m}\)Tc-MAG3­clearance prior to and during PRRT is not suitable as early predictor of renal injury and an increased risk for late nephropathy.}, language = {en} } @article{LapaReiterKircheretal.2016, author = {Lapa, Constantin and Reiter, Theresa and Kircher, Malte and Schirbel, Andreas and Werner, Rudolf A. and Pelzer, Theo and Pizarro, Carmen and Skowasch, Dirk and Thomas, Lena and Schlesinger-Irsch, Ulrike and Thomas, Daniel and Bundschuh, Ralph A. and Bauer, Wolfgang R. and Gartner, Florian C.}, title = {Somatostatin receptor based PET/CT in patients with the suspicion of cardiac sarcoidosis: an initial comparison to cardiac MRI}, series = {Oncotarget}, volume = {7}, journal = {Oncotarget}, number = {47}, doi = {10.18632/oncotarget.12799}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175423}, pages = {77807-77814}, year = {2016}, abstract = {Diagnosis of cardiac sarcoidosis is often challenging. Whereas cardiac magnetic resonance imaging (CMR) and positron emission tomography/computed tomography (PET/CT) with \(^{18}\)F-fluorodeoxyglucose (FDG) are most commonly used to evaluate patients, PET/CT using radiolabeled somatostatin receptor (SSTR) ligands for visualization of inflammation might represent a more specific alternative. This study aimed to investigate the feasibility of SSTR-PET/CT for detecting cardiac sarcoidosis in comparison to CMR. 15 patients (6 males, 9 females) with sarcoidosis and suspicion on cardiac involvement underwent SSTR-PET/CT imaging and CMR. Images were visually scored. The AHA 17-segment model of the left myocardium was used for localization and comparison of inflamed myocardium for both imaging modalities. In semi-quantitative analysis, mean (SUV\(_{mean}\)) and maximum standardized uptake values (SUV\(_{max}\)) of affected myocardium were calculated and compared with both remote myocardium and left ventricular (LV) cavity. SSTR-PET was positive in 7/15, CMR in 10/15 patients. Of the 3 CMR+/PET- subjects, one patient with minor involvement (<25\% of wall thickness in CMR) was missed by PET. The remaining two CMR+/PET- patients displayed no adverse cardiac events during follow-up. In the 17-segment model, PET/CT yielded 27 and CMR 29 positive segments. Overall concordance of the 2 modalities was 96.1\% (245/255 segments analyzed). SUV\(_{mean}\) and SUV\(_{max}\) in inflamed areas were 2.0±1.2 and 2.6±1.2, respectively. The lesion-to-remote myocardium and lesion-to-LV cavity ratios were 1.8±0.2 and 1.9±0.2 for SUV\(_{mean}\) and 2.0±0.3 and 1.7±0.3 for SUV\(_{max}\), respectively. Detection of cardiac sarcoidosis by SSTR-PET/CT is feasible. Our data warrant further analysis in larger prospective series.}, language = {en} } @article{LapaLueckerathKleinleinetal.2016, author = {Lapa, Constantin and L{\"u}ckerath, Katharina and Kleinlein, Irene and Monoranu, Camelia Maria and Linsenmann, Thomas and Kessler, Almuth F. and Rudelius, Martina and Kropf, Saskia and Buck, Andreas K. and Ernestus, Ralf-Ingo and Wester, Hans-J{\"u}rgen and L{\"o}hr, Mario and Herrmann, Ken}, title = {\(^{68}\)Ga-Pentixafor-PET/CT for Imaging of Chemokine Receptor 4 Expression in Glioblastoma}, series = {Theranostics}, volume = {6}, journal = {Theranostics}, number = {3}, doi = {10.7150/thno.13986}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168174}, pages = {428-434}, year = {2016}, abstract = {Chemokine receptor-4 (CXCR4) has been reported to be overexpressed in glioblastoma (GBM) and to be associated with poor survival. This study investigated the feasibility of non-invasive CXCR4-directed imaging with positron emission tomography/computed tomography (PET/CT) using the radiolabelled chemokine receptor ligand \(^{68}\)Ga-Pentixafor. 15 patients with clinical suspicion on primary or recurrent glioblastoma (13 primary, 2 recurrent tumors) underwent \(^{68}\)Ga-Pentixafor-PET/CT for assessment of CXCR4 expression prior to surgery. O-(2-\(^{18}\)F-fluoroethyl)-L-tyrosine (\(^{18}\)F-FET) PET/CT images were available in 11/15 cases and were compared visually and semi-quantitatively (SUV\(_{max}\), SUV\(_{mean}\)). Tumor-to-background ratios (TBR) were calculated for both PET probes. \(^{68}\)Ga-Pentixafor-PET/CT results were also compared to histological CXCR4 expression on neuronavigated surgical samples. \(^{68}\)Ga-Pentixafor-PET/CT was visually positive in 13/15 cases with SUV\(_{mean}\) and SUV\(_{max}\) of 3.0±1.5 and 3.9±2.0 respectively. Respective values for \(^{18}\)F-FET were 4.4±2.0 (SUV\(_{mean}\)) and 5.3±2.3 (SUV\(_{max}\)). TBR for SUV\(_{mean}\) and SUV\(_{max}\) were higher for \(^{68}\)Ga-Pentixafor than for \(^{18}\)F-FET (SUV\(_{mean}\) 154.0±90.7 vs. 4.1±1.3; SUV\(_{max}\) 70.3±44.0 and 3.8±1.2, p<0.01), respectively. Histological analysis confirmed CXCR4 expression in tumor areas with high \(^{68}\)Ga-Pentixafor uptake; regions of the same tumor without apparent \(^{68}\)Ga-Pentixafor uptake showed no or low receptor expression. In this pilot study, \(^{68}\)Ga-Pentixafor retention has been observed in the vast majority of glioblastoma lesions and served as readout for non-invasive determination of CXCR4 expression. Given the paramount importance of the CXCR4/SDF-1 axis in tumor biology, \(^{68}\)Ga-Pentixafor-PET/CT might prove a useful tool for sensitive, non-invasive in-vivo quantification of CXCR4 as well as selection of patients who might benefit from CXCR4-directed therapy.}, language = {en} } @article{FecherHofmannBucketal.2016, author = {Fecher, David and Hofmann, Elisabeth and Buck, Andreas and Bundschuh, Ralph and Nietzer, Sarah and Dandekar, Gudrun and Walles, Thorsten and Walles, Heike and L{\"u}ckerath, Katharina and Steinke, Maria}, title = {Human Organotypic Lung Tumor Models: Suitable For Preclinical \(^{18}\)F-FDG PET-Imaging}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {8}, doi = {10.1371/journal.pone.0160282}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179678}, year = {2016}, abstract = {Development of predictable in vitro tumor models is a challenging task due to the enormous complexity of tumors in vivo. The closer the resemblance of these models to human tumor characteristics, the more suitable they are for drug-development and -testing. In the present study, we generated a complex 3D lung tumor test system based on acellular rat lungs. A decellularization protocol was established preserving the architecture, important ECM components and the basement membrane of the lung. Human lung tumor cells cultured on the scaffold formed cluster and exhibited an up-regulation of the carcinoma-associated marker mucin1 as well as a reduced proliferation rate compared to respective 2D culture. Additionally, employing functional imaging with 2-deoxy-2-[\(^{18}\)F]fluoro-D-glucose positron emission tomography (FDG-PET) these tumor cell cluster could be detected and tracked over time. This approach allowed monitoring of a targeted tyrosine kinase inhibitor treatment in the in vitro lung tumor model non-destructively. Surprisingly, FDG-PET assessment of single tumor cell cluster on the same scaffold exhibited differences in their response to therapy, indicating heterogeneity in the lung tumor model. In conclusion, our complex lung tumor test system features important characteristics of tumors and its microenvironment and allows monitoring of tumor growth and -metabolism in combination with functional imaging. In longitudinal studies, new therapeutic approaches and their long-term effects can be evaluated to adapt treatment regimes in future.}, language = {en} } @article{BuckDecristoforo2016, author = {Buck, Andreas and Decristoforo, Clemens}, title = {Highlights lecture EANM 2015: the search for nuclear medicine's superheroes}, series = {European Journal of Nuclear Medicine and Molecular Imaging}, volume = {43}, journal = {European Journal of Nuclear Medicine and Molecular Imaging}, number = {10}, doi = {10.1007/s00259-016-3423-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187613}, pages = {1910-1927}, year = {2016}, abstract = {The EANM 2015 Annual Congress, held from October 10th to 14th in Hamburg, Germany, was outstanding in many respects. With 5550 participants, this was by far the largest European congress concerning nuclear medicine. More than 1750 scientific presentations were submitted, with more than 250 abstracts from young scientists, indicating that the future success of our discipline is fuelled by a high number of young individuals becoming involved in a multitude of scientific activities. Significant improvements have been made in molecular imaging of cancer, particularly in prostate cancer. PSMA-directed PET/CT appears to become a new gold standard for staging and restaging purposes. Novel tumour specific compounds have shown their potential for target identification also in other solid neoplasms and further our understanding of tumour biology and heterogeneity. In addition, a variety of nuclear imaging techniques guiding surgical interventions have been introduced. A particular focus of the congress was put on targeted, radionuclide based therapies. Novel theranostic concepts addressing also tumour entities with high incidence rates such as prostate cancer, melanoma, and lymphoma, have shown effective anti-tumour activity. Strategies have been presented to improve further already established therapeutic regimens such as somatostatin receptor based radio receptor therapy for treating advanced neuroendocrine tumours. Significant contributions were presented also in the neurosciences track. An increasing number of target structures of high interest in neurology and psychiatry are now available for PET and SPECT imaging, facilitating specific imaging of different subtypes of dementia and movement disorders as well as neuroinflammation. Major contributions in the cardiovascular track focused on further optimization of cardiac perfusion imaging by reducing radiation exposure, reducing scanning time, and improving motion correction. Besides coronary artery disease, many contributions focused on cardiac inflammation, cardiac sarcoidosis, and specific imaging of large vessel vasculitis. The physics and instrumentation track included many highlights such as novel, high resolution scanners. The most noteworthy news and developments of this meeting were summarized in the highlights lecture. Only 55 scientific contributions were mentioned, and hence they represent only a brief summary, which is outlined in this article. For a more detailed view, all presentations can be accessed by the online version of the European Journal of Nuclear Medicine and Molecular Imaging (Volume 42, Supplement 1).}, language = {en} } @article{CanessaPozziArnulfoetal.2016, author = {Canessa, Andrea and Pozzi, Nicol{\`o} G. and Arnulfo, Gabriele and Brumberg, Joachim and Reich, Martin M. and Pezzoli, Gianni and Ghilardi, Maria F. and Matthies, Cordula and Steigerwald, Frank and Volkmann, Jens and Isaias, Ioannis U.}, title = {Striatal Dopaminergic Innervation Regulates Subthalamic Beta-Oscillations and Cortical-Subcortical Coupling during Movements: Preliminary Evidence in Subjects with Parkinson's Disease}, series = {Frontiers in Human Neuroscience}, volume = {10}, journal = {Frontiers in Human Neuroscience}, number = {611}, doi = {10.3389/fnhum.2016.00611}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164061}, year = {2016}, abstract = {Activation of the basal ganglia has been shown during the preparation and execution of movement. However, the functional interaction of cortical and subcortical brain areas during movement and the relative contribution of dopaminergic striatal innervation remains unclear. We recorded local field potential (LFP) activity from the subthalamic nucleus (STN) and high-density electroencephalography (EEG) signals in four patients with Parkinson's disease (PD) off dopaminergic medication during a multi-joint motor task performed with their dominant and non-dominant hand. Recordings were performed by means of a fully-implantable deep brain stimulation (DBS) device at 4 months after surgery. Three patients also performed a single-photon computed tomography (SPECT) with [123I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane (FP-CIT) to assess striatal dopaminergic innervation. Unilateral movement execution led to event-related desynchronization (ERD) followed by a rebound after movement termination event-related synchronization (ERS) of oscillatory beta activity in the STN and primary sensorimotor cortex of both hemispheres. Dopamine deficiency directly influenced movement-related beta-modulation, with greater beta-suppression in the most dopamine-depleted hemisphere for both ipsi- and contralateral hand movements. Cortical-subcortical, but not interhemispheric subcortical coherencies were modulated by movement and influenced by striatal dopaminergic innervation, being stronger in the most dopamine-depleted hemisphere. The data are consistent with a role of dopamine in shielding subcortical structures from an excessive cortical entrapment and cross-hemispheric coupling, thus allowing fine-tuning of movement.}, language = {en} }