@article{WagenhaeuserRickertSommeretal.2022, author = {Wagenh{\"a}user, Laura and Rickert, Vanessa and Sommer, Claudia and Wanner, Christoph and Nordbeck, Peter and Rost, Simone and {\"U}{\c{c}}eyler, Nurcan}, title = {X-chromosomal inactivation patterns in women with Fabry disease}, series = {Molecular Genetics \& Genomic Medicine}, volume = {10}, journal = {Molecular Genetics \& Genomic Medicine}, number = {9}, doi = {10.1002/mgg3.2029}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312795}, year = {2022}, abstract = {Background Although Fabry disease (FD) is an X-linked lysosomal storage disorder caused by mutations in the α-galactosidase A gene (GLA), women may develop severe symptoms. We investigated X-chromosomal inactivation patterns (XCI) as a potential determinant of symptom severity in FD women. Patients and Methods We included 95 women with mutations in GLA (n = 18 with variants of unknown pathogenicity) and 50 related men, and collected mouth epithelial cells, venous blood, and skin fibroblasts for XCI analysis using the methylation status of the androgen receptor gene. The mutated X-chromosome was identified by comparison of samples from relatives. Patients underwent genotype categorization and deep clinical phenotyping of symptom severity. Results 43/95 (45\%) women carried mutations categorized as classic. The XCI pattern was skewed (i.e., ≥75:25\% distribution) in 6/87 (7\%) mouth epithelial cell samples, 31/88 (35\%) blood samples, and 9/27 (33\%) skin fibroblast samples. Clinical phenotype, α-galactosidase A (GAL) activity, and lyso-Gb3 levels did not show intergroup differences when stratified for X-chromosomal skewing and activity status of the mutated X-chromosome. Conclusions X-inactivation patterns alone do not reliably reflect the clinical phenotype of women with FD when investigated in biomaterial not directly affected by FD. However, while XCI patterns may vary between tissues, blood frequently shows skewing of XCI patterns.}, language = {en} } @article{LekszasNandaVonaetal.2019, author = {Lekszas, Caroline and Nanda, Indrajit and Vona, Barbara and B{\"o}ck, Julia and Ashrafzadeh, Farah and Donyadideh, Nahid and Ebrahimzadeh, Farnoosh and Ahangari, Najmeh and Maroofian, Reza and Karimiani, Ehsan Ghayoor and Haaf, Thomas}, title = {Unbalanced segregation of a paternal t(9;11)(p24.3;p15.4) translocation causing familial Beckwith-Wiedemann syndrome: a case report}, series = {BMC Medical Genomics}, volume = {12}, journal = {BMC Medical Genomics}, doi = {10.1186/s12920-019-0539-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200422}, pages = {83}, year = {2019}, abstract = {Background The vast majority of cases with Beckwith-Wiedemann syndrome (BWS) are caused by a molecular defect in the imprinted chromosome region 11p15.5. The underlying mechanisms include epimutations, uniparental disomy, copy number variations, and structural rearrangements. In addition, maternal loss-of-function mutations in CDKN1C are found. Despite growing knowledge on BWS pathogenesis, up to 20\% of patients with BWS phenotype remain without molecular diagnosis. Case presentation Herein, we report an Iranian family with two females affected with BWS in different generations. Bisulfite pyrosequencing revealed hypermethylation of the H19/IGF2: intergenic differentially methylated region (IG DMR), also known as imprinting center 1 (IC1) and hypomethylation of the KCNQ1OT1: transcriptional start site (TSS) DMR (IC2). Array CGH demonstrated an 8 Mb duplication on chromosome 11p15.5p15.4 (205,827-8,150,933) and a 1 Mb deletion on chromosome 9p24.3 (209,020-1,288,114). Chromosome painting revealed that this duplication-deficiency in both patients is due to unbalanced segregation of a paternal reciprocal t(9;11)(p24.3;p15.4) translocation. Conclusions This is the first report of a paternally inherited unbalanced translocation between the chromosome 9 and 11 short arms underlying familial BWS. Copy number variations involving the 11p15.5 region are detected by the consensus diagnostic algorithm. However, in complex cases which do not only affect the BWS region itself, characterization of submicroscopic chromosome rearrangements can assist to estimate the recurrence risk and possible phenotypic outcomes.}, language = {en} } @article{AppelScholzMuelleretal.2015, author = {Appel, Mirjam and Scholz, Claus-J{\"u}rgen and M{\"u}ller, Tobias and Dittrich, Marcus and K{\"o}nig, Christian and Bockstaller, Marie and Oguz, Tuba and Khalili, Afshin and Antwi-Adjei, Emmanuel and Schauer, Tamas and Margulies, Carla and Tanimoto, Hiromu and Yarali, Ayse}, title = {Genome-Wide Association Analyses Point to Candidate Genes for Electric Shock Avoidance in Drosophila melanogaster}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {5}, doi = {10.1371/journal.pone.0126986}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-152006}, pages = {e0126986}, year = {2015}, abstract = {Electric shock is a common stimulus for nociception-research and the most widely used reinforcement in aversive associative learning experiments. Yet, nothing is known about the mechanisms it recruits at the periphery. To help fill this gap, we undertook a genome-wide association analysis using 38 inbred Drosophila melanogaster strains, which avoided shock to varying extents. We identified 514 genes whose expression levels and/or sequences covaried with shock avoidance scores. We independently scrutinized 14 of these genes using mutants, validating the effect of 7 of them on shock avoidance. This emphasizes the value of our candidate gene list as a guide for follow-up research. In addition, by integrating our association results with external protein-protein interaction data we obtained a shock avoidance- associated network of 38 genes. Both this network and the original candidate list contained a substantial number of genes that affect mechanosensory bristles, which are hairlike organs distributed across the fly's body. These results may point to a potential role for mechanosensory bristles in shock sensation. Thus, we not only provide a first list of candidate genes for shock avoidance, but also point to an interesting new hypothesis on nociceptive mechanisms.}, language = {en} } @article{VonaMazaheriLinetal.2021, author = {Vona, Barbara and Mazaheri, Neda and Lin, Sheng-Jia and Dunbar, Lucy A. and Maroofian, Reza and Azaiez, Hela and Booth, Kevin T. and Vitry, Sandrine and Rad, Aboulfazl and R{\"u}schendorf, Franz and Varshney, Pratishtha and Fowler, Ben and Beetz, Christian and Alagramam, Kumar N. and Murphy, David and Shariati, Gholamreza and Sedaghat, Alireza and Houlden, Henry and Petree, Cassidy and VijayKumar, Shruthi and Smith, Richard J. H. and Haaf, Thomas and El-Amraoui, Aziz and Bowl, Michael R. and Varshney, Gaurav K. and Galehdari, Hamid}, title = {A biallelic variant in CLRN2 causes non-syndromic hearing loss in humans}, series = {Human Genetics}, volume = {140}, journal = {Human Genetics}, number = {6}, issn = {1432-1203}, doi = {10.1007/s00439-020-02254-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-267740}, pages = {915-931}, year = {2021}, abstract = {Deafness, the most frequent sensory deficit in humans, is extremely heterogeneous with hundreds of genes involved. Clinical and genetic analyses of an extended consanguineous family with pre-lingual, moderate-to-profound autosomal recessive sensorineural hearing loss, allowed us to identify CLRN2, encoding a tetraspan protein, as a new deafness gene. Homozygosity mapping followed by exome sequencing identified a 14.96 Mb locus on chromosome 4p15.32p15.1 containing a likely pathogenic missense variant in CLRN2 (c.494C > A, NM_001079827.2) segregating with the disease. Using in vitro RNA splicing analysis, we show that the CLRN2 c.494C > A variant leads to two events: (1) the substitution of a highly conserved threonine (uncharged amino acid) to lysine (charged amino acid) at position 165, p.(Thr165Lys), and (2) aberrant splicing, with the retention of intron 2 resulting in a stop codon after 26 additional amino acids, p.(Gly146Lysfs*26). Expression studies and phenotyping of newly produced zebrafish and mouse models deficient for clarin 2 further confirm that clarin 2, expressed in the inner ear hair cells, is essential for normal organization and maintenance of the auditory hair bundles, and for hearing function. Together, our findings identify CLRN2 as a new deafness gene, which will impact future diagnosis and treatment for deaf patients.}, language = {en} } @article{JanschGuentherWaideretal.2018, author = {Jansch, Charline and G{\"u}nther, Katharina and Waider, Jonas and Ziegler, Georg C. and Forero, Andrea and Kollert, Sina and Svirin, Evgeniy and P{\"u}hringer, Dirk and Kwok, Chee Keong and Ullmann, Reinhard and Maierhofer, Anna and Flunkert, Julia and Haaf, Thomas and Edenhofer, Frank and Lesch, Klaus-Peter}, title = {Generation of a human induced pluripotent stem cell (iPSC) line from a 51-year-old female with attention-deficit/hyperactivity disorder (ADHD) carrying a duplication of SLC2A3}, series = {Stem Cell Research}, volume = {28}, journal = {Stem Cell Research}, doi = {10.1016/j.scr.2018.02.005}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176654}, pages = {136-140}, year = {2018}, abstract = {Fibroblasts were isolated from a skin biopsy of a clinically diagnosed 51-year-old female attention-deficit/hyperactivity disorder (ADHD) patient carrying a duplication of SLC2A3, a gene encoding neuronal glucose transporter-3 (GLUT3). Patient fibroblasts were infected with Sendai virus, a single-stranded RNA virus, to generate transgene-free human induced pluripotent stem cells (iPSCs). SLC2A3-D2-iPSCs showed expression of pluripotency-associated markers, were able to differentiate into cells of the three germ layers in vitro and had a normal female karyotype. This in vitro cellular model can be used to study the role of risk genes in the pathogenesis of ADHD, in a patient-specific manner.}, language = {en} } @article{MahyeraSchneiderHalligerKelleretal.2018, author = {Mahyera, Alexis S. and Schneider, Tamara and Halliger-Keller, Birgit and Schrooten, Katja and H{\"o}rner, Eva-Maria and Rost, Simone and Kress, Wolfram}, title = {Distribution and Structure of DM2 Repeat Tract Alleles in the German Population}, series = {Frontiers in Neurology}, volume = {9}, journal = {Frontiers in Neurology}, number = {463}, issn = {1664-2295}, doi = {10.3389/fneur.2018.00463}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196252}, year = {2018}, abstract = {Autosomal dominant inherited Myotonic dystrophy type 1 and 2 (DM1 and DM2) are the most frequent muscle dystrophies in the European population and are caused by repeat expansion mutations. For Germany cumulative empiric evidence suggests an estimated prevalence of DM2 of roughly 9 in 100,000, therefore being as prevalent as DM1. In DM2, a (CCTG)n repeat tract located in the first intron of the CNBP gene is expanded. The CCTG repeat tract is part of a complex repeat structure comprising not only CCTG tetraplets but also repeated TG dinucleotides and TCTG tetraplet elements as well as NCTG interruptions. Here, we provide the distribution of normal sized alleles in the German population, which was found to be highly similar to the Slovak population. Sequencing of 34 unexpanded healthy range alleles in DM2 positive patients (heterozygous for a full expansion) revealed that the CCTG repeat tract is usually interrupted by at least three tetraplets which according to current opinion is supposed to render it stable against expansion. Interestingly, only the largest analyzed normal allele had 23 uninterrupted CCTGs and consequently could represent an instable early premutation allele. In our diagnostic history of DM2 cases, a total of 18 premutations were detected in 16 independent cases. Here, we describe two premutation families, one with an expansion from a premutation allele and the other with a contraction of a full expansion down to a premutation allele. Our diagnostic results support the general assumption that the premutation range of unstable CCTG stretches lies obviously between 25 and 75 CCTGs. However, the clinical significance of premutation alleles is still unclear. In the light of the two described families we suggest incomplete penetrance. Thus, as it was proposed for other repeat expansion diseases (e.g., Huntington's disease), a fluid transition of penetrance is more likely rather than a clear cut CCTG number threshold.}, language = {en} } @article{HaertleElHajjDittrichetal.2017, author = {Haertle, Larissa and El Hajj, Nady and Dittrich, Marcus and M{\"u}ller, Tobias and Nanda, Indrajit and Lehnen, Harald and Haaf, Thomas}, title = {Epigenetic signatures of gestational diabetes mellitus on cord blood methylation}, series = {Clinical Epigenetics}, volume = {9}, journal = {Clinical Epigenetics}, number = {28}, doi = {10.1186/s13148-017-0329-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159459}, year = {2017}, abstract = {Background: Intrauterine exposure to gestational diabetes mellitus (GDM) confers a lifelong increased risk for metabolic and other complex disorders to the offspring. GDM-induced epigenetic modifications modulating gene regulation and persisting into later life are generally assumed to mediate these elevated disease susceptibilities. To identify candidate genes for fetal programming, we compared genome-wide methylation patterns of fetal cord bloods (FCBs) from GDM and control pregnancies. Methods and results: Using Illumina's 450K methylation arrays and following correction for multiple testing, 65 CpG sites (52 associated with genes) displayed significant methylation differences between GDM and control samples. Four candidate genes, ATP5A1, MFAP4, PRKCH, and SLC17A4, from our methylation screen and one, HIF3A, from the literature were validated by bisulfite pyrosequencing. The effects remained significant after adjustment for the confounding factors maternal BMI, gestational week, and fetal sex in a multivariate regression model. In general, GDM effects on FCB methylation were more pronounced in women with insulin-dependent GDM who had a more severe metabolic phenotype than women with dietetically treated GDM. Conclusions: Our study supports an association between maternal GDM and the epigenetic status of the exposed offspring. Consistent with a multifactorial disease model, the observed FCB methylation changes are of small effect size but affect multiple genes/loci. The identified genes are primary candidates for transmitting GDM effects to the next generation. They also may provide useful biomarkers for the diagnosis, prognosis, and treatment of adverse prenatal exposures.}, language = {en} } @article{BluemelZinkKlopockietal.2019, author = {Bl{\"u}mel, Rabea and Zink, Miriam and Klopocki, Eva and Liedtke, Daniel}, title = {On the traces of tcf12: Investigation of the gene expression pattern during development and cranial suture patterning in zebrafish (Danio rerio)}, series = {PLoS ONE}, volume = {14}, journal = {PLoS ONE}, number = {6}, doi = {10.1371/journal.pone.0218286}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201428}, pages = {e0218286}, year = {2019}, abstract = {The transcription factor 12 (tcf12) is a basic Helix-Loop-Helix protein (bHLH) of the E-protein family, proven to play an important role in developmental processes like neurogenesis, mesoderm formation, and cranial vault development. In humans, mutations in TCF12 lead to craniosynostosis, a congenital birth disorder characterized by the premature fusion of one or several of the cranial sutures. Current research has been primarily focused on functional studies of TCF12, hence the cellular expression profile of this gene during embryonic development and early stages of ossification remains poorly understood. Here we present the establishment and detailed analysis of two transgenic tcf12:EGFP fluorescent zebrafish (Danio rerio) reporter lines. Using these transgenic lines, we analyzed the general spatiotemporal expression pattern of tcf12 during different developmental stages and put emphasis on skeletal development and cranial suture patterning. We identified robust tcf12 promoter-driven EGFP expression in the central nervous system (CNS), the heart, the pronephros, and the somites of zebrafish embryos. Additionally, expression was observed inside the muscles and bones of the viscerocranium in juvenile and adult fish. During cranial vault development, the transgenic fish show a high amount of tcf12 expressing cells at the growth fronts of the ossifying frontal and parietal bones and inside the emerging cranial sutures. Subsequently, we tested the transcriptional activity of three evolutionary conserved non-coding elements (CNEs) located in the tcf12 locus by transient transgenic assays and compared their in vivo activity to the expression pattern determined in the transgenic tcf12:EGFP lines. We could validate two of them as tcf12 enhancer elements driving specific gene expression in the CNS during embryogenesis. Our newly established transgenic lines enhance the understanding of tcf12 gene regulation and open up the possibilities for further functional investigation of these novel tcf12 enhancer elements in zebrafish.}, language = {en} } @article{LiedtkeOrthMeissleretal.2019, author = {Liedtke, Daniel and Orth, Melanie and Meissler, Michelle and Geuer, Sinje and Knaup, Sabine and K{\"o}blitz, Isabell and Klopocki, Eva}, title = {ECM alterations in fndc3a (fibronectin domain containing protein 3A) deficient zebrafish cause temporal fin development and regeneration defects}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-50055-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202141}, pages = {13383}, year = {2019}, abstract = {Fin development and regeneration are complex biological processes that are highly relevant in teleost fish. They share genetic factors, signaling pathways and cellular properties to coordinate formation of regularly shaped extremities. Especially correct tissue structure defined by extracellular matrix (ECM) formation is essential. Gene expression and protein localization studies demonstrated expression of fndc3a (fibronectin domain containing protein 3a) in both developing and regenerating caudal fins of zebrafish (Danio rerio). We established a hypomorphic fndc3a mutant line (fndc3a\(^{wue1/wue1}\)) via CRISPR/Cas9, exhibiting phenotypic malformations and changed gene expression patterns during early stages of median fin fold development. These developmental effects are mostly temporary, but result in a fraction of adults with permanent tail fin deformations. In addition, caudal fin regeneration in adult fndc3a\(^{wue1/wue1}\) mutants is hampered by interference with actinotrichia formation and epidermal cell organization. Investigation of the ECM implies that loss of epidermal tissue structure is a common cause for both of the observed defects. Our results thereby provide a molecular link between these developmental processes and foreshadow Fndc3a as a novel temporal regulator of epidermal cell properties during extremity development and regeneration in zebrafish.}, language = {en} } @article{ManukjanWiegeringReindletal.2020, author = {Manukjan, Georgi and Wiegering, Verena and Reindl, Tobias and Strauß, Gabriele and Klopocki, Eva and Schulze, Harald and Andres, Oliver}, title = {Novel variants in FERMT3 and RASGRP2 - Genetic linkage in Glanzmann-like bleeding disorders}, series = {Pediatric Blood \& Cancer}, volume = {67}, journal = {Pediatric Blood \& Cancer}, number = {2}, doi = {10.1002/pbc.28078}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208129}, pages = {e28078}, year = {2020}, abstract = {Defects of platelet intracellular signaling can result in severe platelet dysfunction. Several mutations in each of the linked genes FERMT3 and RASGRP2 on chromosome 11 causing a Glanzmann-like bleeding phenotype have been identified so far. We report on novel variants in two unrelated pediatric patients with severe bleeding diathesis—one with leukocyte adhesion deficiency type III due to a homozygous frameshift in FERMT3 and the other with homozygous variants in both, FERMT3 and RASGRP2 . We focus on the challenging genetic and functional variant assessment and aim to accentuate the risk of obtaining misleading results due to the phenomenon of genetic linkage.}, language = {en} }