@article{LutherBrandtVylkovaetal.2023, author = {Luther, Christian H. and Brandt, Philipp and Vylkova, Slavena and Dandekar, Thomas and M{\"u}ller, Tobias and Dittrich, Marcus}, title = {Integrated analysis of SR-like protein kinases Sky1 and Sky2 links signaling networks with transcriptional regulation in Candida albicans}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {13}, journal = {Frontiers in Cellular and Infection Microbiology}, issn = {2235-2988}, doi = {10.3389/fcimb.2023.1108235}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311771}, year = {2023}, abstract = {Fungal infections are a major global health burden where Candida albicans is among the most common fungal pathogen in humans and is a common cause of invasive candidiasis. Fungal phenotypes, such as those related to morphology, proliferation and virulence are mainly driven by gene expression, which is primarily regulated by kinase signaling cascades. Serine-arginine (SR) protein kinases are highly conserved among eukaryotes and are involved in major transcriptional processes in human and S. cerevisiae. Candida albicans harbors two SR protein kinases, while Sky2 is important for metabolic adaptation, Sky1 has similar functions as in S. cerevisiae. To investigate the role of these SR kinases for the regulation of transcriptional responses in C. albicans, we performed RNA sequencing of sky1Δ and sky2Δ and integrated a comprehensive phosphoproteome dataset of these mutants. Using a Systems Biology approach, we study transcriptional regulation in the context of kinase signaling networks. Transcriptomic enrichment analysis indicates that pathways involved in the regulation of gene expression are downregulated and mitochondrial processes are upregulated in sky1Δ. In sky2Δ, primarily metabolic processes are affected, especially for arginine, and we observed that arginine-induced hyphae formation is impaired in sky2Δ. In addition, our analysis identifies several transcription factors as potential drivers of the transcriptional response. Among these, a core set is shared between both kinase knockouts, but it appears to regulate different subsets of target genes. To elucidate these diverse regulatory patterns, we created network modules by integrating the data of site-specific protein phosphorylation and gene expression with kinase-substrate predictions and protein-protein interactions. These integrated signaling modules reveal shared parts but also highlight specific patterns characteristic for each kinase. Interestingly, the modules contain many proteins involved in fungal morphogenesis and stress response. Accordingly, experimental phenotyping shows a higher resistance to Hygromycin B for sky1Δ. Thus, our study demonstrates that a combination of computational approaches with integration of experimental data can offer a new systems biological perspective on the complex network of signaling and transcription. With that, the investigation of the interface between signaling and transcriptional regulation in C. albicans provides a deeper insight into how cellular mechanisms can shape the phenotype.}, language = {en} } @article{FerreiraGamazonAlEjehetal.2019, author = {Ferreira, Manuel A. and Gamazon, Eric R. and Al-Ejeh, Fares and Aittom{\"a}ki, Kristiina and Andrulis, Irene L. and Anton-Culver, Hoda and Arason, Adalgeir and Arndt, Volker and Aronson, Kristan J. and Arun, Banu K. and Asseryanis, Ella and Azzollini, Jacopo and Balma{\~n}a, Judith and Barnes, Daniel R. and Barrowdale, Daniel and Beckmann, Matthias W. and Behrens, Sabine and Benitez, Javier and Bermisheva, Marina and Bialkowska, Katarzyna and Blomqvist, Carl and Bogdanova, Natalia V. and Bojesen, Stig E. and Bolla, Manjeet K. and Borg, Ake and Brauch, Hiltrud and Brenner, Hermann and Broeks, Annegien and Burwinkel, Barbara and Cald{\´e}s, Trinidad and Caligo, Maria A. and Campa, Daniele and Campbell, Ian and Canzian, Federico and Carter, Jonathan and Carter, Brian D. and Castelao, Jose E. and Chang-Claude, Jenny and Chanock, Stephen J. and Christiansen, Hans and Chung, Wendy K. and Claes, Kathleen B. M. and Clarke, Christine L. and Couch, Fergus J. and Cox, Angela and Cross, Simon S. and Czene, Kamila and Daly, Mary B. and de la Hoya, Miguel and Dennis, Joe and Devilee, Peter and Diez, Orland and D{\"o}rk, Thilo and Dunning, Alison M. and Dwek, Miriam and Eccles, Diana M. and Ejlertsen, Bent and Ellberg, Carolina and Engel, Christoph and Eriksson, Mikael and Fasching, Peter A. and Fletcher, Olivia and Flyger, Henrik and Friedman, Eitan and Frost, Debra and Gabrielson, Marike and Gago-Dominguez, Manuela and Ganz, Patricia A. and Gapstur, Susan M. and Garber, Judy and Garc{\´i}a-Closas, Montserrat and Garc{\´i}a-S{\´a}enz, Jos{\´e} A. and Gaudet, Mia M. and Giles, Graham G. and Glendon, Gord and Godwin, Andrew K. and Goldberg, Mark S. and Goldgar, David E. and Gonz{\´a}lez-Neira, Anna and Greene, Mark H. and Gronwald, Jacek and Guen{\´e}l, Pascal and Haimann, Christopher A. and Hall, Per and Hamann, Ute and He, Wei and Heyworth, Jane and Hogervorst, Frans B. L. and Hollestelle, Antoinette and Hoover, Robert N. and Hopper, John L. and Hulick, Peter J. and Humphreys, Keith and Imyanitov, Evgeny N. and Isaacs, Claudine and Jakimovska, Milena and Jakubowska, Anna and James, Paul A. and Janavicius, Ramunas and Jankowitz, Rachel C. and John, Esther M. and Johnson, Nichola and Joseph, Vijai and Karlan, Beth Y. and Khusnutdinova, Elza and Kiiski, Johanna I. and Ko, Yon-Dschun and Jones, Michael E. and Konstantopoulou, Irene and Kristensen, Vessela N. and Laitman, Yael and Lambrechts, Diether and Lazaro, Conxi and Leslie, Goska and Lester, Jenny and Lesueur, Fabienne and Lindstr{\"o}m, Sara and Long, Jirong and Loud, Jennifer T. and Lubiński, Jan and Makalic, Enes and Mannermaa, Arto and Manoochehri, Mehdi and Margolin, Sara and Maurer, Tabea and Mavroudis, Dimitrios and McGuffog, Lesley and Meindl, Alfons and Menon, Usha and Michailidou, Kyriaki and Miller, Austin and Montagna, Marco and Moreno, Fernando and Moserle, Lidia and Mulligan, Anna Marie and Nathanson, Katherine L. and Neuhausen, Susan L. and Nevanlinna, Heli and Nevelsteen, Ines and Nielsen, Finn C. and Nikitina-Zake, Liene and Nussbaum, Robert L. and Offit, Kenneth and Olah, Edith and Olopade, Olufunmilayo I. and Olsson, H{\aa}kan and Osorio, Ana and Papp, Janos and Park-Simon, Tjoung-Won and Parsons, Michael T. and Pedersen, Inge Sokilde and Peixoto, Ana and Peterlongo, Paolo and Pharaoh, Paul D. P. and Plaseska-Karanfilska, Dijana and Poppe, Bruce and Presneau, Nadege and Radice, Paolo and Rantala, Johanna and Rennert, Gad and Risch, Harvey A. and Saloustros, Emmanouil and Sanden, Kristin and Sawyer, Elinor J. and Schmidt, Marjanka K. and Schmutzler, Rita K. and Sharma, Priyanka and Shu, Xiao-Ou and Simard, Jaques and Singer, Christian F. and Soucy, Penny and Southey, Melissa C. and Spinelli, John J. and Spurdle, Amanda B. and Stone, Jennifer and Swerdlow, Anthony J. and Tapper, William J. and Taylor, Jack A. and Teixeira, Manuel R. and Terry, Mary Beth and Teul{\´e}, Alex and Thomassen, Mads and Th{\"o}ne, Kathrin and Thull, Darcy L. and Tischkowitz, Marc and Toland, Amanda E. and Torres, Diana and Truong, Th{\´e}r{\`e}se and Tung, Nadine and Vachon, Celine M. and van Asperen, Christi J. and van den Ouweland, Ans M. W. and van Rensburg, Elizabeth J. and Vega, Ana and Viel, Alexandra and Wang, Qin and Wappenschmidt, Barbara and Weitzel, Jeffrey N. and Wendt, Camilla and Winqvist, Robert and Yang, Xiaohong R. and Yannoukakos, Drakoulis and Ziogas, Argyrios and Kraft, Peter and Antoniou, Antonis C. and Zheng, Wei and Easton, Douglas F. and Milne, Roger L. and Beesley, Jonathan and Chenevix-Trench, Georgia}, title = {Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, organization = {EMBRACE Collaborators, GC-HBOC Study Collaborators, GEMO Study Collaborators, ABCTB Investigators, HEBON Investigators, BCFR Investigators}, doi = {10.1038/s41467-018-08053-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228024}, year = {2019}, abstract = {Genome-wide association studies (GWAS) have identified more than 170 breast cancer susceptibility loci. Here we hypothesize that some risk-associated variants might act in non-breast tissues, specifically adipose tissue and immune cells from blood and spleen. Using expression quantitative trait loci (eQTL) reported in these tissues, we identify 26 previously unreported, likely target genes of overall breast cancer risk variants, and 17 for estrogen receptor (ER)-negative breast cancer, several with a known immune function. We determine the directional effect of gene expression on disease risk measured based on single and multiple eQTL. In addition, using a gene-based test of association that considers eQTL from multiple tissues, we identify seven (and four) regions with variants associated with overall (and ER-negative) breast cancer risk, which were not reported in previous GWAS. Further investigation of the function of the implicated genes in breast and immune cells may provide insights into the etiology of breast cancer.}, language = {en} } @article{DubailHuberChantepieetal.2018, author = {Dubail, Johanne and Huber, C{\´e}line and Chantepie, Sandrine and Sonntag, Stephan and T{\"u}ys{\"u}z, Beyhan and Mihci, Ercan and Gordon, Christopher T. and Steichen-Gersdorf, Elisabeth and Amiel, Jeanne and Nur, Banu and Stolte-Dijkstra, Irene and van Eerde, Albertien M. and van Gassen, Koen L. and Breugem, Corstiaan C. and Stegmann, Alexander and Lekszas, Caroline and Maroofian, Reza and Karimiani, Ehsan Ghayoor and Bruneel, Arnaud and Seta, Nathalie and Munnich, Arnold and Papy-Garcia, Dulce and De La Dure-Molla, Muriel and Cormier-Daire, Val{\´e}rie}, title = {SLC10A7 mutations cause a skeletal dysplasia with amelogenesis imperfecta mediated by GAG biosynthesis defects}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-05191-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226377}, year = {2018}, abstract = {Skeletal dysplasia with multiple dislocations are severe disorders characterized by dislocations of large joints and short stature. The majority of them have been linked to pathogenic variants in genes encoding glycosyltransferases, sulfotransferases or epimerases required for glycosaminoglycan synthesis. Using exome sequencing, we identify homozygous mutations in SLC10A7 in six individuals with skeletal dysplasia with multiple dislocations and amelogenesis imperfecta. SLC10A7 encodes a 10-transmembrane-domain transporter located at the plasma membrane. Functional studies in vitro demonstrate that SLC10A7 mutations reduce SLC10A7 protein expression. We generate a Slc10a7-/- mouse model, which displays shortened long bones, growth plate disorganization and tooth enamel anomalies, recapitulating the human phenotype. Furthermore, we identify decreased heparan sulfate levels in Slc10a7-/- mouse cartilage and patient fibroblasts. Finally, we find an abnormal N-glycoprotein electrophoretic profile in patient blood samples. Together, our findings support the involvement of SLC10A7 in glycosaminoglycan synthesis and specifically in skeletal development.}, language = {en} } @article{HauerPoppTaheretal.2019, author = {Hauer, Nadine N. and Popp, Bernt and Taher, Leila and Vogl, Carina and Dhandapany, Perundurai S. and B{\"u}ttner, Christian and Uebe, Steffen and Sticht, Heinrich and Ferrazzi, Fulvia and Ekici, Arif B. and De Luca, Alessandro and Klinger, Patrizia and Kraus, Cornelia and Zweier, Christiane and Wiesener, Antje and Abou Jamra, Rami and Kunstmann, Erdmute and Rauch, Anita and Wieczorek, Dagmar and Jung, Anna-Marie and Rohrer, Tilman R. and Zenker, Martin and Doerr, Helmuth-Guenther and Reis, Andr{\´e} and Thiel, Christian T.}, title = {Evolutionary conserved networks of human height identify multiple Mendelian causes of short stature}, series = {European Journal of Human Genetics}, volume = {27}, journal = {European Journal of Human Genetics}, doi = {10.1038/s41431-019-0362-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227899}, pages = {1061-1071}, year = {2019}, abstract = {Height is a heritable and highly heterogeneous trait. Short stature affects 3\% of the population and in most cases is genetic in origin. After excluding known causes, 67\% of affected individuals remain without diagnosis. To identify novel candidate genes for short stature, we performed exome sequencing in 254 unrelated families with short stature of unknown cause and identified variants in 63 candidate genes in 92 (36\%) independent families. Based on systematic characterization of variants and functional analysis including expression in chondrocytes, we classified 13 genes as strong candidates. Whereas variants in at least two families were detected for all 13 candidates, two genes had variants in 6 (UBR4) and 8 (LAMA5) families, respectively. To facilitate their characterization, we established a clustered network of 1025 known growth and short stature genes, which yielded 29 significantly enriched clusters, including skeletal system development, appendage development, metabolic processes, and ciliopathy. Eleven of the candidate genes mapped to 21 of these clusters, including CPZ, EDEM3, FBRS, IFT81, KCND1, PLXNA3, RASA3, SLC7A8, UBR4, USP45, and ZFHX3. Fifty additional growth-related candidates we identified await confirmation in other affected families. Our study identifies Mendelian forms of growth retardation as an important component of idiopathic short stature.}, language = {en} } @article{GhoshHoenscheidDueckersetal.2017, author = {Ghosh, Sujal and H{\"o}nscheid, Andrea and D{\"u}ckers, Gregor and Ginzel, Sebastian and Gohlke, Holger and Gombert, Michael and Kempkes, Bettina and Klapper, Wolfram and Kuhlen, Michaela and Laws, Hans-J{\"u}rgen and Linka, Ren{\´e} Martin and Meisel, Roland and Mielke, Christian and Niehues, Tim and Schindler, Detlev and Schneider, Dominik and Schuster, Friedhelm R. and Speckmann, Carsten and Borkhardt, Arndt}, title = {Human RAD52 - a novel player in DNA repair in cancer and immunodeficiency}, series = {Haematologica}, volume = {102}, journal = {Haematologica}, number = {2}, doi = {10.3324/haematol.2016.155838}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-180862}, pages = {e69-e72}, year = {2017}, abstract = {No abstract available.}, language = {en} } @article{HernandezJoseRamirezMinguillonetal.2018, author = {Hern{\´a}ndez, Gonzalo and Jos{\´e} Ram{\´i}rez, Mar{\´i}a and Minguill{\´o}n, Jordi and Quiles, Paco and Ruiz de Garibay, Gorka and Aza-Carmona, Miriam and Bogliolo, Massimo and Pujol, Roser and Prados-Carvajal, Rosario and Fern{\´a}ndez, Juana and Garc{\´i}a, Nadia and L{\´o}pez, Adri{\`a} and Guti{\´e}rrez-Enr{\´i}quez, Sara and Diez, Orland and Ben{\´i}tez, Javier and Salinas, M{\´o}nica and Teul{\´e}, Alex and Brunet, Joan and Radice, Paolo and Peterlongo, Paolo and Schindler, Detlev and Huertas, Pablo and Puente, Xose S. and L{\´a}zaro, Conxi and {\`A}ngel Pujana, Miquel and Surrall{\´e}s, Jordi}, title = {Decapping protein EDC4 regulates DNA repair and phenocopies BRCA1}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-03433-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-319929}, year = {2018}, abstract = {BRCA1 is a tumor suppressor that regulates DNA repair by homologous recombination. Germline mutations in BRCA1 are associated with increased risk of breast and ovarian cancer and BRCA1 deficient tumors are exquisitely sensitive to poly (ADP-ribose) polymerase (PARP) inhibitors. Therefore, uncovering additional components of this DNA repair pathway is of extreme importance for further understanding cancer development and therapeutic vulnerabilities. Here, we identify EDC4, a known component of processing-bodies and regulator of mRNA decapping, as a member of the BRCA1-BRIP1-TOPBP1 complex. EDC4 plays a key role in homologous recombination by stimulating end resection at double-strand breaks. EDC4 deficiency leads to genome instability and hypersensitivity to DNA interstrand cross-linking drugs and PARP inhibitors. Lack-of-function mutations in EDC4 were detected in BRCA1/2-mutation-negative breast cancer cases, suggesting a role in breast cancer susceptibility. Collectively, this study recognizes EDC4 with a dual role in decapping and DNA repair whose inactivation phenocopies BRCA1 deficiency.}, language = {en} }